1
|
Kim C, Kim C, Tae BS, Kwon DY, Lee YH. Assessing the Association Between Gadolinium-Based Contrast Agents and Parkinson Disease: Insights From the Korean National Health Insurance Service Database. Invest Radiol 2025:00004424-990000000-00286. [PMID: 39841176 DOI: 10.1097/rli.0000000000001155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
OBJECTIVES This study aimed to investigate the association between the use of linear and macrocyclic gadolinium-based contrast agents (GBCAs) and the subsequent development of Parkinson disease (PD). METHODS In this retrospective cohort study, data were extracted from the Korean National Health Insurance Service database, comprising 1,038,439 individuals. From this population, 175,125 adults aged 40 to 60 years with no history of brain disease were identified. All patients including 3835 who were administered GBCA at least once were monitored until 2022 for the onset of PD. Propensity score (PS) matching was employed to compare the incidence of PD between those exposed to GBCAs (either linear or macrocyclic) and those not exposed (no-GBCA group). RESULTS The final cohort consisted of 1175 subjects exposed to linear GBCAs, 2334 exposed to macrocyclic GBCAs, and 171,616 unexposed to any GBCA (no-GBCA group). After PS matching, PD incidence was significantly higher in the linear GBCA group compared with the no-GBCA group (0.9% vs 0.0%, P = 0.002) and was also significantly higher in the macrocyclic GBCA group than in the no-GBCA group (0.5% vs 0.04%, P = 0.003). No significant difference in PD incidence was observed between the linear and macrocyclic GBCA groups. CONCLUSIONS Exposure to GBCAs was linked to an increased risk of developing PD in this large population-based study. The risk of PD did not differ significantly between linear and macrocyclic GBCAs.
Collapse
Affiliation(s)
- Cherry Kim
- From the Department of Radiology, Ansan Hospital, Korea University College of Medicine, Ansan, South Korea (C.K., C.K., Y.H.L.); Department of Urology, Ansan Hospital, Korea University College of Medicine, Ansan, South Korea (B.S.T.); and Department of Neurology, Ansan Hospital, Korea University College of Medicine, Ansan, South Korea (D.-Y.K.)
| | | | | | | | | |
Collapse
|
2
|
Vymazal J, Rulseh AM. MRI contrast agents and retention in the brain: review of contemporary knowledge and recommendations to the future. Insights Imaging 2024; 15:179. [PMID: 39060665 PMCID: PMC11282029 DOI: 10.1186/s13244-024-01763-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Gadolinium-based contrast agents (GBCA) were introduced with high expectations for favorable efficacy, low nephrotoxicity, and minimal allergic-like reactions. Nephrogenic systemic fibrosis and proven gadolinium retention in the body including the brain has led to the restriction of linear GBCAs and a more prudent approach regarding GBCA indication and dosing. In this review, we present the chemical, physical, and clinical aspects of this topic and aim to provide an equanimous and comprehensive summary of contemporary knowledge with a perspective of the future. In the first part of the review, we present various elements and compounds that may serve as MRI contrast agents. Several GBCAs are further discussed with consideration of their relaxivity, chelate structure, and stability. Gadolinium retention in the brain is explored including correlation with the presence of metalloprotein ferritin in the same regions where visible hyperintensity on unenhanced T1-weighted imaging occurs. Proven interaction between ferritin and gadolinium released from GBCAs is introduced and discussed, as well as the interaction of other elements with ferritin; and manganese in patients with impaired liver function or calcium in Fahr disease. We further present the concept that only high-molecular-weight forms of gadolinium can likely visibly change signal intensity on unenhanced T1-weighted imaging. Clinical data are also presented with respect to potential neurological manifestations originating from the deep-brain nuclei. Finally, new contrast agents with relatively high relaxivity and stability are introduced. CRITICAL RELEVANCE STATEMENT: GBCA may accumulate in the brain, especially in ferritin-rich areas; however, no adverse neurological manifestations have been detected in relation to gadolinium retention. KEY POINTS: Gadolinium currently serves as the basis for MRI contrast agents used clinically. No adverse neurological manifestations have been detected in relation to gadolinium retention. Future contrast agents must advance chelate stability and relativity, facilitating lower doses.
