1
|
Wang C, Zhu H, Zhang M, Zhu L, Zheng W, Lu W, Niu Y, Zhang Y, Gao B, Yu LL. Ninety-Day Subchronic Toxicology of Individual and Combined Toxicants from the Thermal Processing of Lipid-Rich Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:28122-28137. [PMID: 39638751 DOI: 10.1021/acs.jafc.4c07892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Oxidative derivatives of triacylglycerols (ox-TGs), aldehydes, and 3-monochloropropane-1,2-diol esters (3-MCPDE) were simultaneously evaluated in a 90-day subchronic study, focusing on biological indicators, biochemical indicators, and serum metabolomics as the first part of integrated toxicity and interactions. After 90 days of feeding Kunming mice, coexposure to combined toxicants significantly inhibited the trend of liver weight gain, reduced the levels of total bilirubin (TBIL) and direct bilirubin (DBIL), and decreased uric acid (UA) compared to individual toxicant exposure. A total of 21 and 31 biomarkers in female and male mice were identified, respectively. Co-exposure to combined toxicants might mitigate the changes in cytidine, CDP, dUMP, and dUDP involved in purine and pyrimidine metabolism caused by a single exposure, but exacerbate the changes in l-tryptophan, 5-hydroxy-l-tryptophan, and 5-hydroxyindoleacetic acid, which are involved in tryptophan metabolism. These results provided new insights into a comprehensive toxicity and interaction evaluation model of multiple combined toxicants in food.
Collapse
Affiliation(s)
- Chenxu Wang
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hanshu Zhu
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Miao Zhang
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lin Zhu
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenhao Zheng
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weiying Lu
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuge Niu
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yaqiong Zhang
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Boyan Gao
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liangli Lucy Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
2
|
Sun X, Ye G, Li J, Yuan L, Bai G, Xu YJ, Zhang J. The tumor suppressor Parkin exerts anticancer effects through regulating mitochondrial GAPDH activity. Oncogene 2024; 43:3215-3226. [PMID: 39285229 DOI: 10.1038/s41388-024-03157-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
Cancer cells preferentially utilize glycolysis for energy production, and GAPDH is a critical enzyme in glycolysis. Parkin is a tumor suppressor and a key protein involved in mitophagy regulation. However, the tumor suppression mechanism of Parkin has still not been elucidated. In this study, we identified mitochondrial GAPDH as a new substrate of the E3 ubiquitin ligase Parkin, which mediated GAPDH ubiquitination in human cervical cancer. The translocation of GAPDH into mitochondria was driven by the PINK1 kinase, and either PINK1 or GAPDH mutation prevented the accumulation of GAPDH in mitochondria. Parkin caused the ubiquitination of GAPDH at multiple sites (K186, K215, and K219) located within the enzyme-catalyzed binding domain of the GAPDH protein. GAPDH ubiquitination was required for mitophagy, and stimulation of mitophagy suppressed cervical cancer cell growth, indicating that mitophagy serves as a type of cell death. Mechanistically, PHB2 served as a key mediator in GAPDH ubiquitination-induced mitophagy through stabilizing PINK1 protein and GAPDH mutation resulted in the reduced distribution of PHB2 in mitophagic vacuole. In addition, ubiquitination of GAPDH decreased its phosphorylation level and enzyme activity and inhibited the glycolytic pathway in cervical cancer cells. The results of in vivo experiments also showed that the GAPDH mutation increased glycolysis in cervical cancer cells and accelerated tumorigenesis. Thus, we concluded that Parkin may exert its anticancer function by ubiquitinating GAPDH in mitochondria. Taken together, our study further clarified the molecular mechanism of tumor suppression by Parkin through the regulation of energy metabolism, which provides an experimental basis for the development of new drugs for the treatment of human cervical cancer.
Collapse
Affiliation(s)
- Xin Sun
- Cancer Center, Department of Medical Oncology, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Guiqin Ye
- Department of Clinical Laboratory, Yuhuan People's Hospital, Taizhou, China
| | - Jiuzhou Li
- Department of Neurosurgery, Binzhou People's Hospital, Binzhou, China
| | - Liyang Yuan
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Gongxun Bai
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, China.
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China.
| | - Jianbin Zhang
- Cancer Center, Department of Medical Oncology, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China.
