1
|
Kozlova KS, Berezin AS, Kuratieva NV, Shestopalov MA, Ivanov AA. Octahedral molybdenum iodide clusters with pyrazole or pyrazolate ligands. Dalton Trans 2024; 53:15959-15967. [PMID: 39269009 DOI: 10.1039/d4dt01831a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Due to the combination of useful physicochemical properties (luminescence, X-ray contrast, etc.), octahedral molybdenum halide cluster complexes [Mo6X8L6]n have been the subject of active investigation during the last decades. The most common methods for synthesizing new compounds with organic ligands involve the use of silver salts of organic acids or the substitution of terminal methylate ligands. However, these methods often necessitate the use of special conditions, such as an inert atmosphere, absolute solvents, and silver salts, which can be costly. In contrast, aqua-hydroxo complexes formed by hydrolysis of many complexes are considered final unreactive products, despite the tendency for them to form. This work proposes a simple and affordable method for the preparation of hexaaqua and hexahydroxo iodide clusters of molybdenum from [Mo6I14]2- in a single step. Furthermore, the possibility of using such compounds as starting complexes for the synthesis of clusters with organic ligands such as pyrazole is discussed. The paper presents synthetic approaches, detailed characterization both in solid and in solution, and a study of the reactivity and luminescence properties of the obtained compounds.
Collapse
Affiliation(s)
- Ksenia S Kozlova
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russian Federation.
- Novosibirsk State University, 2 Pirogov Str., 630090 Novosibirsk, Russian Federation
| | - Alexey S Berezin
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russian Federation.
| | - Natalia V Kuratieva
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russian Federation.
| | - Michael A Shestopalov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russian Federation.
| | - Anton A Ivanov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russian Federation.
| |
Collapse
|
2
|
Wang Z, Yan Y, Chen J, Li QH, Zhang J. Designed metal-organic π-clusters combining the aromaticity of the metal cluster and ligands for a third-order nonlinear optical response. MATERIALS HORIZONS 2024; 11:297-302. [PMID: 37947130 DOI: 10.1039/d3mh01538f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The pivotal role of clusters and aromaticity in chemistry is undeniable, but there remains a gap in systematically understanding the aromaticity of metal-organic clusters. Herein, this article presents a novel metal-organic π-cluster, melding both metal-organic chemistry and aromaticity, to guide the construction of structurally stable Os-organic π-clusters. An in-depth analysis of these clusters reveals their bonding attributes, π-electronic composition, and origins of aromaticity, thereby confirming their unique metal-organic π-cluster properties. Furthermore, the Os5 cluster exhibits a promising third-order nonlinear optical (NLO) response, attributable to its narrow band gap and uniform electron/hole distribution, suggesting its potential as an optical switching material. This research introduces a fresh perspective on clusters, centered on delocalization, and broadens the domain of aromaticity studies. It also presents a novel method for designing efficient third-order NLO materials through consideration of the structure-activity relationship.
Collapse
Affiliation(s)
- Zirui Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yayu Yan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jiali Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Qiao-Hong Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
3
|
Chang B, Chen J, Bao J, Sun T, Cheng Z. Molecularly Engineered Room-Temperature Phosphorescence for Biomedical Application: From the Visible toward Second Near-Infrared Window. Chem Rev 2023; 123:13966-14037. [PMID: 37991875 DOI: 10.1021/acs.chemrev.3c00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Phosphorescence, characterized by luminescent lifetimes significantly longer than that of biological autofluorescence under ambient environment, is of great value for biomedical applications. Academic evidence of fluorescence imaging indicates that virtually all imaging metrics (sensitivity, resolution, and penetration depths) are improved when progressing into longer wavelength regions, especially the recently reported second near-infrared (NIR-II, 1000-1700 nm) window. Although the emission wavelength of probes does matter, it is not clear whether the guideline of "the longer the wavelength, the better the imaging effect" is still suitable for developing phosphorescent probes. For tissue-specific bioimaging, long-lived probes, even if they emit visible phosphorescence, enable accurate visualization of large deep tissues. For studies dealing with bioimaging of tiny biological architectures or dynamic physiopathological activities, the prerequisite is rigorous planning of long-wavelength phosphorescence, being aware of the cooperative contribution of long wavelengths and long lifetimes for improving the spatiotemporal resolution, penetration depth, and sensitivity of bioimaging. In this Review, emerging molecular engineering methods of room-temperature phosphorescence are discussed through the lens of photophysical mechanisms. We highlight the roles of phosphorescence with emission from visible to NIR-II windows toward bioapplications. To appreciate such advances, challenges and prospects in rapidly growing studies of room-temperature phosphorescence are described.
