1
|
Naing MD, Juliano SA, Angeles-Boza AM. Synergy between the clavanins as a weapon against multidrug-resistant Enterobacter cloacae. RSC Med Chem 2024; 15:2160-2164. [PMID: 38911167 PMCID: PMC11187565 DOI: 10.1039/d4md00070f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/14/2024] [Indexed: 06/25/2024] Open
Abstract
Finding new antibiotics that can act synergistically with each other offers many benefits such as lower dosages used for each drug, improved pathogen clearance, and ability to act against multi-drug resistant strains. In this study, six peptides isolated from the tunicate Styela clava were evaluated for their synergistic interaction using the checkerboard assay and the time kill kinetics assay. Using two different tests, we report synergy between clavanin D and clavaspirin in both tests and synergy between clavanin A and B only in the checkerboard test when used against the multidrug resistant E. cloacae 0136. This work demonstrates the possible cooperativity between homologous AMPs from a single organism and the advantage of using two susceptibility tests instead of one when testing synergistic combinations.
Collapse
Affiliation(s)
- Marvin D Naing
- Department of Chemistry, University of Connecticut Storrs 06269 USA
| | - Samuel A Juliano
- Department of Chemistry, University of Connecticut Storrs 06269 USA
| | - Alfredo M Angeles-Boza
- Department of Chemistry, University of Connecticut Storrs 06269 USA
- Institute of Materials Science, University of Connecticut Storrs 06269 USA
| |
Collapse
|
2
|
Hirano M, Yokoo H, Ohoka N, Ito T, Misawa T, Oba M, Inoue T, Demizu Y. Rational Design of Amphipathic Antimicrobial Peptides with Alternating L-/D-Amino Acids That Form Helical Structures. Chem Pharm Bull (Tokyo) 2024; 72:149-154. [PMID: 38296556 DOI: 10.1248/cpb.c23-00465] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Antimicrobial peptides (AMPs) are promising therapeutic agents against bacteria. We have previously reported an amphipathic AMP Stripe composed of cationic L-Lys and hydrophobic L-Leu/L-Ala residues, and Stripe exhibited potent antimicrobial activity against Gram-positive and Gram-negative bacteria. Gramicidin A (GA), composed of repeating sequences of L- and D-amino acids, has a unique β6.3-helix structure and exhibits broad antimicrobial activity. Inspired by the structural properties and antimicrobial activities of LD-alternating peptides such as GA, in this study, we designed Stripe derivatives with LD-alternating sequences. We found that simply alternating L- and D-amino acids in the Stripe sequence to give StripeLD caused a reduction in antimicrobial activity. In contrast, AltStripeLD, with cationic and hydrophobic amino acids rearranged to yield an amphipathic distribution when the peptide adopts a β6.3-helix, displayed higher antimicrobial activity than AltStripe. These results suggest that alternating L-/D-cationic and L-/D-hydrophobic amino acids in accordance with the helical structure of an AMP may be a useful way to improve antimicrobial activity and develop new AMP drugs.
Collapse
Affiliation(s)
- Motoharu Hirano
- National Institute of Health Sciences
- Graduate School of Medical Life Science, Yokohama City University
| | - Hidetomo Yokoo
- National Institute of Health Sciences
- Medical Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | | | - Takahito Ito
- National Institute of Health Sciences
- Graduate School of Medical Life Science, Yokohama City University
| | | | - Makoto Oba
- Medical Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | | | - Yosuke Demizu
- National Institute of Health Sciences
- Graduate School of Medical Life Science, Yokohama City University
| |
Collapse
|
3
|
Ito T, Matsunaga N, Kurashima M, Demizu Y, Misawa T. Enhancing Chemical Stability through Structural Modification of Antimicrobial Peptides with Non-Proteinogenic Amino Acids. Antibiotics (Basel) 2023; 12:1326. [PMID: 37627746 PMCID: PMC10451648 DOI: 10.3390/antibiotics12081326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Multidrug-resistant bacteria (MDRB) remain a significant threat to humanity, resulting in over 1.2 million deaths per year. To combat this problem effectively, the development of therapeutic agents with diverse mechanisms of action is crucial. Antimicrobial peptides (AMPs) have emerged as promising next-generation therapeutics to combat infectious diseases, particularly MDRB. By targeting microbial membranes and inducing lysis, AMPs can effectively inhibit microbial growth, making them less susceptible to the development of resistance. Numerous structural advancements have been made to optimize the efficacy of AMPs. Previously, we developed 17KKV-Aib, a derivative of the Magainin 2 (Mag2) peptide, by incorporating a,a-disubstituted amino acids (dAAs) to modulate its secondary structure. 17KKV-Aib demonstrated potent antimicrobial activity against Gram-positive and Gram-negative bacteria, including multidrug-resistant Pseudomonas aeruginosa (MDRP), with minimal hemolytic activity against human red blood cells. However, 17KKV-Aib faces challenges regarding its susceptibility to digestive enzymes, hindering its potential as an antimicrobial agent. In this study, we designed and synthesized derivatives of 17KKV-Aib, replacing Lys residues with 4-aminopiperidine-4-carboxylic acid (Api), which is a cyclized dAA residue possessing cationic properties on its side chain. We investigated the impact of Api substitution on the secondary structure, antimicrobial activity, hemolytic activity, and resistance to digestive enzymes. Our findings revealed that introducing Api residues preserved the helical structure and antimicrobial activity and enhanced resistance to digestive enzymes, with a slight increase in hemolytic activity.
