1
|
Bakis I, Sun Y, Abd Elmagid L, Feng X, Garibyan M, Yip JK, Yu FZ, Chowdhary S, Fernandez GE, Cao J, McCain ML, Lien CL, Harrison MR. Methods for dynamic and whole volume imaging of the zebrafish heart. Dev Biol 2023; 504:75-85. [PMID: 37708968 PMCID: PMC10841891 DOI: 10.1016/j.ydbio.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/02/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023]
Abstract
Tissue development and regeneration are dynamic processes involving complex cell migration and cell-cell interactions. We have developed a protocol for complementary time-lapse and three-dimensional (3D) imaging of tissue for developmental and regeneration studies which we apply here to the zebrafish cardiac vasculature. 3D imaging of fixed specimens is used to first define the subject at high resolution then live imaging captures how it changes dynamically. Hearts from adult and juvenile zebrafish are extracted and cleaned in preparation for the different imaging modalities. For whole-mount 3D confocal imaging, single or multiple hearts with native fluorescence or immuno-labeling are prepared for stabilization or clearing, and then imaged. For live imaging, hearts are placed in a prefabricated fluidic device and set on a temperature-controlled microscope for culture and imaging over several days. This protocol allows complete visualization of morphogenic processes in a 3D context and provides the ability to follow cell behaviors to complement in vivo and fixed tissue studies. This culture and imaging protocol can be applied to different cell and tissue types. Here, we have used it to observe zebrafish coronary vasculature and the migration of coronary endothelial cells during heart regeneration.
Collapse
Affiliation(s)
- Isaac Bakis
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA; Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10021, USA
| | - Yuhan Sun
- Saban Research Institute and Heart Institute of Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA
| | - Laila Abd Elmagid
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA; Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10021, USA
| | - Xidi Feng
- Saban Research Institute and Heart Institute of Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA
| | - Mher Garibyan
- Laboratory for Living Systems Engineering, Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Joycelyn K Yip
- Laboratory for Living Systems Engineering, Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Fang Zhou Yu
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA; Department of Emergency Medicine, Nuvance Health, Poughkeepsie, NY, 12601, USA
| | - Sayali Chowdhary
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA; Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10021, USA
| | - Gerardo Esteban Fernandez
- Saban Research Institute and Heart Institute of Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA
| | - Jingli Cao
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA; Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10021, USA
| | - Megan L McCain
- Laboratory for Living Systems Engineering, Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Ching-Ling Lien
- Saban Research Institute and Heart Institute of Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA; Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| | - Michael Rm Harrison
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA; Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10021, USA.
| |
Collapse
|
2
|
Khalil NN, Petersen AP, Song CJ, Chen Y, Takamoto K, Kellogg AC, Chen EZ, McMahon AP, McCain ML. User-friendly microfluidic system reveals native-like morphological and transcriptomic phenotypes induced by shear stress in proximal tubule epithelium. APL Bioeng 2023; 7:036106. [PMID: 37584027 PMCID: PMC10424157 DOI: 10.1063/5.0143614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/24/2023] [Indexed: 08/17/2023] Open
Abstract
Drug-induced nephrotoxicity is a leading cause of drug attrition, partly due to the limited relevance of pre-clinical models of the proximal tubule. Culturing proximal tubule epithelial cells (PTECs) under fluid flow to mimic physiological shear stress has been shown to improve select phenotypes, but existing flow systems are expensive and difficult to implement by non-experts in microfluidics. Here, we designed and fabricated an accessible and modular flow system for culturing PTECs under physiological shear stress, which induced native-like cuboidal morphology, downregulated pathways associated with hypoxia, stress, and injury, and upregulated xenobiotic metabolism pathways. We also compared the expression profiles of shear-dependent genes in our in vitro PTEC tissues to that of ex vivo proximal tubules and observed stronger clustering between ex vivo proximal tubules and PTECs under physiological shear stress relative to PTECs under negligible shear stress. Together, these data illustrate the utility of our user-friendly flow system and highlight the role of shear stress in promoting native-like morphological and transcriptomic phenotypes in PTECs in vitro, which is critical for developing more relevant pre-clinical models of the proximal tubule for drug screening or disease modeling.