Collapse
Affiliation(s)
- Josef Vymazal
- Department of Radiology, Na Homolce Hospital, Roentgenova 2, Prague, 150 30, Czech Republic
| | - Aaron M Rulseh
- Department of Radiology, Na Homolce Hospital, Roentgenova 2, Prague, 150 30, Czech Republic.
| |
Collapse
|
3
|
Shi M, Xiong W, Feng J, Wu L, Yang J, Lu Y, Lu X, Fan Q, Nie H, Dai Y, Yan C, Tian Y, Shen Z. Kilogram scale facile synthesis and systematic characterization of a Gd-macrochelate as T 1-weighted magnetic resonance imaging contrast agent. J Nanobiotechnology 2024; 22:162. [PMID: 38594700 PMCID: PMC11005285 DOI: 10.1186/s12951-024-02394-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
To overcome the problems of commercial magnetic resonance imaging (MRI) contrast agents (CAs) (i.e., small molecule Gd chelates), we have proposed a new concept of Gd macrochelates based on the coordination of Gd3+ and macromolecules, e.g., poly(acrylic acid) (PAA). To further decrease the r2/r1 ratio of the reported Gd macrochelates that is an important factor for T1 imaging, in this study, a superior macromolecule hydrolyzed polymaleic anhydride (HPMA) was found to coordinate Gd3+. The synthesis conditions were optimized and the generated Gd-HPMA macrochelate was systematically characterized. The obtained Gd-HPMA29 synthesized in a 100 L of reactor has a r1 value of 16.35 mM-1 s-1 and r2/r1 ratio of 2.05 at 7.0 T, a high Gd yield of 92.7% and a high product weight (1074 g), which demonstrates the feasibility of kilogram scale facile synthesis. After optimization of excipients and sterilization at a high temperature, the obtained Gd-HPMA30 formulation has a pH value of 7.97, osmolality of 691 mOsmol/kg water, density of 1.145 g/mL, and viscosity of 2.2 cP at 20 ℃ or 1.8 cP at 37 ℃, which meet all specifications and physicochemical criteria for clinical injections indicating the immense potential for clinical applications.
Collapse
Affiliation(s)
- Meng Shi
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, 510515, Guangdong, China
| | - Wei Xiong
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, 510515, Guangdong, China.
| | - Jie Feng
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, 510515, Guangdong, China
| | - Lihe Wu
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, 510515, Guangdong, China
| | - Jing Yang
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, 510515, Guangdong, China
| | - Yudie Lu
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, 510515, Guangdong, China
| | - Xuanyi Lu
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, 510515, Guangdong, China
| | - Qingdeng Fan
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, 510515, Guangdong, China
| | - Hemin Nie
- Department of Biomedical Sciences, College of Biology, Hunan University, 52 Tianmu Road, Yuelu, Changsha, 410082, Hunan, China
| | - Yunlu Dai
- Faculty of Health Sciences and MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, 999078, China
| | - Chenggong Yan
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, 510515, Guangdong, China.
| | - Ye Tian
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, 510515, Guangdong, China.
| | - Zheyu Shen
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
4
|
Zhang J, Yuan C, Kong L, Zhu F, Yuan W, Zhang J, Hong J, Deng F, Chen Q, Chen C, Wang T, Zuo Z, Liang M. H-ferritin-nanocaged gadolinium nanoparticles for ultra-sensitive MR molecular imaging. Theranostics 2024; 14:1956-1965. [PMID: 38505606 PMCID: PMC10945347 DOI: 10.7150/thno.93856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/15/2024] [Indexed: 03/21/2024] Open
Abstract
Rationale: Magnetic resonance imaging (MRI) is a powerful diagnostic technology by providing high-resolution imaging. Although MRI is sufficiently valued in its resolving morphology, it has poor sensitivity for tracking biomarkers. Therefore, contrast agents are often used to improve MRI diagnostic sensitivity. However, the clinically used Gd chelates are limited in improving MRI sensitivity owing to their low relaxivity. The objective of this study is to develop a novel contrast agent to achieve a highly sensitive tracking of biomarkers in vivo. Methods: A Gd-based nanoprobe composed of a gadolinium nanoparticle encapsulated within a human H-ferritin nanocage (Gd-HFn) has been developed. The specificity and sensitivity of Gd-HFn were evaluated in vivo in tumor-bearing mice and apolipoprotein E-deficient mice (Apoe-/-) by MRI. Results: The Gd-HFn probe shows extremely high relaxivity values (r1 = 549 s-1mM-1, r2 = 1555 s-1mM-1 under a 1.5-T magnetic field; and r1 = 428 s-1mM-1 and r2 = 1286 s-1mM-1 under a 3.0-T magnetic field), which is 175-fold higher than that of the clinically standard Dotarem (Gd-DOTA, r1 =3.13 s-1mM-1) under a 1.5-T magnetic field, and 150-fold higher under a 3.0-T magnetic field. Owing to the substantially enhanced relaxivity values, Gd-HFn achieved a highly sensitive tracking for the tumor targeting receptor of TfR1 and enabled the in vivo MRI visualization of tumors approaching the angiogenic switch. Conclusions: The developed Gd-HFn contrast agent makes MRI a more powerful tool by simultaneously providing functional and morphological imaging information, which paves the way for a new perspective in molecular imaging.