Collapse
Affiliation(s)
- Takahito Ito
- National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-shi 210-9501, Japan; (T.I.)
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Yokohama 230-0045, Japan
| | - Natsumi Matsunaga
- National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-shi 210-9501, Japan; (T.I.)
| | - Megumi Kurashima
- National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-shi 210-9501, Japan; (T.I.)
| | - Yosuke Demizu
- National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-shi 210-9501, Japan; (T.I.)
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Yokohama 230-0045, Japan
| | - Takashi Misawa
- National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-shi 210-9501, Japan; (T.I.)
| |
Collapse
|
4
|
Ito T, Hashimoto W, Ohoka N, Misawa T, Inoue T, Kawano R, Demizu Y. Structure-Activity Relationship Study of Helix-Stabilized Antimicrobial Peptides Containing Nonproteinogenic Amino Acids. ACS Biomater Sci Eng 2023; 9:4654-4661. [PMID: 37486982 DOI: 10.1021/acsbiomaterials.3c00759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Helical amphipathic peptides containing cationic and hydrophobic amino acid residues can possess potent antimicrobial activity against both Gram-positive and Gram-negative bacteria. In this study, several amphipathic peptides with enhanced helical structures containing nonproteinogenic amino acids were designed, and the relationships between the antimicrobial activity, hemolytic activity, and cytotoxicity were evaluated. In particular, the effect on the antimicrobial activity and cytotoxicity of the number and position of stapling structures introduced into the sequence was investigated. Peptide stp1 containing α,α-disubstituted amino acids showed potent antimicrobial activity against multidrug-resistant bacteria (MDRP, SP45, and Staphylococcus aureus) without causing appreciable hemolytic activity or cytotoxicity. The cytotoxicity was found to be somewhat correlated to the hydrophobicity of the peptides.
Collapse
Affiliation(s)
- Takahito Ito
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Yokohama, Kanagawa 230-0045, Japan
| | - Wakana Hashimoto
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-6 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Nobumichi Ohoka
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Takashi Misawa
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Takao Inoue
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-6 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Yosuke Demizu
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Division of Pharmaceutical Science of Okayama University, 1-1-1 Tsushimanaka, Kita 700-8530, Japan
| |
Collapse
|
5
|
Misawa T. [Fundamental Studies on Development of Next-generation Medium Sized Peptide Drugs]. YAKUGAKU ZASSHI 2022; 142:1061-1066. [PMID: 36184440 DOI: 10.1248/yakushi.22-00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Medium-sized peptides are expected as a next-generation drug discovery modality because they combine the properties of conventional small-molecule drugs and biopharmaceuticals. Nonetheless, peptides are easily degraded by digestive enzymes such as protease in the body, which could be problematic for the development of peptide-based drugs. To overcome such a problem, peptide-based foldamers containing non-proteinogenic amino acids or cyclized peptides have been reported. In addition, peptides must form stable secondary structures and their side chains should be correctly positioned to exert their bioactivity. In our lab, bioactive peptides have been developed based on regulation of secondary structures by introducing non-proteinogenic amino acids such as acyclic α,α-disubstituted amino acids (dAAs), cyclic dAAs, cyclic β-amino acids, and side-chain stapling. Based on these knowledges, I have been performing research on the development of bioactive peptides based on the secondary structural control of peptides as categorized in the following manner: (1) rational design of antimicrobial foldamers; (2) post-functionalization of helical peptides; (3) development of carrier peptides for intracellular delivery of siRNA utilizing the helical template peptides.
