1
|
Verrier N, Debailleul M, Haeberlé O. Recent Advances and Current Trends in Transmission Tomographic Diffraction Microscopy. SENSORS (BASEL, SWITZERLAND) 2024; 24:1594. [PMID: 38475130 DOI: 10.3390/s24051594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
Optical microscopy techniques are among the most used methods in biomedical sample characterization. In their more advanced realization, optical microscopes demonstrate resolution down to the nanometric scale. These methods rely on the use of fluorescent sample labeling in order to break the diffraction limit. However, fluorescent molecules' phototoxicity or photobleaching is not always compatible with the investigated samples. To overcome this limitation, quantitative phase imaging techniques have been proposed. Among these, holographic imaging has demonstrated its ability to image living microscopic samples without staining. However, for a 3D assessment of samples, tomographic acquisitions are needed. Tomographic Diffraction Microscopy (TDM) combines holographic acquisitions with tomographic reconstructions. Relying on a 3D synthetic aperture process, TDM allows for 3D quantitative measurements of the complex refractive index of the investigated sample. Since its initial proposition by Emil Wolf in 1969, the concept of TDM has found a lot of applications and has become one of the hot topics in biomedical imaging. This review focuses on recent achievements in TDM development. Current trends and perspectives of the technique are also discussed.
Collapse
Affiliation(s)
- Nicolas Verrier
- Institut Recherche en Informatique, Mathématiques, Automatique et Signal (IRIMAS UR UHA 7499), Université de Haute-Alsace, IUT Mulhouse, 61 rue Albert Camus, 68093 Mulhouse, France
| | - Matthieu Debailleul
- Institut Recherche en Informatique, Mathématiques, Automatique et Signal (IRIMAS UR UHA 7499), Université de Haute-Alsace, IUT Mulhouse, 61 rue Albert Camus, 68093 Mulhouse, France
| | - Olivier Haeberlé
- Institut Recherche en Informatique, Mathématiques, Automatique et Signal (IRIMAS UR UHA 7499), Université de Haute-Alsace, IUT Mulhouse, 61 rue Albert Camus, 68093 Mulhouse, France
| |
Collapse
|
2
|
Wu Y, Ma X, Li K, Yue Y, Zhang Z, Meng Y, Wang S. Bipolar Electrode-based Sheath-Less Focusing and Continuous Acoustic Sorting of Particles and Cells in an Integrated Microfluidic Device. Anal Chem 2024; 96:3627-3635. [PMID: 38346846 DOI: 10.1021/acs.analchem.3c05755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Sheath-less focusing and sorting of cells or particles is an important preprocessing step in a variety of biochemical applications. Most of the previous sorting methods depend on the use of sheath flows to realize efficient cell focusing. The sheath flow dilutes the sample and requires precise flow control via additional channels. We, for the first time, reported a method of bipolar electrode (BPE)-based sheath-less focusing, switching, and tilted-angle standing surface acoustic wave-based sorting of cells and particles in continuous flow. The device consists of a piezoelectric substrate with a pair of BPEs for focusing and switching, and a pair of interdigitated transducers for cell sorting. Smaller cells experience a weak acoustic force and reach the lower outlet, whereas larger cells are subjected to a strong acoustic force such that they are propelled toward the upper outlet. We first validate the device functionality by sorting 5 and 8 μm PS beads with a high sorting efficiency. The working and deflection regions were increased by propelling the particle beam toward the bottom edge of BPE via changing the applied voltage of BPE, further improving the sorting performance with high efficiency (94%) and purity (92%). We then conducted a verification for sorting THP-1 and yeast cells, and the efficiency and purity reached 90.7 and 91.5%, respectively. This integrated device eliminates the requirement of balancing the flow of several sheath inlets and provides a robust and unique approach for cell sorting applications, showing immense promise in various applications, such as medical diagnosis, drug delivery, and personalized medicine.