Collapse
Affiliation(s)
- Natalie N. Khalil
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089, USA
| | - Andrew P. Petersen
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089, USA
| | | | - Yibu Chen
- USC Libraries Bioinformatics Service, University of Southern California, Los Angeles, California 90089, USA
| | - Kaelyn Takamoto
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089, USA
| | - Austin C. Kellogg
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089, USA
| | - Elaine Zhelan Chen
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089, USA
| | | | - Megan L. McCain
- Author to whom correspondence should be addressed:. Tel.: +1 2138210791. URL:https://livingsystemsengineering.usc.edu
| |
Collapse
|
3
|
Rexius-Hall ML, Khalil NN, Escopete SS, Li X, Hu J, Yuan H, Parker SJ, McCain ML. A myocardial infarct border-zone-on-a-chip demonstrates distinct regulation of cardiac tissue function by an oxygen gradient. SCIENCE ADVANCES 2022; 8:eabn7097. [PMID: 36475790 PMCID: PMC9728975 DOI: 10.1126/sciadv.abn7097] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
After a myocardial infarction, the boundary between the injured, hypoxic tissue and the adjacent viable, normoxic tissue, known as the border zone, is characterized by an oxygen gradient. Yet, the impact of an oxygen gradient on cardiac tissue function is poorly understood, largely due to limitations of existing experimental models. Here, we engineered a microphysiological system to controllably expose engineered cardiac tissue to an oxygen gradient that mimics the border zone and measured the effects of the gradient on electromechanical function and the transcriptome. The gradient delayed calcium release, reuptake, and propagation; decreased diastolic and peak systolic stress; and increased expression of inflammatory cascades that are hallmarks of myocardial infarction. These changes were distinct from those observed in tissues exposed to uniform normoxia or hypoxia, demonstrating distinct regulation of cardiac tissue phenotypes by an oxygen gradient. Our border-zone-on-a-chip model advances functional and mechanistic insight into oxygen-dependent cardiac tissue pathophysiology.
Collapse
Affiliation(s)
- Megan L. Rexius-Hall
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Natalie N. Khalil
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Sean S. Escopete
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Xin Li
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jiayi Hu
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Hongyan Yuan
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Sarah J. Parker
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Megan L. McCain
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
- Corresponding author.
| |
Collapse
|
4
|
Ross Stewart KM, Walker SL, Baker AH, Riley PR, Brittan M. Hooked on heart regeneration: the zebrafish guide to recovery. Cardiovasc Res 2022; 118:1667-1679. [PMID: 34164652 PMCID: PMC9215194 DOI: 10.1093/cvr/cvab214] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022] Open
Abstract
While humans lack sufficient capacity to undergo cardiac regeneration following injury, zebrafish can fully recover from a range of cardiac insults. Over the past two decades, our understanding of the complexities of both the independent and co-ordinated injury responses by multiple cardiac tissues during zebrafish heart regeneration has increased exponentially. Although cardiomyocyte regeneration forms the cornerstone of the reparative process in the injured zebrafish heart, recent studies have shown that this is dependent on prior neovascularization and lymphangiogenesis, which in turn require epicardial, endocardial, and inflammatory cell signalling within an extracellular milieu that is optimized for regeneration. Indeed, it is the amalgamation of multiple regenerative systems and gene regulatory patterns that drives the much-heralded success of the adult zebrafish response to cardiac injury. Increasing evidence supports the emerging paradigm that developmental transcriptional programmes are re-activated during adult tissue regeneration, including in the heart, and the zebrafish represents an optimal model organism to explore this concept. In this review, we summarize recent advances from the zebrafish cardiovascular research community with novel insight into the mechanisms associated with endogenous cardiovascular repair and regeneration, which may be of benefit to inform future strategies for patients with cardiovascular disease.