Collapse
Affiliation(s)
- Takashi Misawa
- Division of Organic Chemistry, National Institute of Health Sciences
| |
Collapse
|
6
|
The effects of magainin 2-derived and rationally designed antimicrobial peptides on Mycoplasma pneumoniae. PLoS One 2022; 17:e0261893. [PMID: 35073323 PMCID: PMC8786148 DOI: 10.1371/journal.pone.0261893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 12/13/2021] [Indexed: 11/19/2022] Open
Abstract
Combating the spread of antimicrobial resistance (AMR) among bacteria requires a new class of antimicrobials, which desirably have a narrow spectrum because of their low propensity for the spread of AMR. Antimicrobial peptides (AMPs), which target the bacterial cell membrane, are promising seeds for novel antimicrobials because the cell membrane is essential for all cells. Previously, we reported the antimicrobial and haemolytic effects of a natural AMP, magainin 2 (Mag2), isolated from the skin of Xenopus laevis (the African clawed frog), four types of synthesised Mag2 derivatives, and three types of rationally designed AMPs on gram-positive and gram-negative bacteria. To identify novel antimicrobial seeds, we evaluated the effect of AMPs on Mycoplasma pneumoniae, which also exhibits AMR. We also evaluated the antimicrobial effects of an AMP, NK2A, which has been reported to have antimicrobial effects on Mycoplasma bovis, in addition to Mag2 and previously synthesised seven AMPs, on four strains of M. pneumoniae using colorimetric, biofilm, and killing assays. We found that three synthesised AMPs, namely 17base-Ac6c, 17base-Hybrid, and Block, had anti-M. pneumoniae (anti-Mp) effect at 8–30 μM, whereas others, including NK2A, did not have any such effect. For the further analysis, the membrane disruption activities of AMPs were measured by propidium iodide (PI) uptake assays, which suggested the direct interaction of AMPs to the cell membrane basically following the colorimetric, biofilm, and killing assay results. PI uptake assay, however, also showed the NK2A strong interaction to cell membrane, indicating unknown anti-Mp determinant factors related to the peptide sequences. Finally, we conclude that anti-Mp effect was not simply determined by the membrane disruption activities of AMPs, but also that the sequence of AMPs were important for killing of M. pneumoniae. These findings would be helpful for the development of AMPs for M. pneumoniae.
Collapse
|
7
|
He S, Stone TA, Deber CM. Uncoupling Amphipathicity and Hydrophobicity: Role of Charge Clustering in Membrane Interactions of Cationic Antimicrobial Peptides. Biochemistry 2021; 60:2586-2592. [PMID: 34423969 DOI: 10.1021/acs.biochem.1c00367] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptides with a combination of high positive charge and high hydrophobicity have high antimicrobial activity, as epitomized by peptide venoms, which are designed by nature as disruptors of host membranes yet also display significant efficacy against pathogens. To investigate this phenomenon systematically, here we focus on ponericin W1, a peptide venom isolated from Pachycondyla goeldii ants (WLGSALKIGAKLLPSVVGLFKKKKQ) to examine whether Lys positioning can be broadly applied to optimize the functional range of existing natural sequences. We prepared sets of ponericin W1 analogues, where Lys residues were either distributed in an amphipathic manner throughout the sequence (PonAmp), clustered at the N-terminus (PonN), or clustered at the C-terminus (PonC), along with their counterparts of reduced hydrophobicity through 2-4 Leu-to-Ala replacements. We found that wild-type ponericin W1 and all three variants displayed toxicity against human erythrocytes, but hemolysis was eliminated by the replacement of two or more Leu residues by Ala residues. As well, peptides containing up to 3 Leu-to-Ala replacements retained antimicrobial activity against E. coli bacteria. Biophysical analyses of peptide-membrane interaction patterns by circular dichroism spectroscopy revealed a novel mode of cluster-dependent peptide positioning vis-à-vis the water-membrane interface, where PonAmp and PonC peptides displayed full or partial helical structures, while PonN peptides were unstructured, likely due, in part, to dynamic interchange between aqueous and membrane surface environments. The overall findings suggest that the lower membrane penetration of N-terminal charge-clustered constructs coupled with moderate sequence hydrophobicity may be advantageous for conferring enhanced target selectivity for bacterial versus mammalian membranes.