Collapse
Affiliation(s)
- Baisong Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Jie Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Jiasheng Bao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264000, China
| |
Collapse
|
4
|
Amela-Cortes M, Wilmet M, Le Person S, Khlifi S, Lebastard C, Molard Y, Cordier S. From Solid-State Cluster Compounds to Functional PMMA-Based Composites with UV and NIR Blocking Properties, and Tuned Hues. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:144. [PMID: 36616054 PMCID: PMC9824331 DOI: 10.3390/nano13010144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
New nanocomposite materials with UV-NIR blocking properties and hues ranging from green to brown were prepared by integrating inorganic tantalum octahedral cluster building blocks prepared via solid-state chemistry in a PMMA matrix. After the synthesis by the solid-state chemical reaction of the K4[{Ta6Bri12}Bra6] ternary halide, built-up from [{Ta6Bri12}Bra6]4- anionic building blocks, and potassium cations, the potassium cations were replaced by functional organic cations (Kat+) bearing a methacrylate function. The resulting intermediate, (Kat)2[{Ta6Bri12}Bra6], was then incorporated homogeneously by copolymerization with MMA into transparent PMMA matrices to form a brown transparent hybrid composite Ta@PMMAbrown. The color of the composites was tuned by controlling the charge and consequently the oxidation state of the cluster building block. Ta@PMMAgreen was obtained through the two-electron reduction of the [{Ta6Bri12}Bra6]2- building blocks from Ta@PMMAbrown in solution. Indeed, the control of the oxidation state of the Ta6 cluster inorganic building blocks occurred inside the copolymer, which not only allowed the tuning of the optical properties of the composite in the visible region but also allowed the tuning of its UV and NIR blocking properties.
Collapse
Affiliation(s)
| | - Maxence Wilmet
- CNRS-Saint Gobain-NIMS, IRL3629, Laboratory for Innovative Key Materials ans Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
| | | | - Soumaya Khlifi
- Univ. Rennes, CNRS, ISCR, UMR6226, F-35000 Rennes, France
| | - Clément Lebastard
- Univ. Rennes, CNRS, ISCR, UMR6226, F-35000 Rennes, France
- CNRS-Saint Gobain-NIMS, IRL3629, Laboratory for Innovative Key Materials ans Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
| | - Yann Molard
- Univ. Rennes, CNRS, ISCR, UMR6226, F-35000 Rennes, France
| | | |
Collapse
|
5
|
Mikhaylov MA, Berezin AS, Sukhikh TS, Sheven’ DG, Kompankov NB, Sokolov MN. 1,2,4-TRIAZOLATE CLUSTER COMPLEXES (Bu4N)2[Mo6X8(N3C2H2)6] (X = Br, I). J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622120216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
Sciortino F, Cretu O, Karanikolas V, Grasset F, Cordier S, Ariga K, Kuroda T, Kimoto K. Surface Plasmon Tunability of Core-Shell Au@Mo 6 Nanoparticles by Shell Thickness Modification. J Phys Chem Lett 2022; 13:2150-2157. [PMID: 35226485 DOI: 10.1021/acs.jpclett.1c03853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plasmon resonances of noble metal nanoparticles are used to enhance light-matter interactions in the nanoworld. The nanoparticles' optical response depends strongly on the dielectric permittivity of the surrounding medium. We show that the plasmon resonance energy of core-shell Au@Mo6 nanoparticles can be tuned from 2.4 to 1.6 eV by varying the thickness of their Mo6 cluster shells between zero and 70 nm, when the core diameter is fixed at 100 nm. We probe their plasmonic response by performing nanometer-resolution plasmon mapping on individual nanoparticles, using electron energy-loss spectroscopy inside a transmission electron microscope. Our experimental results are corroborated by numerical simulations performed using boundary element methods. The simulations predict a similar dependency for the extinction energy, showing that this effect could also be observed by light-optical experiments outside the electron microscope, although limited by the size distribution of the nanoparticles in solution and the substantial scattering effects.