| |
Collapse
|
3
|
Zhang Y, Shi J, Tan C, Liu Y, Xu YJ. Oilomics: An important branch of foodomics dealing with oil science and technology. Food Res Int 2023; 173:113301. [PMID: 37803609 DOI: 10.1016/j.foodres.2023.113301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 10/08/2023]
Abstract
Oil is one of three nutritious elements. The application of omics techniques in the field of oil science and technology is attracted increasing attention. Oilomics, which emerged as an important branch of foodomics, has been widely used in various aspects of oil science and technology. However, there are currently no articles systematically reviewing the application of oilomics. This paper aims to provide a critical overview of the advantages and value of oilomics technology compared to traditional techniques in various aspects of oil science and technology, including oil nutrition, oil processing, oil quality, safety, and traceability. Moreover, this article intends to review major issues in oilomics and give a comprehensive, critical overview of the current state of the art, future challenges and trends in oilomics, with a view to promoting the optimal application and development of oilomics technology in oil science and technology.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Jiachen Shi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Chinping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor, Malaysia
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
4
|
Mahmudi R, Azarbayjani MA, Peeri M, Farzanegi P. The Effect of Aerobic Training and Octopamine on Inflammatory Signaling Pathway in White Adipose Tissue of Rats Poisoned with Deep-Fried Oil. Pharm Chem J 2023; 57:101-107. [DOI: 10.1007/s11094-023-02856-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Indexed: 10/30/2023]
|
5
|
Wang L, Chen W, Tian Y, Duan X, Yuan Y, Wang N, Xu C, Liu X, Liu Z. Preventive Effects of Sesamol on Deep‐frying Oil‐induced Liver Metabolism Disorders by Altering Gut Microbiota and Protecting Gut Barrier Integrity. Mol Nutr Food Res 2022; 66:e2101122. [DOI: 10.1002/mnfr.202101122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/07/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Lei Wang
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
| | - Weixuan Chen
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
| | - Yujie Tian
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
| | - Xiaorong Duan
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
| | - Yi Yuan
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
| | - Na Wang
- College of Food Science and Technology Henan Agricultural University Zhengzhou 450002 China
- Zhengzhou Key Laboratory of Nutrition and Health Food Zhengzhou 450002 China
| | - Chao Xu
- College of Food Science and Technology Henan Agricultural University Zhengzhou 450002 China
- Zhengzhou Key Laboratory of Nutrition and Health Food Zhengzhou 450002 China
| | - Xuebo Liu
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
| | - Zhigang Liu
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
- Department of Food Science Cornell University Ithaca New York 14853 United States
| |
Collapse
|
6
|
Shi J, Wang Y, Jiang F, Liu Y, Xu YJ. The effect of krill oil on longevity and locomotion: a pilot study. Mol Omics 2021; 18:206-213. [PMID: 34935825 DOI: 10.1039/d1mo00373a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Krill oil as a dietary supplement is popular with consumers. Several experimental and clinical trials have suggested that krill oil is beneficial for longevity and locomotion, but the underlying mechanisms for this have remained largely elusive. In this study, we investigated alleviation of impairment of Caenorhabditis elegans by polar compounds from frying oil with the use of krill oil. Observations of life span and locomotion demonstrated that the intake of krill oil increased median survival by 17.86%, head thrashes by 27.79% and body bends by 20.78% for impaired C. elegans. Metabolomic analysis revealed that krill oil could significantly restore the negative alterations caused by polar compounds, including upregulation of serine, tyrosine, palmitic acid and stearic acid, and downregulation of maltose 6'-phosphate, UDP-glucose, glutamic acid, phosphoserine and 25-hydroxyvitamin D3. Additionally, intake of krill oil also changed some metabolites that were irrelevant to impairment by polar compounds, but were beneficial for health for C. elegans. Metabolomics investigations indicated that krill oil ameliorates energy metabolism and alleviates oxidative stress and excitotoxicity caused by polar compounds on C. elegans. The data obtained in this study will facilitate future functional studies of krill oil.
Collapse
Affiliation(s)
- Jiachen Shi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| | - Yanan Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| | - Fan Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
7
|
The formation, determination and health implications of polar compounds in edible oils: Current status, challenges and perspectives. Food Chem 2021; 364:130451. [PMID: 34198033 DOI: 10.1016/j.foodchem.2021.130451] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 01/12/2023]
Abstract
To effectively control the quality of edible oil, polar compounds in edible oils have been studied extensively in the past few decades, particularly in the field of frying. This article critically reviews the formation, determination, and health implications of the polar compounds in edible oils via comprehensive literature research. The challenges and perspectives of polar compounds in edible oils are also discussed. Three chemical reactions, including oxidation, hydrolysis, and polymerization, elaborate polar compound formation. Many techniques are used to determine the total polar compound content of edible oils, with comparative analysis; Fourier transform infrared technique is a relatively ideal method. A major obstacle for nutritional studies focused on polar compounds formed during frying is that few pure compounds have been quantified. To inhibit the formation of the polar compounds effectively, investigations into the applications of enzymatic method in developing new lipophilized antioxidants may be a new direction in research.
Collapse
|
8
|
Hepatotoxicity of nutmeg: A pilot study based on metabolomics. Biomed Pharmacother 2020; 131:110780. [PMID: 33152938 DOI: 10.1016/j.biopha.2020.110780] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/08/2020] [Accepted: 09/17/2020] [Indexed: 12/22/2022] Open
Abstract
Incidences of abuse and poisoning have been reported for nutmeg, a household spice made from grinding the seed of Myristica fragrans, owing to its hallucinogenic properties. However, there have been no reports on nutmeg hepatotoxicity in relation to dose and duration of exposure. To investigate the hepatotoxicity of different nutmeg exposure durations and doses, male mice were administered daily with normal saline, 1.0 g/kg nutmeg, or 4.0 g/kg nutmeg by intragastrical gavage for either 7 or 14 days (for a total of six treatment groups, n = 6). Body weight of each mouse was monitored daily. Histological analysis of liver tissues was performed using hematoxylin and eosin (H&E) staining to investigate the morphological changes in hepatocytes. Serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were determined using enzyme-linked immunosorbent assay (ELISA) to investigate liver function. Metabolomics and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed between treatment groups for identifying differential metabolites. Mice in the nutmeg exposure groups exhibited slow growth trends, hepatocyte damage, and significantly elevated serum AST and ALT levels associated with nutmeg dose and exposure duration. Metabolomics and KEGG enrichment pathway analyses also revealed differential levels of some metabolites related to liver function upon nutmeg exposure. Therefore, the present study reasonably speculates that nutmeg exposure may cause liver damage and affect liver function depending on the dose and duration.
Collapse
|