Collapse
Affiliation(s)
- Shelley He
- Program in Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Tracy A Stone
- Program in Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Charles M Deber
- Program in Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
8
|
Hirano M, Saito C, Goto C, Yokoo H, Kawano R, Misawa T, Demizu Y. Rational Design of Helix-Stabilized Antimicrobial Peptide Foldamers Containing α,α-Disubstituted Amino Acids or Side-Chain Stapling. Chempluschem 2021; 85:2731-2736. [PMID: 33369262 DOI: 10.1002/cplu.202000749] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/15/2020] [Indexed: 12/19/2022]
Abstract
Antimicrobial peptides (AMPs) are expected to be good candidate molecules for novel antimicrobial therapies. Most AMPs exert their antimicrobial activity through disruption of microbial membranes due to their amphipathic properties. Recently, the helical peptide 'Stripe' was reported by our group, a rationally designed amphipathic AMP focused on distribution of natural cationic and hydrophobic amino acid residues. In this study, a set of Stripe-based AMP foldamers was designed, synthesized and investigated that contain α,α-disubstituted amino acids or side-chain stapling to stabilize their helical structures. Our results showed that a peptide containing 2-aminoisobutyric acid (Aib) residues exhibited potent antimicrobial activity against both Gram-positive S.aureus (MIC value: 3.125 μM) and Gram-negative bacteria (including a multidrug-resistant strain, MDRP, MIC value: 1.56 μM), without significant hemolytic activity (>100 μM). Electrophysiological measurements revealed that this peptide formed stable pores in a 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE)/1,2-dioleoyl-sn-glycero-3-phosphoglycerol (DOPG) bilayer but not in a dioleoylphosphocholine (DOPC) bilayer. The introduction of Aib residues into Stripe could be a promising way to increase the antimicrobial activity of AMP foldamers, and the peptide could represent a promising novel therapeutic candidate to treat multidrug-resistant bacterial infection.
Collapse
Affiliation(s)
- Motoharu Hirano
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa, 210-9501, Japan.,Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Yokohama, Kanagawa, 230-0045, Japan
| | - Chihiro Saito
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-6 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Chihiro Goto
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa, 210-9501, Japan.,Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Yokohama, Kanagawa, 230-0045, Japan
| | - Hidetomo Yokoo
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa, 210-9501, Japan
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-6 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Takashi Misawa
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa, 210-9501, Japan
| | - Yosuke Demizu
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa, 210-9501, Japan.,Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Yokohama, Kanagawa, 230-0045, Japan
| |
Collapse
|
9
|
Unlocking the bacterial membrane as a therapeutic target for next-generation antimicrobial amphiphiles. Mol Aspects Med 2021; 81:100999. [PMID: 34325929 DOI: 10.1016/j.mam.2021.100999] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/21/2021] [Accepted: 07/16/2021] [Indexed: 11/21/2022]
Abstract
Gram-positive bacteria like Enterococcus faecium and Staphylococcus aureus, and Gram-negative bacteria like Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter Spp. are responsible for most of fatal bacterial infections. Bacteria present a handful of targets like ribosome, RNA polymerase, cell wall biosynthesis, and dihydrofolate reductase. Antibiotics targeting the protein synthesis like aminoglycosides and tetracyclines, inhibitors of RNA/DNA synthesis like fluoroquinolones, inhibitors of cell wall biosynthesis like glycopeptides and β-lactams, and membrane-targeting polymyxins and lipopeptides have shown very good success in combating the bacterial infections. Ability of the bacteria to develop drug resistance is a serious public health challenge as bacteria can develop antimicrobial resistance against newly introduced antibiotics that enhances the challenge for antibiotic drug discovery. Therefore, bacterial membranes present a suitable therapeutic target for development of antimicrobials as bacteria can find it difficult to develop resistance against membrane-targeting antimicrobials. In this review, we present the recent advances in engineering of membrane-targeting antimicrobial amphiphiles that can be effective alternatives to existing antibiotics in combating bacterial infections.