Collapse
Affiliation(s)
- Katherine M Ross Stewart
- Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Sophie L Walker
- Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Andrew H Baker
- Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Paul R Riley
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Sherrington Rd, Oxford OX1 3PT, UK
| | - Mairi Brittan
- Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
5
|
Visualization of regenerating and repairing hearts. Clin Sci (Lond) 2022; 136:787-798. [PMID: 35621122 PMCID: PMC9886236 DOI: 10.1042/cs20211116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023]
Abstract
With heart failure continuing to become more prevalent, investigating the mechanisms of heart injury and repair holds much incentive. In contrast with adult mammals, other organisms such as teleost fish, urodele amphibians, and even neonatal mammals are capable of robust cardiac regeneration to replenish lost or damaged myocardial tissue. Long-term high-resolution intravital imaging of the behaviors and interactions of different cardiac cell types in their native environment could yield unprecedented insights into heart regeneration and repair. However, this task remains challenging for the heart due to its rhythmic contraction and anatomical location. Here, we summarize recent advances in live imaging of heart regeneration and repair, discuss the advantages and limitations of current systems, and suggest future directions for novel imaging technology development.
Collapse
|
6
|
Bowley G, Kugler E, Wilkinson R, Lawrie A, van Eeden F, Chico TJA, Evans PC, Noël ES, Serbanovic-Canic J. Zebrafish as a tractable model of human cardiovascular disease. Br J Pharmacol 2022; 179:900-917. [PMID: 33788282 DOI: 10.1111/bph.15473] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 12/17/2022] Open
Abstract
Mammalian models including non-human primates, pigs and rodents have been used extensively to study the mechanisms of cardiovascular disease. However, there is an increasing desire for alternative model systems that provide excellent scientific value while replacing or reducing the use of mammals. Here, we review the use of zebrafish, Danio rerio, to study cardiovascular development and disease. The anatomy and physiology of zebrafish and mammalian cardiovascular systems are compared, and we describe the use of zebrafish models in studying the mechanisms of cardiac (e.g. congenital heart defects, cardiomyopathy, conduction disorders and regeneration) and vascular (endothelial dysfunction and atherosclerosis, lipid metabolism, vascular ageing, neurovascular physiology and stroke) pathologies. We also review the use of zebrafish for studying pharmacological responses to cardiovascular drugs and describe several features of zebrafish that make them a compelling model for in vivo screening of compounds for the treatment cardiovascular disease. LINKED ARTICLES: This article is part of a themed issue on Preclinical Models for Cardiovascular disease research (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.5/issuetoc.
Collapse
Affiliation(s)
- George Bowley
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| | - Elizabeth Kugler
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
- Institute of Ophthalmology, Faculty of Brain Sciences, University College London, London, UK
| | - Rob Wilkinson
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Allan Lawrie
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Freek van Eeden
- Bateson Centre, University of Sheffield, Sheffield, UK
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Tim J A Chico
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| | - Paul C Evans
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| | - Emily S Noël
- Bateson Centre, University of Sheffield, Sheffield, UK
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Jovana Serbanovic-Canic
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| |
Collapse
|
7
|
Kapuria S, Bai H, Fierros J, Huang Y, Ma F, Yoshida T, Aguayo A, Kok F, Wiens KM, Yip JK, McCain ML, Pellegrini M, Nagashima M, Hitchcock PF, Mochizuki N, Lawson ND, Harrison MMR, Lien CL. Heterogeneous pdgfrb+ cells regulate coronary vessel development and revascularization during heart regeneration. Development 2022; 149:274137. [PMID: 35088848 PMCID: PMC8918812 DOI: 10.1242/dev.199752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022]
Abstract
Endothelial cells emerge from the atrioventricular canal to form coronary blood vessels in juvenile zebrafish hearts. We find that pdgfrb is first expressed in the epicardium around the atrioventricular canal and later becomes localized mainly in the mural cells. pdgfrb mutant fish show severe defects in mural cell recruitment and coronary vessel development. Single-cell RNA sequencing analyses identified pdgfrb+ cells as epicardium-derived cells (EPDCs) and mural cells. Mural cells associated with coronary arteries also express cxcl12b and smooth muscle cell markers. Interestingly, these mural cells remain associated with coronary arteries even in the absence of Pdgfrβ, although smooth muscle gene expression is downregulated. We find that pdgfrb expression dynamically changes in EPDCs of regenerating hearts. Differential gene expression analyses of pdgfrb+ EPDCs and mural cells suggest that they express genes that are important for regeneration after heart injuries. mdka was identified as a highly upregulated gene in pdgfrb+ cells during heart regeneration. However, pdgfrb but not mdka mutants show defects in heart regeneration after amputation. Our results demonstrate that heterogeneous pdgfrb+ cells are essential for coronary development and heart regeneration.