Collapse
Affiliation(s)
- Jianlin Zhang
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Chang Yuan
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Lingfei Kong
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Feiyan Zhu
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Wanzhong Yuan
- Department of Neurosurgery, Peking University Third Hospital, Beijing, 100191, China
| | - Junying Zhang
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Juanji Hong
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Fang Deng
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Qi Chen
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Chen Chen
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Tao Wang
- Department of Neurosurgery, Peking University Third Hospital, Beijing, 100191, China
| | - Zhentao Zuo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Minmin Liang
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
5
|
Koucký F, Kotek J, Císařová I, Havlíčková J, Kubíček V, Hermann P. Transition metal complexes of cyclam with two 2,2,2-trifluoroethylphosphinate pendant arms as probes for 19F magnetic resonance imaging. Dalton Trans 2023; 52:12208-12223. [PMID: 37401675 DOI: 10.1039/d3dt01420g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
A new cyclam-based ligand bearing two methylene(2,2,2-trifluoroethyl)phosphinate pendant arms was synthesized and its coordination behaviour towards selected divalent transition metal ions [Co(II), Ni(II), Cu(II), Zn(II)] was studied. The ligand was found to be very selective for the Cu(II) ion according to the common Williams-Irving trend. Complexes with all the studied metal ions were structurally characterized. The Cu(II) ion forms two isomeric complexes; the pentacoordinated isomer pc-[Cu(L)] is the kinetic product and the octahedral trans-O,O'-[Cu(L)] isomer is the final (thermodynamic) product of the complexation reaction. Other studied metal ions form octahedral cis-O,O'-[M(L)] complexes. The complexes with paramagnetic metal ions showed a significant shortening of 19F NMR longitudinal relaxation times (T1) to the millisecond range [Ni(II) and Cu(II) complexes] or tens of milliseconds [Co(II) complex] at the temperature and magnetic field relevant for 19F magnetic resonance imaging (MRI). Such a short T1 results from a short distance between the paramagnetic metal ion and the fluorine atoms (∼6.1-6.4 Å). The complexes show high kinetic inertness towards acid-assisted dissociation; in particular, the trans-O,O'-[Cu(L)] complex was found to be extremely inert with a dissociation half-time of 2.8 h in 1 M HCl at 90 °C. Together with the short relaxation time, it potentially enables in vitro/in vivo utilization of the complexes as efficient contrast agents for 19F MRI.
Collapse
Affiliation(s)
- Filip Koucký
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 42 Prague 2, Czech Republic.
| | - Jan Kotek
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 42 Prague 2, Czech Republic.
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 42 Prague 2, Czech Republic.
| | - Jana Havlíčková
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 42 Prague 2, Czech Republic.
| | - Vojtěch Kubíček
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 42 Prague 2, Czech Republic.
| | - Petr Hermann
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 42 Prague 2, Czech Republic.
| |
Collapse
|
6
|
Moreno-Alcántar G, Picchetti P, Casini A. Gold Complexes in Anticancer Therapy: From New Design Principles to Particle-Based Delivery Systems. Angew Chem Int Ed Engl 2023; 62:e202218000. [PMID: 36847211 DOI: 10.1002/anie.202218000] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 02/28/2023]
Abstract
The discovery of the medicinal properties of gold complexes has fuelled the design and synthesis of new anticancer metallodrugs, which have received special attention due to their unique modes of action. Current research in the development of gold compounds with therapeutic properties is predominantly focused on the molecular design of drug leads with superior pharmacological activities, e.g., by introducing targeting features. Moreover, intensive research aims at improving the physicochemical properties of gold compounds, such as chemical stability and solubility in the physiological environment. In this regard, the encapsulation of gold compounds in nanocarriers or their chemical grafting onto targeted delivery vectors could lead to new nanomedicines that eventually reach clinical applications. Herein, we provide an overview of the state-of-the-art progress of gold anticancer compounds, andmore importantly we thoroughly revise the development of nanoparticle-based delivery systems for gold chemotherapeutics.