Collapse
|
10
|
Yokoo H, Hirano M, Ohoka N, Misawa T, Demizu Y. Structure-activity relationship study of amphipathic antimicrobial peptides using helix-destabilizing sarcosine. J Pept Sci 2021; 27:e3360. [PMID: 34164880 DOI: 10.1002/psc.3360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/21/2021] [Accepted: 06/11/2021] [Indexed: 12/20/2022]
Abstract
Antimicrobial peptides (AMPs) are potential therapeutic agents against bacteria. We recently showed that a rationally designed AMP, termed Stripe, with an amphipathic distribution of native cationic and hydrophobic amino acids on its helical structure exhibited potent antimicrobial activity against Gram-positive and Gram-negative bacteria with negligible hemolytic activity and cytotoxicity. In this study, the structure-activity relationship of Stripe was elucidated by designing a series of antimicrobial peptides whereby amino acid residues of Stripe were exchanged with helix-destabilizing sarcosine residues. Stripe 1-5 peptides with hydrophobic amino acids substituted with sarcosine were predominantly unstructured and showed no antimicrobial activity, except against Escherichia coli (E. coli) (DH5α) cells. The activity against E. coli (DH5α) cells and the helicity of Stripe 1-5 peptides decreased concomitantly as the number of sarcosine residue substitutions increased. Stripe 1-5 peptides showed no hemolytic activity or cytotoxicity. The results indicate that sarcosine substitutions provide an approach to study the structure-activity relationship of helical AMPs, and the helicity of Stripe is an important feature defining its activity.
Collapse
Affiliation(s)
- Hidetomo Yokoo
- Division of Organic Chemistry, National Institute of Health Sciences, Kawasaki, Japan
| | - Motoharu Hirano
- Division of Organic Chemistry, National Institute of Health Sciences, Kawasaki, Japan.,Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Nobumichi Ohoka
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kawasaki, Japan
| | - Takashi Misawa
- Division of Organic Chemistry, National Institute of Health Sciences, Kawasaki, Japan
| | - Yosuke Demizu
- Division of Organic Chemistry, National Institute of Health Sciences, Kawasaki, Japan.,Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| |
Collapse
|
11
|
New Insights into the Antimicrobial Properties of Hydrolysates and Peptide Fractions Derived from Chia Seed (Salvia hispanica L.). Probiotics Antimicrob Proteins 2021; 12:1571-1581. [PMID: 32385579 DOI: 10.1007/s12602-020-09653-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bioactive peptides derived from chia (Salvia hispanica) seed with antioxidant, antihypertensive, and anti-inflammatory activities have been well documented; however, few studies describe the antimicrobial properties of these peptides, which is of great interest not only in the prevention of food-borne diseases but also food spoilage. The aim of this study was to generate chia seed peptides using microwave-assisted hydrolysis with sequential (alcalase + flavourzyme) enzymes (AF-MW), fractionate them into 3-10 and < 3 kDa fractions, and evaluate their potential antimicrobial activity towards Escherichia coli, Salmonella enterica, and Listeria monocytogenes. Overall, the peptide fraction < 3 kDa showed higher antimicrobial activity than both chia seed hydrolysate and peptide fraction 3-10 kDa. Furthermore, the < 3 kDa fraction showed remarkable increase in membrane permeability of E. coli (71.49% crystal violet uptake) and L. monocytogenes (80.10% crystal violet uptake). These peptides caused a significant extension in the lag phase, decreases in the maximum growth, and growth rate in the bacteria and promoted multiple indentations (transmembrane tunnels), membrane wrinkling, and pronounced deformations in the integrity of the bacterial cell membranes. Finally, a select group of peptides in the AF-MW < 3 kDa fraction contained 16 sequences with cationic and hydrophobic character, with seven of them sharing the exact same sequence (GDVIAIR) and eight of them having the amino acid K as either N- or C-terminal or both. In conclusion, our results indicate that bioactive peptides obtained from chia seed proteins by microwave and enzymatic hydrolysis could be employed as antimicrobial agents in foods and therapeutic applications.