Collapse
Affiliation(s)
- Yupan Wu
- School of Microelectronics, Northwestern Polytechnical University, Xi'an 710072, PR China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518000, PR China
- Yangtze River Delta Research Institute of NPU, Taicang 215400, PR China
| | - Xun Ma
- School of Microelectronics, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Kemu Li
- School of Microelectronics, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Yuanbo Yue
- School of Microelectronics, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Zhexin Zhang
- School of Microelectronics, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Yingqi Meng
- Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201800, PR China
| | - Shaoxi Wang
- School of Microelectronics, Northwestern Polytechnical University, Xi'an 710072, PR China
| |
Collapse
|
3
|
Grigorev GV, Lebedev AV, Wang X, Qian X, Maksimov GV, Lin L. Advances in Microfluidics for Single Red Blood Cell Analysis. BIOSENSORS 2023; 13:117. [PMID: 36671952 PMCID: PMC9856164 DOI: 10.3390/bios13010117] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/04/2022] [Accepted: 12/23/2022] [Indexed: 05/24/2023]
Abstract
The utilizations of microfluidic chips for single RBC (red blood cell) studies have attracted great interests in recent years to filter, trap, analyze, and release single erythrocytes for various applications. Researchers in this field have highlighted the vast potential in developing micro devices for industrial and academia usages, including lab-on-a-chip and organ-on-a-chip systems. This article critically reviews the current state-of-the-art and recent advances of microfluidics for single RBC analyses, including integrated sensors and microfluidic platforms for microscopic/tomographic/spectroscopic single RBC analyses, trapping arrays (including bifurcating channels), dielectrophoretic and agglutination/aggregation studies, as well as clinical implications covering cancer, sepsis, prenatal, and Sickle Cell diseases. Microfluidics based RBC microarrays, sorting/counting and trapping techniques (including acoustic, dielectrophoretic, hydrodynamic, magnetic, and optical techniques) are also reviewed. Lastly, organs on chips, multi-organ chips, and drug discovery involving single RBC are described. The limitations and drawbacks of each technology are addressed and future prospects are discussed.
Collapse
Affiliation(s)
- Georgii V. Grigorev
- Data Science and Information Technology Research Center, Tsinghua Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
- Mechanical Engineering Department, University of California in Berkeley, Berkeley, CA 94720, USA
- School of Information Technology, Cherepovets State University, 162600 Cherepovets, Russia
| | - Alexander V. Lebedev
- Machine Building Department, Bauman Moscow State University, 105005 Moscow, Russia
| | - Xiaohao Wang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xiang Qian
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - George V. Maksimov
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Physical metallurgy Department, Federal State Autonomous Educational Institution of Higher Education National Research Technological University “MISiS”, 119049 Moscow, Russia
| | - Liwei Lin
- Mechanical Engineering Department, University of California in Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
4
|
Zhang Q, Zhou C, Yu W, Sun Y, Guo G, Wang X. Isotropic imaging-based contactless manipulation for single-cell spatial heterogeneity analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Jiménez AV, Cabezas DCO, Delay M, Gómez IG, Camacho M. Acoustophoretic Motion of Leishmania spp. Parasites. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1202-1214. [PMID: 35351318 DOI: 10.1016/j.ultrasmedbio.2022.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
The analysis of cell motion in an acoustic field is of interest as it can lead to new methods of cell separation, isolation and manipulation for diagnosis and treatment of diseases. Studies of the motion of different species of Leishmania parasites during exposure to ultrasonic standing waves in a microfluidic device allowed identification of acoustic responses of these parasites in their promastigote and amastigote forms. Both forms exhibited a positive acoustic contrast factor and were driven toward the pressure node established in the center of the channel by the acoustically induced radiation force (FR). Promastigotes experience calculated FR amplitudes one order of magnitude larger than those experienced by amastigotes because of the measured differences in volume. The aggregates formed at the pressure node have distinct shapes and stability conditions, for both promastigotes and amastigotes.
Collapse
Affiliation(s)
- Abelino Vargas Jiménez
- Universidad Nacional de Colombia, Bogotá, Colombia; Centro Internacional de Física (CIF), Laboratorio de Biofísica, Grupo de Biofísica y Biología de Membranas, Bogota, Colombia; Universidad de la Salle, Departamento de Ciencias Básicas, Bogotá, Colombia.
