1
|
Stransky F, Kostrz D, Follenfant M, Pomplun S, Meyners C, Strick T, Hausch F, Gosse C. Use of DNA forceps to measure receptor-ligand dissociation equilibrium constants in a single-molecule competition assay. Methods Enzymol 2024; 694:51-82. [PMID: 38492958 DOI: 10.1016/bs.mie.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
The ability of biophysicists to decipher the behavior of individual biomolecules has steadily improved over the past thirty years. However, it still remains unclear how an ensemble of data acquired at the single-molecule level compares with the data acquired on an ensemble of the same molecules. We here propose an assay to tackle this question in the context of dissociation equilibrium constant measurements. A sensor is built by engrafting a receptor and a ligand onto a flexible dsDNA scaffold and mounting this assembly on magnetic tweezers. This way, looking at the position of the magnetic bead enables one to determine in real-time if the two molecular partners are associated or not. Next, to quantify the affinity of the scrutinized single-receptor for a given competitor, various amounts of the latter molecule are introduced in solution and the equilibrium response of the sensor is monitored throughout the titration protocol. Proofs of concept are established for the binding of three rapamycin analogs to the FKBP12 cis-trans prolyl isomerase. For each of these drugs the mean affinity constant obtained on a ten of individual receptors agrees with the one previously determined in a bulk assay. Furthermore, experimental contingencies are sufficient to explain the dispersion observed over the single-molecule values.
Collapse
Affiliation(s)
- François Stransky
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France
| | - Dorota Kostrz
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France
| | - Maryne Follenfant
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France
| | - Sebastian Pomplun
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Christian Meyners
- Department of Chemistry and Biochemistry, Technical University Darmstadt, Darmstadt, Germany
| | - Terence Strick
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France
| | - Felix Hausch
- Department of Chemistry and Biochemistry, Technical University Darmstadt, Darmstadt, Germany; Centre for Synthetic Biology, Technical University Darmstadt, Darmstadt, Germany
| | - Charlie Gosse
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France.
| |
Collapse
|
2
|
Black AP, Sorrentino A, Fauth F, Yousef I, Simonelli L, Frontera C, Ponrouch A, Tonti D, Palacín MR. Synchrotron radiation based operando characterization of battery materials. Chem Sci 2023; 14:1641-1665. [PMID: 36819848 PMCID: PMC9931056 DOI: 10.1039/d2sc04397a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 12/11/2022] [Indexed: 12/14/2022] Open
Abstract
Synchrotron radiation based techniques are powerful tools for battery research and allow probing a wide range of length scales, with different depth sensitivities and spatial/temporal resolutions. Operando experiments enable characterization during functioning of the cell and are thus a precious tool to elucidate the reaction mechanisms taking place. In this perspective, the current state of the art for the most relevant techniques (scattering, spectroscopy, and imaging) is discussed together with the bottlenecks to address, either specific for application in the battery field or more generic. The former includes the improvement of cell designs, multi-modal characterization and development of protocols for automated or at least semi-automated data analysis to quickly process the huge amount of data resulting from operando experiments. Given the recent evolution in these areas, accelerated progress is expected in the years to come, which should in turn foster battery performance improvements.