Collapse
|
12
|
Hirano M, Saito C, Yokoo H, Goto C, Kawano R, Misawa T, Demizu Y. Development of Antimicrobial Stapled Peptides Based on Magainin 2 Sequence. Molecules 2021; 26:444. [PMID: 33466998 PMCID: PMC7830303 DOI: 10.3390/molecules26020444] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 01/01/2023] Open
Abstract
Magainin 2 (Mag2), which was isolated from the skin of the African clawed frog, is a representative antimicrobial peptide (AMP) that exerts antimicrobial activity via microbial membrane disruption. It has been reported that the helicity and amphipathicity of Mag2 play important roles in its antimicrobial activity. We investigated and recently reported that 17 amino acid residues of Mag2 are required for its antimicrobial activity, and accordingly developed antimicrobial foldamers containing α,α-disubstituted amino acid residues. In this study, we further designed and synthesized a set of Mag2 derivatives bearing the hydrocarbon stapling side chain for helix stabilization. The preferred secondary structures, antimicrobial activities, and cell-membrane disruption activities of the synthesized peptides were evaluated. Our analyses revealed that hydrocarbon stapling strongly stabilized the helical structure of the peptides and enhanced their antimicrobial activity. Moreover, peptide 2 stapling between the first and fifth position from the N-terminus showed higher antimicrobial activity than that of Mag2 against both gram-positive and gram-negative bacteria without exerting significant hemolytic activity. To investigate the modes of action of tested peptides 2 and 8 in antimicrobial and hemolytic activity, electrophysiological measurements were performed.
Collapse
Affiliation(s)
- Motoharu Hirano
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan; (M.H.); (H.Y.); (C.G.)
- Graduate School of medical Life Science, Yokohama City University, 1-7-29, Yokohama, Kanagawa 230-0045, Japan
| | - Chihiro Saito
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-6 Naka-cho, Koganei, Tokyo 184-8588, Japan; (C.S.); (R.K.)
| | - Hidetomo Yokoo
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan; (M.H.); (H.Y.); (C.G.)
| | - Chihiro Goto
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan; (M.H.); (H.Y.); (C.G.)
- Graduate School of medical Life Science, Yokohama City University, 1-7-29, Yokohama, Kanagawa 230-0045, Japan
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-6 Naka-cho, Koganei, Tokyo 184-8588, Japan; (C.S.); (R.K.)
| | - Takashi Misawa
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan; (M.H.); (H.Y.); (C.G.)
| | - Yosuke Demizu
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan; (M.H.); (H.Y.); (C.G.)
- Graduate School of medical Life Science, Yokohama City University, 1-7-29, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
13
|
Pandit G, Chowdhury N, Abdul Mohid S, Bidkar AP, Bhunia A, Chatterjee S. Effect of Secondary Structure and Side Chain Length of Hydrophobic Amino Acid Residues on the Antimicrobial Activity and Toxicity of 14-Residue-Long de novo AMPs. ChemMedChem 2020; 16:355-367. [PMID: 33026188 DOI: 10.1002/cmdc.202000550] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/18/2020] [Indexed: 12/11/2022]
Abstract
Herein we report the efficacy and toxicity of three de novo designed cationic antimicrobial peptides (AMPs) LL-14, VV-14 and ββ-14, where side chains of the hydrophobic amino acids were reduced gradually. The AMPs showed broad-spectrum antimicrobial activity against three pathogens from the ESKAPE group and two fungal strains. This study showed that side chains which are either too long or too short increase toxicity and lower antimicrobial activity, respectively. VV-14 was found to be non-cytotoxic and highly potent under physiological salt concentrations against several pathogens, especially Salmonella typhi TY2. These AMPs acted via membrane deformation, depolarization, and lysis. The activity of the AMPs is related to their ability to take on amphipathic helical conformations in the presence of microbial membrane mimics. Among AMPs with the same charge, hydrophobic interactions between the side chains of the residues with cell membrane lipids determine their antimicrobial potency and cytotoxicity. Strikingly, an optimum hydrophobic interaction is the crux of generating highly potent non-cytotoxic AMPs.
