1
|
Zhao L, Luo S, Peng Z, Wang G. Studies on the inhibition mechanism of α-glucosidase by kaempferide: Enzyme kinetic, multi-spectroscopy and molecular docking techniques. Int J Biol Macromol 2025; 302:140637. [PMID: 39908884 DOI: 10.1016/j.ijbiomac.2025.140637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/13/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
α-Glucosidase (α-Glu) is an enzyme that lowers postprandial blood glucose after breaking down complex carbohydrates. Kaempferide is the principal flavonoid active ingredient in plants and is widely found in fruits, vegetables, and beverages. This study found that kaempferide has the potential to inhibit α-Glu activity to treat type 2 diabetes. The results showed that kaempferide (IC50 = 55.35 ± 0.27 μM), serving as a mixed-type inhibitor for α-Glu, exhibited sensibly superior inhibition of α-Glu than acarbose (IC50 = 414.08 ± 10.73 μM). In addition, the outcomes from fluorescence quenching, 3D fluorescence, synchronous fluorescence, CD spectroscopy, and molecular docking analysis showed that kaempferide can not only chelate with α-Glu by hydrogen bonding and Van der Waals forces, but also affect the secondary structure and activity of the enzyme. After oral administration of sucrose in mice, kaempferide effectively reduces postprandial blood glucose (PBG) and without any other adverse symptoms. In summary, this study has the potential to contribute to the development of functional foods for the prevention and management of type 2 diabetes (T2DM).
Collapse
Affiliation(s)
- Li Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China; School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Shuang Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China; School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Zhiyun Peng
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| | - Guangcheng Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
2
|
Zhang C, Feng M, Chitrakar B, Yang F, Wei B, Wang B, Zhou C, Ma H, Gao X, Xu B. In Vitro Inhibitory Mechanism of Polyphenol Extracts from Multi-Frequency Power Ultrasound-Pretreated Rose Flower Against α-Glucosidase. Foods 2024; 13:3421. [PMID: 39517205 PMCID: PMC11544979 DOI: 10.3390/foods13213421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
This paper explored the in vitro inhibitory mechanism of polyphenol-rich rose extracts (REs) from an edible rose flower against α-glucosidase using multispectral and molecular docking techniques. Results showed that REs had an inhibitory effect on α-Glu activity (IC50 of 1.96 μg/mL); specifically, the samples pretreated by tri-frequency ultrasound (20/40/60 kHz) exhibited a significantly (p < 0.05) stronger inhibitory effect on α-Glu activity with an IC50 of 1.33 μg/mL. The Lineweaver-Burk assay indicated that REs were mixed-type inhibitors and could statically quench the endogenous fluorescence of α-Glu. REs increased the chance of polypeptide chain misfolding by altering the microenvironment around tryptophan and tyrosine residues and disrupting the natural conformation of the enzyme. Molecular docking results showed that polyhydroxy phenolics had a high fit to the active site of α-Glu, so REs with high polymerization and numerous phenolic hydroxyl groups had a stronger inhibitory effect. Therefore, this study provides new insights into polyphenol-rich REs as potential α-glucosidase inhibitors.
Collapse
Affiliation(s)
- Chao Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (C.Z.); (M.F.); (B.W.); (B.W.); (H.M.); (X.G.)
| | - Ming Feng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (C.Z.); (M.F.); (B.W.); (B.W.); (H.M.); (X.G.)
| | - Bimal Chitrakar
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China;
| | - Fan Yang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Benxi Wei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (C.Z.); (M.F.); (B.W.); (B.W.); (H.M.); (X.G.)
| | - Bo Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (C.Z.); (M.F.); (B.W.); (B.W.); (H.M.); (X.G.)
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (C.Z.); (M.F.); (B.W.); (B.W.); (H.M.); (X.G.)
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (C.Z.); (M.F.); (B.W.); (B.W.); (H.M.); (X.G.)
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Xianli Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (C.Z.); (M.F.); (B.W.); (B.W.); (H.M.); (X.G.)
| | - Baoguo Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (C.Z.); (M.F.); (B.W.); (B.W.); (H.M.); (X.G.)