Collapse
Affiliation(s)
- Flavien Sciortino
- Université Grenoble Alpes, CNRS, DCM UMR 5250, Grenoble F-38000, France
| | | | | | - Fabien Grasset
- Univ. Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR), UMR 6226, Rennes F-35000, France
| | - Stéphane Cordier
- Univ. Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR), UMR 6226, Rennes F-35000, France
| | - Katsuhiko Ariga
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | | | | |
Collapse
|
7
|
Renaud A, Jouan PY, Dumait N, Ababou-Girard S, Barreau N, Uchikoshi T, Grasset F, Jobic S, Cordier S. Evidence of the Ambipolar Behavior of Mo 6 Cluster Iodides in All-Inorganic Solar Cells: A New Example of Nanoarchitectonic Concept. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1347-1354. [PMID: 34931797 DOI: 10.1021/acsami.1c17845] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ambipolar materials such as carbon nanotubes, graphene, or 2D transition metal chalcogenides are very attractive for a large range of applications, namely, light-emitting transistors, logic circuits, gas sensors, flash memories, and solar cells. In this work, it is shown that the nanoarchitectonics of inorganic Mo6 cluster-based iodides enable to form thin films exhibiting photophysical properties that enable their classification as new members of the restricted family of ambipolar materials. Thus, the electronic properties of the ternary iodide Cs2[{Mo6I8i}I6a] and those of thin films of the aqua-complex-based compound [{Mo6I8i}I4a(H2O)2a]·xH2O were investigated through an in-depth photoelectrochemical study. Once hole/electron pairs are created, the holes and electrons turn to be transported simultaneously in opposite directions, and their lifetimes exhibit similar values. The ambipolar properties were demonstrated via the integration of [{Mo6I8i}I4a(H2O)2a]·xH2O as light harvesters in an all-solid solar cell. A significant photoresponse with a typical diode characteristic clearly provides evidence of the simultaneous transfer and transport of holes and electrons within the [{Mo6I8i}I4a(H2O)2a]·xH2O layer. The ambipolar behavior results, on the one hand, from the confinement of electrons imposed by the nanometric size of the molecular metal clusters and, on the other hand, from the poor electronic interactions between clusters in the solid state. Such molecular structure-based layers lead naturally to an intrinsic semiconducting behavior.
Collapse
Affiliation(s)
- Adèle Renaud
- Université Rennes, CNRS, ISCR─UMR 6226, F-35000 Rennes, France
| | - Pierre-Yves Jouan
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000 Nantes, France
| | - Noée Dumait
- Université Rennes, CNRS, ISCR─UMR 6226, F-35000 Rennes, France
| | | | - Nicolas Barreau
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000 Nantes, France
| | - Tetsuo Uchikoshi
- CNRS-Saint-Gobain-NIMS, IRL 3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science, 1-1 Namiki, 305-0044 Tsukuba, Japan
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, 305-0047 Tsukuba, Japan
| | - Fabien Grasset
- Université Rennes, CNRS, ISCR─UMR 6226, F-35000 Rennes, France
- CNRS-Saint-Gobain-NIMS, IRL 3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science, 1-1 Namiki, 305-0044 Tsukuba, Japan
| | - Stéphane Jobic
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000 Nantes, France
| | | |
Collapse
|
8
|
Wilmet M, Lebastard C, Sciortino F, Comby-Zerbino C, MacAleese L, Chirot F, Dugourd P, Grasset F, Matsushita Y, Uchikoshi T, Ariga K, Lemoine P, Renaud A, Costuas K, Cordier S. Revisiting properties of edge-bridged bromide tantalum clusters in the solid-state, in solution and vice versa: an intertwined experimental and modelling approach. Dalton Trans 2021; 50:8002-8016. [PMID: 34008603 DOI: 10.1039/d0dt04200e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Edge-bridged halide tantalum clusters based on the {Ta6Br12}4+ core have been the topic of many physicostructural investigations both in solution and in the solid-state. Despite a large number of studies, the fundamental correlations between compositions, local symmetry, electronic structures of [{Ta6Bri12}La6]m+/n- cluster units (L = Br or H2O, in solution and in the solid-state), redox states, and vibrational and absorption properties are still not well established. Using K4[{Ta6Bri12}Bra6] as a starting precursor (i: inner and a: apical), we have investigated the behavior of the [{Ta6Bri12}Bra6]4- cluster unit in terms of oxidation properties and chemical modifications both in solution (water and organic solvent) and after recrystallization. A wide range of experimental techniques in combination with quantum chemical simulations afford new data that allow the puzzling behavior of the cluster units in response to changes in their environment to be revealed. Apical ligands undergo changes like modifications of interatomic distances to complete substitutions in solution that modify noticeably the cluster physical properties. Changes in the oxidation state of the cluster units also occur, which modify significantly their physical properties, including optical properties, which can thus be used as fingerprints. A subtle balance exists between the number of substituted apical ligands and the cluster oxidation state. This study provides new information about the exact nature of the species formed during the transition from the solid-state to solutions and vice versa. This shows new perspectives on optimization protocols for the design of Ta6 cluster-based materials.
Collapse
Affiliation(s)
- Maxence Wilmet
- Saint Gobain Research Paris, F-93300 Aubervilliers, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|