| | - Diana Carolina Ochoa Cabezas
- Centro Internacional de Física (CIF), Laboratorio de Biofísica, Grupo de Biofísica y Biología de Membranas, Bogota, Colombia; Universidad de la Salle, Departamento de Ciencias Básicas, Bogotá, Colombia
| | | | - Itziar González Gómez
- Concejo Superior de Investigaciones Científicas (CSIC), Instituto de Tecnologías Físicas y de la Información (ITEFI), Grupo de resonadores ultrasónicos para cavitacián y micromanipulacián (RESULT), Madrid, Spain
| | - Marcela Camacho
- Universidad Nacional de Colombia, Bogotá, Colombia; Centro Internacional de Física (CIF), Laboratorio de Biofísica, Grupo de Biofísica y Biología de Membranas, Bogota, Colombia
| |
Collapse
|
6
|
Zhu J, Chen T, Chen C, Ding W. Valley Vortex Assisted and Topological Protected Microparticles Manipulation with Complicated 2D Patterns in a Star-like Sonic Crystal. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4939. [PMID: 34501036 PMCID: PMC8433743 DOI: 10.3390/ma14174939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 01/16/2023]
Abstract
Arranging microparticles into desired patterns, especially in a complicated pattern with a reliable and tunable manner, is challenging but highly desirable in the fields such as biomedicine and tissue engineering. To overcome these limitations, here, by using the concept of topology in acoustics, the valley vortex is utilized to manipulate particles on a large scale with complicated 2D patterns in the star-like sonic crystals at different frequencies. A topologically protected edge state is obtained at the interface of the crystals with different valley Hall phases, which shows the ability of reliable microparticles control along the sharp corner and the capability of robust particles cluster aggregation in a defective system. The results may provide intriguing resources for future microfluidic systems in a complicated and brittle environment.
Collapse
Affiliation(s)
- Jian Zhu
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (T.C.); (C.C.); (W.D.)
| | | | | | | |
Collapse
|
7
|
Memeo R, Paiè P, Sala F, Castriotta M, Guercio C, Vaccari T, Osellame R, Bassi A, Bragheri F. Automatic imaging of Drosophila embryos with light sheet fluorescence microscopy on chip. JOURNAL OF BIOPHOTONICS 2021; 14:e202000396. [PMID: 33295053 DOI: 10.1002/jbio.202000396] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/22/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
We present a microscope on chip for automated imaging of Drosophila embryos by light sheet fluorescence microscopy. This integrated device, constituted by both optical and microfluidic components, allows the automatic acquisition of a 3D stack of images for specimens diluted in a liquid suspension. The device has been fully optimized to address the challenges related to the specimens under investigation. Indeed, the thickness and the high ellipticity of Drosophila embryos can degrade the image quality. In this regard, optical and fluidic optimization has been carried out to implement dual-sided illumination and automatic sample orientation. In addition, we highlight the dual color investigation capabilities of this device, by processing two sample populations encoding different fluorescent proteins. This work was made possible by the versatility of the used fabrication technique, femtosecond laser micromachining, which allows straightforward fabrication of both optical and fluidic components in glass substrates.
Collapse
Affiliation(s)
- Roberto Memeo
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, Milan, Italy
- Istituto di Fotonica e Nanotecnologie (IFN)-CNR, Piazza Leonardo da Vinci, Milan, Italy
| | - Petra Paiè
- Istituto di Fotonica e Nanotecnologie (IFN)-CNR, Piazza Leonardo da Vinci, Milan, Italy
| | - Federico Sala
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, Milan, Italy
- Istituto di Fotonica e Nanotecnologie (IFN)-CNR, Piazza Leonardo da Vinci, Milan, Italy
| | - Michele Castriotta
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, Milan, Italy
- Istituto di Fotonica e Nanotecnologie (IFN)-CNR, Piazza Leonardo da Vinci, Milan, Italy
| | - Chiara Guercio
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria, Milan, Italy
| | - Thomas Vaccari
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria, Milan, Italy
| | - Roberto Osellame
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, Milan, Italy
- Istituto di Fotonica e Nanotecnologie (IFN)-CNR, Piazza Leonardo da Vinci, Milan, Italy
| | - Andrea Bassi
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, Milan, Italy
- Istituto di Fotonica e Nanotecnologie (IFN)-CNR, Piazza Leonardo da Vinci, Milan, Italy
| | - Francesca Bragheri
- Istituto di Fotonica e Nanotecnologie (IFN)-CNR, Piazza Leonardo da Vinci, Milan, Italy
| |
Collapse
|
8
|
Fan S, Smith-Dryden S, Li G, Saleh B. Iterative optical diffraction tomography for illumination scanning configuration. OPTICS EXPRESS 2020; 28:39904-39915. [PMID: 33379529 DOI: 10.1364/oe.413230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
Optical diffraction tomography (ODT) is used to reconstruct refractive-index distributions from multiple measurements in the object rotating configuration (ORC) or the illumination scanning configuration (ISC). Because of its fast data acquisition and stability, ISC-based ODT has been widely used for biological imaging. ODT typically fails to reconstruct multiply-scattering samples. The previously developed iterative ODT (iODT) was for the multiply-scattering objects in ORC, and could not be directly applied to ISC. To resolve this mismatch, we developed an ISC update and numerically demonstrated its accuracy. With the same prior knowledge, iODT-ISC outperforms conventional ODT in resolving the missing-angle problem.