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
3
|
Lokolkar M, Udnoor A, Ali MS, Katrahalli U, Kalasad MN, Al-Lohedan HA, Hadagali MD. Investigations on the complexation and binding mechanism of bovine serum albumin with Ag-doped TiO 2 nanoparticles. Phys Chem Chem Phys 2024; 26:26453-26464. [PMID: 39392120 DOI: 10.1039/d4cp02056a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
It is essential to study the interactions between nanoparticles and proteins to better understand the biological interactions of nanoparticles. In this study, we studied the protein adsorption mode on the surface of Ag-doped TiO2 nanoparticles (NPs) using a model protein, bovine serum albumin (BSA). The mechanism of binding BSA to the Ag-doped TiO2 NPs was studied by applying fluorescence quenching, absorbance measurements, circular dichroism (CD) and Fourier transform infrared (FT-IR) spectroscopy techniques. The strong binding between BSA and Ag-doped TiO2 NPs was confirmed by a high value of binding constant (K = 2.65 × 105 L mol-1). We also studied the thermal stability of BSA in the presence of the Ag-doped TiO2 NPs. Thermodynamic parameters indicated that the adsorption of BSA on the Ag-doped TiO2 NPs was a spontaneous, natural and exothermic process. The effect of Ag-doped TiO2 NPs on the transportation function of BSA was also studied using a fluorescence spectroscopic technique. Fluorescence spectroscopic data suggested the existence of a strong interaction between BSA and the surface of the Ag-doped TiO2 NPs, which indicated that the binding affinities of some selected amino acids in BSA changed. This, in turn, clearly confirms that the Ag-doped TiO2 NPs affect the transportation capability of BSA in blood.
Collapse
Affiliation(s)
- Manjunath Lokolkar
- PG Department of Chemistry, The Maratha Mandal Degree College, Belagavi - 590003, Karnataka, India
| | - Abhishek Udnoor
- University of Chemistry and Chemical Technology, Technická 5, 160 00 Praha, Czech Republic
- Department of Materials Chemistry, Institute of Inorganic Chemistry of the Czech Academy of Sciences, Husinec-Řež 1001, 250 68, Řež, Czech Republic
| | - Mohd Sajid Ali
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Umesha Katrahalli
- PG Department of Chemistry, Vijaya College, Bengaluru 560 004, Karnataka, India
| | - Muttanagoud N Kalasad
- Department of Studies in Physics, Davangere University, Shivagangotri, Davangere 577007, Karnataka, India
| | - Hamad A Al-Lohedan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | |
Collapse
|
4
|
Sun Y, Cao Q, Huang Y, Lu T, Ma H, Chen X. Mechanistic study on the inhibition of α-amylase and α-glucosidase using the extract of ultrasound-treated coffee leaves. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:63-74. [PMID: 37515816 DOI: 10.1002/jsfa.12890] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND Our previous studies have shown that ultrasound-treated γ-aminobutyric acid (GABA)-rich coffee leaves have higher angiotensin-I-converting enzyme inhibitory activity than their untreated counterpart. However, whether they have antidiabetic activity remains unknown. In this study, we aimed to investigate the inhibitory activities of coffee leaf extracts (CLEs) prepared with ultrasound (CLE-U) or without ultrasound (CLE-NU) pretreatment on α-amylase and α-glucosidase. Subsequently, we evaluated the binding interaction between CLE-U and both enzymes using multi-spectroscopic and in silico analyses. RESULTS Ultrasound pretreatment increased the inhibitory activities of CLE-U against α-amylase and α-glucosidase by 21.78% and 25.13%, respectively. CLE-U reversibly inhibits both enzymes, with competitive inhibition observed for α-amylase and non-competitive inhibition for α-glucosidase. The static quenching of CLE-U against both enzymes was primarily driven by hydrogen bond and van der Waals interactions. The α-helices of α-amylase and α-glucosidase were increased by 1.8% and 21.3%, respectively. Molecular docking results showed that the key differential compounds, including mangiferin, 5-caffeoylquinic acid, rutin, trigonelline, GABA, caffeine, glutamate, and others, present in coffee leaves interacted with specific amino acid residues located at the active site of α-amylase (ASP197, GLU233, and ASP300). The binding of α-glucosidase and these bioactive components involved amino acid residues, such as PHE1289, PRO1329, and GLU1397, located outside the active site. CONCLUSION Ultrasound-treated coffee leaves are potential anti-diabetic substances, capable of preventing diabetes by inhibiting the activities of α-amylase and α-glucosidase, thus delaying starch digestion. Our study provides valuable information to elucidate the possible antidiabetic capacity of coffee leaves through the inhibition of α-amylase and α-glucosidase activities. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yu Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, People's Republic of China
| | - Qingwei Cao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, People's Republic of China
| | - Yuanyuan Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, People's Republic of China