Collapse
Affiliation(s)
- Guillermo Moreno-Alcántar
- Chair of Medicinal and Bioinorganic Chemistry, School of Natural Sciences, Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748, Garching b. München, Germany
| | - Pierre Picchetti
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Angela Casini
- Chair of Medicinal and Bioinorganic Chemistry, School of Natural Sciences, Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748, Garching b. München, Germany
| |
Collapse
|
7
|
Nakahara Y, Endo Y, Inoue I. Construction Protocol of Drug-Protein Cage Complexes for Drug Delivery System. Methods Mol Biol 2023; 2671:335-347. [PMID: 37308654 DOI: 10.1007/978-1-0716-3222-2_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ferritin is one of the most promising drug delivery system (DDS) carriers because of its uniform nanosize, biodistribution, efficient cellular uptake, and biocompatibility. Conventionally, a disassembly/reassembly method that requires pH change has been used for the encapsulation of molecules in ferritin protein nanocages. Recently, a one-step method in which a complex of ferritin and a targeted drug was obtained by incubating the mixture at an appropriate pH, was established. Here, we describe two types of protocols, the conventional disassembly/reassembly method, and the novel one-step method for the construction of a ferritin-encapsulated drug using doxorubicin as an example molecule.
Collapse
Affiliation(s)
- Yuichi Nakahara
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan.
| | - Yuta Endo
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| | - Ippei Inoue
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| |
Collapse
|
8
|
Blomqvist L, Nordberg GF, Nurchi VM, Aaseth JO. Gadolinium in Medical Imaging-Usefulness, Toxic Reactions and Possible Countermeasures-A Review. Biomolecules 2022; 12:742. [PMID: 35740867 PMCID: PMC9221011 DOI: 10.3390/biom12060742] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 12/29/2022] Open
Abstract
Gadolinium (Gd) is one of the rare-earth elements. The properties of its trivalent cation (Gd3+) make it suitable to serve as the central ion in chelates administered intravenously to patients as a contrast agent in magnetic resonance imaging. Such Gd-chelates have been used for more than thirty years. During the past decades, knowledge has increased about potential harmful effects of Gd-chelates in patients with severe renal dysfunction. In such patients, there is a risk for a potentially disabling and lethal disease, nephrogenic systemic fibrosis. Restricting the use of Gd-chelates in persons with severely impaired renal function has decreased the occurrence of this toxic effect in the last decade. There has also been an increasing awareness of Gd-retention in the body, even in patients without renal dysfunction. The cumulative number of doses given, and the chemical structure of the chelate given, are factors of importance for retention in tissues. This review describes the chemical properties of Gd and its medically used chelates, as well as its toxicity and potential side effects related to injection of Gd-chelates.
Collapse
Affiliation(s)
- Lennart Blomqvist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-17176 Stockholm, Sweden;
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Gunnar F. Nordberg
- Division of Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, SE-90187 Umeå, Sweden
| | - Valeria M. Nurchi
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy;
| | - Jan O. Aaseth
- Department of Research, Innlandet Hospital Trust, P.O. Box 104, N-2381 Brumunddal, Norway;
- Faculty of Health and Social Sciences, Inland Norway University of Applied Sciences, N-2418 Elverum, Norway
| |
Collapse
|
9
|
Strzeminska I, Factor C, Jimenez-Lamana J, Lacomme S, Subirana MA, Le Coustumer P, Schaumlöffel D, Robert P, Szpunar J, Corot C, Lobinski R. Comprehensive Speciation Analysis of Residual Gadolinium in Deep Cerebellar Nuclei in Rats Repeatedly Administered With Gadoterate Meglumine or Gadodiamide. Invest Radiol 2022; 57:283-292. [PMID: 35066532 PMCID: PMC9855751 DOI: 10.1097/rli.0000000000000846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/14/2021] [Indexed: 01/29/2023]
Abstract