Collapse
|
9
|
Kleiber A, Ramoji A, Mayer G, Neugebauer U, Popp J, Henkel T. 3-Step flow focusing enables multidirectional imaging of bioparticles for imaging flow cytometry. LAB ON A CHIP 2020; 20:1676-1686. [PMID: 32282005 DOI: 10.1039/d0lc00244e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Multidirectional imaging flow cytometry (mIFC) extends conventional imaging flow cytometry (IFC) for the image-based measurement of 3D-geometrical features of particles. The innovative core is a flow rotation unit in which a vertical sample lamella is incrementally rotated by 90 degrees into a horizontal lamella. The required multidirectional views are generated by guiding all particles at a controllable shear flow position of the parabolic velocity profile of the capillary slit detection chamber. All particles pass the detection chamber in a two-dimensional sheet under controlled rotation while each particle is imaged multiple times. This generates new options for automated particle analysis. In an experimental application, we used our system for the accurate classification of 15 species of pollen based on 3D-morphological information. We demonstrate how the combination of multi directional imaging with advanced machine learning algorithms can improve the accuracy of automated bio-particle classification. As an additional benefit, we significantly decrease the number of false positives in the classification of foreign particles, i.e. those elements which do not belong to one of the trained classes by the 3D-extension of the classification algorithm.
Collapse
Affiliation(s)
- Andreas Kleiber
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, D-07745 Jena, Germany.
| | - Anuradha Ramoji
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, D-07745 Jena, Germany. and Center of Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany
| | - Günter Mayer
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, D-07745 Jena, Germany.
| | - Ute Neugebauer
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, D-07745 Jena, Germany. and Institute of Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, D-07743 Jena, Germany and Center of Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, D-07745 Jena, Germany. and Institute of Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, D-07743 Jena, Germany and Center of Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany
| | - Thomas Henkel
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, D-07745 Jena, Germany.
| |
Collapse
|
10
|
Kang P, Tian Z, Yang S, Yu W, Zhu H, Bachman H, Zhao S, Zhang P, Wang Z, Zhong R, Huang TJ. Acoustic tweezers based on circular, slanted-finger interdigital transducers for dynamic manipulation of micro-objects. LAB ON A CHIP 2020; 20:987-994. [PMID: 32010910 PMCID: PMC7182351 DOI: 10.1039/c9lc01124b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Acoustic tweezing technologies are gaining significant attention from the scientific communities due to their versatility and biocompatibility. This study presents acoustic tweezers based on circular, slanted-finger interdigital transducers (CSFITs), which can steer the propagation direction of surface acoustic waves (SAWs) by tuning the excitation frequency. The CSFITs based acoustic tweezers enable dynamic and reconfigurable manipulation of micro-objects using multi-tone excitation signals. Compared to traditional interdigital transducers that generate and control SAWs along one axis, the CSFITs allow for simultaneously generating and independently controlling SAWs propagating along multiple axes by changing the frequency composition and the phase information in a multi-tone excitation signal. Moreover, the CSFITs based acoustic tweezers can be used for patterning cells/particles in various distributions and translating them along complex paths. We believe that our design is valuable for cellular-scale biological applications, in which on-chip, contactless, biocompatible handling of bioparticles is needed.
Collapse
Affiliation(s)
- Putong Kang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
| | - Zhenhua Tian
- Department of Aerospace Engineering, Mississippi State University, Starkville, MS 39762, USA
| | - Shujie Yang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
| | - Wenzhuo Yu
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
| | - Haodong Zhu
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
| | - Hunter Bachman
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
| | - Shuaiguo Zhao
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
| | - Peiran Zhang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
| | - Zeyu Wang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
| | - Ruoyu Zhong
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
| |
Collapse
|