| | - Tingting Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, People's Republic of China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, People's Republic of China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, People's Republic of China
| | - Xiumin Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, People's Republic of China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, People's Republic of China
| |
Collapse
|
5
|
New Insights into the Inhibition of Hesperetin on Polyphenol Oxidase: Inhibitory Kinetics, Binding Characteristics, Conformational Change and Computational Simulation. Foods 2023; 12:foods12040905. [PMID: 36832979 PMCID: PMC9957399 DOI: 10.3390/foods12040905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
The inhibitory activity of hesperetin on polyphenol oxidase (PPO) and their interaction characteristics were investigated using multiple spectroscopic methods and computational simulation. Hesperetin, a mixed inhibitor, reversibly inhibited PPO activity, and its half-maximum inhibitory concentration (IC50) values on monophenolase and diphenolase were 80.8 ± 1.4 μM and 776.0 ± 15.5 μM, respectively. Multivariate curve resolution-alternate least squares (MCR-ALS) analysis suggested PPO interacted with hesperetin and formed PPO-hesperetin complex. Hesperetin statically quenched PPO's endogenous fluorescence, and hydrophobic interactions mainly drove their binding. Hesperetin affected the polarity of the microenvironment around the Trp residues in PPO, but had no effect on that around Tyr residues. Circular dichroism (CD) results showed that hesperetin increased α-helix content and decreased β-fold and random coil contents, thus tightening PPO's structure. Molecular docking showed that hesperetin entered the hydrophobic cavity of PPO, bound near the dinuclear copper active center, interacted with Val283, Phe264, His85, Asn260, Val248, and His263 via hydrophobic interactions, formed hydrogen bonds with Met280, His89, and His259 residues and also interacted with Phe292, His61, Phe90, Glu256, His244, Asn260, Phe264, and Gly281 via van der Waals forces. The molecular dynamics simulation results also demonstrated that the addition of hesperetin reduced the stability and hydrophobicity of PPO and increased PPO's structural denseness. Thus, the inhibition of hesperetin on PPO may be because hesperetin bound near the active center of PPO, interacted with the surrounding residues, occupied the binding site for substrate, and induced the changes in PPO's secondary structure, thus inhibiting the catalytic activity of PPO. This study may provide novel views for the inhibition of hesperetin on PPO and theoretical guidance for developing flavonoids as new and efficient PPO inhibitors.
Collapse
|
6
|
Udnoor A, Lokolkar M, Yallur BC, Kale R, Kalasad MN, Katrahalli U, Manjunatha DH. Monitoring the interactions between bovine serum albumin and ZnO/Ag nanoparticles by spectroscopic techniques. J Biomol Struct Dyn 2023; 41:352-365. [PMID: 34821210 DOI: 10.1080/07391102.2021.2006788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Inducing the bio-functionalization in noble metal nanoparticles like gold, silver, zinc is very important to accomplish their biocompatibility in biological activities. These metal nanoparticles are being rigorously used in bio-sensing tools keeping their remarkable properties in mind. Amongst the serum albumins, the most ample proteins in plasma are bovine serum albumin and human serum albumin. A broad variety of physiological functions of bovine serum albumin has made it a model protein for bio-functionalization. In the present study, ZnO/Ag nanoparticles were synthesized and characterized by SEM and XRD techniques and the interaction between bovine serum albumin and ZnO/Ag nanoparticles was evaluated by employing ultra-violet, steady state fluorescence, circular dichroism and FTIR spectroscopic techniques. Upon the excitation of bovine serum albumin, ZnO/Ag nanoparticles appreciably reduced the intrinsic fluorescence intensity of bovine serum albumin. The number of binding locations and apparent binding constants at different temperatures were calculated by the fluorescence quenching method. Static mechanism of quenching and conformational modifications in bovine serum albumin were also found.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abhishek Udnoor
- PG Department of Chemistry, The Maratha Mandal Degree College, Belagavi, Karnataka, India
| | - Manjunath Lokolkar
- PG Department of Chemistry, The Maratha Mandal Degree College, Belagavi, Karnataka, India
| | - Basappa C Yallur
- Department of Chemistry, MS Ramaiah Institute of Technology, Bangalore, Karnataka, India
| | - Raju Kale
- PG Department of Chemistry, The Maratha Mandal Degree College, Belagavi, Karnataka, India
| | - Muttanagoud N Kalasad
- Department of Studies in Physics, Davangere University, Shivagangothri, Davangere, Karnataka, India
| | - Umesha Katrahalli
- PG Department of Chemistry, Vijaya College, Bangalore, Karnataka, India
| | | |
Collapse
|
7
|