Collapse
Affiliation(s)
- Ashley P Black
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB 08193 Bellaterra Catalonia Spain
| | - Andrea Sorrentino
- CELLS - ALBA Synchrotron 08290 Cerdanyola del Vallès Catalonia Spain
| | - François Fauth
- CELLS - ALBA Synchrotron 08290 Cerdanyola del Vallès Catalonia Spain
| | - Ibraheem Yousef
- CELLS - ALBA Synchrotron 08290 Cerdanyola del Vallès Catalonia Spain
| | - Laura Simonelli
- CELLS - ALBA Synchrotron 08290 Cerdanyola del Vallès Catalonia Spain
| | - Carlos Frontera
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB 08193 Bellaterra Catalonia Spain
| | - Alexandre Ponrouch
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB 08193 Bellaterra Catalonia Spain
| | - Dino Tonti
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB 08193 Bellaterra Catalonia Spain
| | - M Rosa Palacín
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB 08193 Bellaterra Catalonia Spain
| |
Collapse
|
3
|
Brenker J, Henzler K, Borca CN, Huthwelker T, Alan T. X-ray compatible microfluidics for in situ studies of chemical state, transport and reaction of light elements in an aqueous environment using synchrotron radiation. LAB ON A CHIP 2022; 22:1214-1230. [PMID: 35170605 DOI: 10.1039/d1lc00996f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This paper presents an X-ray compatible microfluidic platform for in situ characterization of chemical reactions at synchrotron light sources. We demonstrate easy to implement techniques to probe reacting solutions as they first come into contact, and study the very first milliseconds of their reaction in real-time through X-ray absorption spectroscopy (XAS). The devices use polydimethylsiloxane (PDMS) microfluidic channels sandwiched between ultrathin, X-ray transparent silicon nitride observation windows and rigid substrates. The new approach has three key advantages: i) owing to the assembly techniques employed, the devices are suitable for both high energy and tender (1-5 keV) X-rays; ii) they can operate in a vacuum environment (a must for low energy X-rays) and iii) they are robust enough to survive a full 8 hour shift of continuous scanning with a micro-focused beam, providing higher spatial and thus greater time resolution than previous studies. The combination of these opens new opportunities for in situ studies. This has so far not been possible with Kapton or glass-based flow cells due to increased attenuation of the low energy beam passing through these materials. The devices provide a well-defined mixing region to collect spatial maps of spatially stable concentration profiles, and XAS point spectra to elucidate the chemical structure and characterize the chemical reactions. The versatility of the approach is demonstrated through in situ XAS measurements on the mixing of two reactants in a microfluidic laminar flow device, as well as a segmented droplet based system for time resolved analysis.
Collapse
Affiliation(s)
- Jason Brenker
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Australia.
| | - Katja Henzler
- Paul Scherrer Institute, Swiss Light Source, Villigen, Switzerland.
| | - Camelia N Borca
- Paul Scherrer Institute, Swiss Light Source, Villigen, Switzerland.
| | | | - Tuncay Alan
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Australia.
| |
Collapse
|
4
|
Affiliation(s)
- Brian A. Collins
- Physics and Astronomy Washington State University Pullman Washington USA
| | - Eliot Gann
- Material Measurement Laboratory National Institute of Standards and Technology Gaithersburg Maryland USA
| |
Collapse
|
5
|
Huart L, Nicolas C, Hervé du Penhoat MA, Guigner JM, Gosse C, Palaudoux J, Lefrançois S, Mercere P, Dasilva P, Renault JP, Chevallard C. A microfluidic dosimetry cell to irradiate solutions with poorly penetrating radiations: a step towards online dosimetry for synchrotron beamlines. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:778-789. [PMID: 33949986 PMCID: PMC8127378 DOI: 10.1107/s1600577521002691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/11/2021] [Indexed: 05/21/2023]
Abstract
Synchrotron radiation can induce sample damage, whether intended or not. In the case of sensitive samples, such as biological ones, modifications can be significant. To understand and predict the effects due to exposure, it is necessary to know the ionizing radiation dose deposited in the sample. In the case of aqueous samples, deleterious effects are mostly induced by the production of reactive oxygen species via water radiolysis. These species are therefore good indicators of the dose. Here the application of a microfluidic cell specifically optimized for low penetrating soft X-ray radiation is reported. Sodium benzoate was used as a fluorescent dosimeter thanks to its specific detection of hydroxyl radicals, a radiolytic product of water. Measurements at 1.28 keV led to the determination of a hydroxyl production yield, G(HO.), of 0.025 ± 0.004 µmol J-1. This result is in agreement with the literature and confirms the high linear energy transfer behavior of soft X-rays. An analysis of the important parameters of the microfluidic dosimetry cell, as well as their influences over dosimetry, is also reported.
Collapse
Affiliation(s)
- Lucie Huart
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France
- IMPMC, Sorbonne Université, UMR CNRS 7590, MNHN, 75005 Paris, France
- Synchrotron SOLEIL, 91 192 Saint Aubin, France
| | | | | | | | - Charlie Gosse
- Institut de Biologie de l’Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | | | | | | | | | | | | |
Collapse
|