Collapse
Affiliation(s)
- Subir Kapuria
- Department of Surgery, The Saban Research Institute and Heart Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA,Authors for correspondence (; ; )
| | - Haipeng Bai
- Department of Surgery, The Saban Research Institute and Heart Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA,Laboratory of Chemical Genomics, School of Chemical Biology & Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, People's Republic of China
| | - Juancarlos Fierros
- Department of Surgery, The Saban Research Institute and Heart Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA,Department of Biology, California State University, San Bernardino, San Bernardino, CA 92407, USA
| | - Ying Huang
- Department of Surgery, The Saban Research Institute and Heart Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Feiyang Ma
- Department of Molecular, Cell and Developmental Biology, College of Letters and Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Tyler Yoshida
- Department of Surgery, The Saban Research Institute and Heart Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA,Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90007, USA
| | - Antonio Aguayo
- Department of Surgery, The Saban Research Institute and Heart Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Fatma Kok
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Katie M. Wiens
- Department of Surgery, The Saban Research Institute and Heart Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA,Science Department, Bay Path University, Longmeadow, MA 01106, USA
| | - Joycelyn K. Yip
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Megan L. McCain
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA,Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, College of Letters and Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Mikiko Nagashima
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Peter F. Hitchcock
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Osaka, 564-8565, Japan
| | - Nathan D. Lawson
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Michael M. R. Harrison
- Department of Surgery, The Saban Research Institute and Heart Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA,Authors for correspondence (; ; )
| | - Ching-Ling Lien
- Department of Surgery, The Saban Research Institute and Heart Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA,Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA,Authors for correspondence (; ; )
| |
Collapse
|
8
|
Honkoop H, Nguyen PD, van der Velden VEM, Sonnen KF, Bakkers J. Live imaging of adult zebrafish cardiomyocyte proliferation ex vivo. Development 2021; 148:271839. [PMID: 34397091 PMCID: PMC8489017 DOI: 10.1242/dev.199740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/04/2021] [Indexed: 12/24/2022]
Abstract
Zebrafish are excellent at regenerating their heart by reinitiating proliferation in pre-existing cardiomyocytes. Studying how zebrafish achieve this holds great potential in developing new strategies to boost mammalian heart regeneration. Nevertheless, the lack of appropriate live-imaging tools for the adult zebrafish heart has limited detailed studies into the dynamics underlying cardiomyocyte proliferation. Here, we address this by developing a system in which cardiac slices of the injured zebrafish heart are cultured ex vivo for several days while retaining key regenerative characteristics, including cardiomyocyte proliferation. In addition, we show that the cardiac slice culture system is compatible with live timelapse imaging and allows manipulation of regenerating cardiomyocytes with drugs that normally would have toxic effects that prevent their use. Finally, we use the cardiac slices to demonstrate that adult cardiomyocytes with fully assembled sarcomeres can partially disassemble their sarcomeres in a calpain- and proteasome-dependent manner to progress through nuclear division and cytokinesis. In conclusion, we have developed a cardiac slice culture system, which allows imaging of native cardiomyocyte dynamics in real time to discover cellular mechanisms during heart regeneration.