Collapse
Affiliation(s)
- Gopal Pandit
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | | | - Sk Abdul Mohid
- Department of Biophysics, Bose Institute, Kolkata, West Bengal, India
| | - Anil P Bidkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, Kolkata, West Bengal, India
| | - Sunanda Chatterjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
14
|
Neshani A, Sedighian H, Mirhosseini SA, Ghazvini K, Zare H, Jahangiri A. Antimicrobial peptides as a promising treatment option against Acinetobacter baumannii infections. Microb Pathog 2020; 146:104238. [PMID: 32387392 DOI: 10.1016/j.micpath.2020.104238] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND With the increasing rate of antibiotic resistance in Acinetobacter, the World Health Organization introduced the carbapenem-resistant isolates in the priority pathogens list for which innovative new treatments are urgently needed. Antimicrobial peptides (AMPs) are one of the antimicrobial agents with high potential to produce new anti-Acinetobacter drugs. This review aims to summarize recent advances and compare AMPs with anti-Acinetobacter baumannii activity. METHODS Active AMPs against Acinetobacter were considered, and essential features, including structure, mechanism of action, anti-A. baumannii potent, and other prominent characteristics, were investigated and compared to each other. In this regard, the Google Scholar search engine and databases of PubMed, Scopus, and Web of Science were used. RESULTS Forty-six anti-Acinetobacter peptides were identified and classified into ten groups: Cathelicidins, Defensins, Frog AMPs, Melittin, Cecropins, Mastoparan, Histatins, Dermcidins, Tachyplesins, and computationally designed AMPs. According to the Minimum Inhibitory Concentration (MIC) reports, six peptides of Melittin, Histatin-8, Omega76, AM-CATH36, Hymenochirin, and Mastoparan have the highest anti-A. baumannii power against sensitive and antibiotic-resistant isolates. All anti-Acinetobacter peptides except Dermcidin have a net positive charge. Most of these peptides have alpha-helical structure; however, β-sheet and other structures have been observed among them. The mechanism of action of these antimicrobial agents is divided into two categories of membrane-based and intracellular target-based attack. CONCLUSION Evidence from this review indicates that AMPs would be likely among the main anti-A. baumannii drugs in the post-antibiotic era. Also, the application of computer science to increase anti-A. baumannii activity and reduce toxicity could be helpful.
Collapse
Affiliation(s)
- Alireza Neshani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran; Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran; Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Mirhosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Kiarash Ghazvini
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hosna Zare
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Jahangiri
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Goto C, Hirano M, Hayashi K, Kikuchi Y, Hara-Kudo Y, Misawa T, Demizu Y. Development of Amphipathic Antimicrobial Peptide Foldamers Based on Magainin 2 Sequence. ChemMedChem 2019; 14:1911-1916. [PMID: 31667994 DOI: 10.1002/cmdc.201900460] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/27/2019] [Indexed: 11/07/2022]
Abstract
Magainin 2 (Mag 2), which is isolated from the skin of frogs, is a representative antimicrobial peptide (AMP), exerts its antimicrobial activity via microbial membrane disruption. It has been reported that both the amphipathicity and helical structure of Mag 2 play an important role in its antimicrobial activity. In this study, we revealed that the sequence of 17 amino acid residues in Mag 2 (peptide 7) is required to exert sufficient activity. We also designed a set of Mag 2 derivatives, based on enhancement of helicity and/or amphipathicity, by incorporation of α,α-disubstituted amino acid residues into the Mag 2 fragment, and evaluated their preferred secondary structures and their antimicrobial activities against both Gram-positive and Gram-negative bacteria. As a result, peptide 11 formed a stable helical structure in solution, and possessed potent antimicrobial activities against both Gram-positive and Gram-negative bacteria without significant cytotoxicity.
Collapse
Affiliation(s)
- Chihiro Goto
- National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan.,Graduate School of Medical Health Sciences, Yokohama City University, Yokohama-shi, Kanagawa, 230-0045, Japan
| | - Motoharu Hirano
- National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Katsuhiko Hayashi
- National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Yutaka Kikuchi
- National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan.,Department of Nutrition, Chiba Prefectural University of Health Sciences University, 2-10-1 Wakaba, Mihama-ku, Chiba, 261-0014, Japan
| | - Yukiko Hara-Kudo
- National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Takashi Misawa
- National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Yosuke Demizu
- National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan.,Graduate School of Medical Health Sciences, Yokohama City University, Yokohama-shi, Kanagawa, 230-0045, Japan
| |
Collapse
|