Cheng D, Zhao T, Zhou J, Yao C, Xi Y. Comparative investigation on the influence of chlorogenic acid and its intestinal metabolites on the binding of cadmium to bovine serum albumin. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Lu Y, Zhao R, Wang C, Zhang X, Wang C. Deciphering the non-covalent binding patterns of three whey proteins with rosmarinic acid by multi-spectroscopic, molecular docking and molecular dynamics simulation approaches. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Zhang S, Zhou B, Zhou L, Zhou H, Chen F, Yang S, Chen C, Tuo X. Alterations in the conformation and function of human serum albumin induced by the binding of methyl hydrogen phthalate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 278:121335. [PMID: 35526438 DOI: 10.1016/j.saa.2022.121335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/06/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
Phthalate esters (PAEs) are widely used as plasticizer components in production. Methyl hydrogen phthalate (MHP) is a metabolite of dimethyl phthalate (DMP, a kind of PAEs), and its toxic residues accumulate in the nature and can enter the human body. Here, the interaction between MHP and human serum albumin (HSA) was probed by using multi-spectral, computer simulations, and biochemical techniques. The results showed that MHP was spontaneously embedded in site I of HSA to form a complex by H-bonds and van der Waals forces (ΔH < 0, ΔS < 0). The binding constant (Ka) of the HSA-MHP system was 1.136 ± 0.026 × 104 M-1 (298 K). The combination of MHP produced conformational variations of HSA, as shown by the 3D fluorescence spectrum, CD spectra, and molecular dynamics simulation. Additionally, molecular docking indicated that MHP was surrounded by multiple residues, such as Lys199, Leu203, Phe206, and Trp214. Specifically, Lys199 and Trp214 exerted a crucial effect on the interaction of HSA and MHP. The residues with important energy contribution were mostly located in site I. The ASA values of the aromatic amino acids of HSA changed after combining with MHP. The Rg and SASA values of HSA increased after adding MHP, suggesting that the structure of HSA was less compact. Moreover, the esterase-like activity of HSA increased after adding MHP to HSA, indicating that MHP may disturb the normal physiological activities in the human body. This study was helpful to understand the biological function of MHP and provided some insights for its side effect in the human body.
Collapse
Affiliation(s)
- Siyao Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Bijia Zhou
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Like Zhou
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Hui Zhou
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Fengping Chen
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Shuling Yang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Chaolan Chen
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Xun Tuo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China.
| |
Collapse
|
10
|
Siddiqui S, Ameen F, Kausar T, Nayeem SM, Ur Rehman S, Tabish M. Biophysical insight into the binding mechanism of doxofylline to bovine serum albumin: An in vitro and in silico approach. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 249:119296. [PMID: 33338935 DOI: 10.1016/j.saa.2020.119296] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/03/2020] [Accepted: 11/29/2020] [Indexed: 05/16/2023]
Abstract
Insight into the mechanistic binding of bovine serum albumin (BSA) with doxofylline can layout pivotal enlightenment with relevance to pharmacokinetics and pharmacodynamics properties. Herein, many spectroscopic techniques and computational methods had been employed to interpret the structural and binding dynamics of BSA-doxofylline interaction. Doxofylline quenched the intrinsic fluorescence of BSA by static quenching. The stoichiometry and the binding constant of the BSA-doxofylline complex were 1:1 and in the order of 103 M-1. It was also concluded that the binding process was spontaneous and exothermic, primarily based on the thermodynamic study. Circular dichroism and three-dimensional excitation-emission matrix fluorescence results concluded pronounced conformational and microenvironmental changes in BSA structure on binding with doxofylline. The influence of metal ions and vitamins on the binding affinity of the BSA-doxofylline system were also explored. The in vitro findings were further supported by in silico analysis. With a score value of -6.25 kcal/mol, molecular docking showed strong interactions. Molecular dynamics simulation interpretation also suggested the stable binding with lower deviation in the values of RMSD and RMSF obtained by uninterrupted long simulation run. These studies will propose the optimum potency of distribution of the doxofylline into the bloodstream for asthma treatment.
Collapse
Affiliation(s)
- Sharmin Siddiqui
- Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, UP 202002, India
| | - Faisal Ameen
- Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, UP 202002, India
| | - Tasneem Kausar
- Department of Chemistry, Faculty of Science, A.M. University, Aligarh, U.P. 202002, India
| | - Shahid M Nayeem
- Department of Chemistry, Faculty of Science, A.M. University, Aligarh, U.P. 202002, India
| | - Sayeed Ur Rehman
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Tabish
- Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, UP 202002, India.
| |
Collapse
|