Collapse
Affiliation(s)
- Hessel Honkoop
- Hubrecht Institute-KNAW and Utrecht University Medical Center, Utrecht 3584CT, The Netherlands
| | - Phong D Nguyen
- Hubrecht Institute-KNAW and Utrecht University Medical Center, Utrecht 3584CT, The Netherlands
| | | | - Katharina F Sonnen
- Hubrecht Institute-KNAW and Utrecht University Medical Center, Utrecht 3584CT, The Netherlands
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW and Utrecht University Medical Center, Utrecht 3584CT, The Netherlands.,Department of Pediatric Cardiology, Division of Pediatrics, University Medical Center Utrecht, Utrecht 3584EA, The Netherlands
| |
Collapse
|
9
|
Yip JK, Sarkar D, Petersen AP, Gipson JN, Tao J, Kale S, Rexius-Hall ML, Cho N, Khalil NN, Kapadia R, McCain ML. Contact photolithography-free integration of patterned and semi-transparent indium tin oxide stimulation electrodes into polydimethylsiloxane-based heart-on-a-chip devices for streamlining physiological recordings. LAB ON A CHIP 2021; 21:674-687. [PMID: 33439202 PMCID: PMC7968549 DOI: 10.1039/d0lc00948b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Controlled electrical stimulation is essential for evaluating the physiology of cardiac tissues engineered in heart-on-a-chip devices. However, existing stimulation techniques, such as external platinum electrodes or opaque microelectrode arrays patterned on glass substrates, have limited throughput, reproducibility, or compatibility with other desirable features of heart-on-a-chip systems, such as the use of tunable culture substrates, imaging accessibility, or enclosure in a microfluidic device. In this study, indium tin oxide (ITO), a conductive, semi-transparent, and biocompatible material, was deposited onto glass and polydimethylsiloxane (PDMS)-coated coverslips as parallel or point stimulation electrodes using laser-cut tape masks. ITO caused substrate discoloration but did not prevent brightfield imaging. ITO-patterned substrates were microcontact printed with arrayed lines of fibronectin and seeded with neonatal rat ventricular myocytes, which assembled into aligned cardiac tissues. ITO deposited as parallel or point electrodes was connected to an external stimulator and used to successfully stimulate micropatterned cardiac tissues to generate calcium transients or propagating calcium waves, respectively. ITO electrodes were also integrated into the cantilever-based muscular thin film (MTF) assay to stimulate and quantify the contraction of micropatterned cardiac tissues. To demonstrate the potential for multiple ITO electrodes to be integrated into larger, multiplexed systems, two sets of ITO electrodes were deposited onto a single substrate and used to stimulate the contraction of distinct micropatterned cardiac tissues independently. Collectively, these approaches for integrating ITO electrodes into heart-on-a-chip devices are relatively facile, modular, and scalable and could have diverse applications in microphysiological systems of excitable tissues.
Collapse
Affiliation(s)
- Joycelyn K Yip
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | - Debarghya Sarkar
- Ming Hsieh Department of Electrical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | - Andrew P Petersen
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | - Jennifer N Gipson
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | - Jun Tao
- Ming Hsieh Department of Electrical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | - Salil Kale
- Ming Hsieh Department of Electrical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | - Megan L Rexius-Hall
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | - Nathan Cho
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | - Natalie N Khalil
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | - Rehan Kapadia
- Ming Hsieh Department of Electrical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | - Megan L McCain
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA. and Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
10
|
Abstract
Explants are three-dimensional tissue fragments maintained outside the organism. The goals of this article are to review the history of fish explant culture and discuss applications of this technique that may assist the modern zebrafish laboratory. Because most zebrafish workers do not have a background in tissue culture, the key variables of this method are deliberately explained in a general way. This is followed by a review of fish-specific explantation approaches, including presurgical husbandry, aseptic dissection technique, choice of media and additives, incubation conditions, viability assays, and imaging studies. Relevant articles since 1970 are organized in a table grouped by organ system. From these, I highlight several recent studies using explant culture to study physiological and embryological processes in teleosts, including circadian rhythms, hormonal regulation, and cardiac development.
Collapse
Affiliation(s)
- Elizabeth E. LeClair
- Department of Biological Sciences, College of Science and Health, DePaul University, Chicago, Illinois, USA
| |
Collapse
|