PURPOSE Several preclinical studies have reported the presence of gadolinium (Gd) in different chemical forms in the brain, depending on the class (macrocyclic versus linear) of Gd-based contrast agent (GBCA) administered. The aim of this study was to identify, with a special focus on insoluble species, the speciation of Gd retained in the deep cerebellar nuclei (DCN) of rats administered repeatedly with gadoterate or gadodiamide 4 months after the last injection. METHODS Three groups (N = 6/group) of healthy female Sprague-Dawley rats (SPF/OFA rats; Charles River, L'Arbresle, France) received a cumulated dose of 50 mmol/kg (4 daily intravenous administrations of 2.5 mmol/kg, for 5 weeks, corresponding to 80-fold the usual clinical dose if adjusted for man) of gadoterate meglumine (macrocyclic) or gadodiamide (linear) or isotonic saline for the control group (4 daily intravenous administrations of 5 mL/kg, for 5 weeks). The animals were sacrificed 4 months after the last injection. Deep cerebellar nuclei were dissected and stored at -80°C before sample preparation. To provide enough tissue for sample preparation and further analysis using multiple techniques, DCN from each group of 6 rats were pooled. Gadolinium species were extracted in 2 consecutive steps with water and urea solution. The total Gd concentrations were determined by inductively coupled plasma mass spectrometry (ICP-MS). Soluble Gd species were analyzed by size-exclusion chromatography coupled to ICP-MS. The insoluble Gd species were analyzed by single-particle (SP) ICP-MS, nanoscale secondary ion mass spectroscopy (NanoSIMS), and scanning transmission electron microscopy with energy-dispersive X-ray spectroscopy (STEM-EDX) for elemental detection. RESULTS The Gd concentrations in pooled DCN from animals treated with gadoterate or gadodiamide were 0.25 and 24.3 nmol/g, respectively. For gadoterate, the highest amount of Gd was found in the water-soluble fractions. It was present exclusively as low-molecular-weight compounds, most likely as the intact GBCA form. In the case of gadodiamide, the water-soluble fraction of DCN was composed of high-molecular-weight Gd species of approximately 440 kDa and contained only a tiny amount (less than 1%) of intact gadodiamide. Furthermore, the column recovery calculated for this fraction was incomplete, which suggested presence of labile complexes of dissociated Gd3+ with endogenous molecules. The highest amount of Gd was detected in the insoluble residue, which was demonstrated, by SP-ICP-MS, to be a particulate form of Gd. Two imaging techniques (NanoSIMS and STEM-EDX) allowed further characterization of these insoluble Gd species. Amorphous, spheroid structures of approximately 100-200 nm of sea urchin-like shape were detected. Furthermore, Gd was consistently colocalized with calcium, oxygen, and phosphorous, strongly suggesting the presence of structures composed of mixed Gd/Ca phosphates. No or occasional colocalization with iron and sulfur was observed. CONCLUSION A dedicated analytical workflow produced original data on the speciation of Gd in DCN of rats repeatedly injected with GBCAs. The addition, in comparison with previous studies of Gd speciation in brain, of SP element detection and imaging techniques allowed a comprehensive speciation analysis approach. Whereas for gadoterate the main fraction of retained Gd was present as intact GBCA form in the soluble fractions, for linear gadodiamide, less than 10% of Gd could be solubilized and characterized using size-exclusion chromatography coupled to ICP-MS. The main Gd species detected in the soluble fractions were macromolecules of 440 kDa. One of them was speculated to be a Gd complex with iron-binding protein (ferritin). However, the major fraction of residual Gd was present as insoluble particulate species, very likely composed of mixed Gd/Ca phosphates. This comprehensive Gd speciation study provided important evidence for the dechelation of linear GBCAs and offered a deeper insight into the mechanisms of Gd deposition in the brain.
Collapse
Affiliation(s)
- Izabela Strzeminska
- From the Guerbet Research and Innovation Department, Aulnay-sous-Bois
- Universite de Pau, E2S-UPPA, CNRS, Institute of Analytical and Physical Chemistry for the Environment and Materials (IPREM - UMR 5254), Pau
| | - Cecile Factor
- From the Guerbet Research and Innovation Department, Aulnay-sous-Bois
| | - Javier Jimenez-Lamana
- Universite de Pau, E2S-UPPA, CNRS, Institute of Analytical and Physical Chemistry for the Environment and Materials (IPREM - UMR 5254), Pau
| | - Sabrina Lacomme
- Bordeaux University, UMS 3420 CNRS Universite & US4 INSERM, CGFB, Bordeaux
- Bordeaux Montaigne University, INPB, EA 4592 Georessources & Environnement, Pessac, France
| | - Maria Angels Subirana
- Universite de Pau, E2S-UPPA, CNRS, Institute of Analytical and Physical Chemistry for the Environment and Materials (IPREM - UMR 5254), Pau
| | - Philippe Le Coustumer
- Bordeaux University, UMS 3420 CNRS Universite & US4 INSERM, CGFB, Bordeaux
- Bordeaux Montaigne University, INPB, EA 4592 Georessources & Environnement, Pessac, France
| | - Dirk Schaumlöffel
- Universite de Pau, E2S-UPPA, CNRS, Institute of Analytical and Physical Chemistry for the Environment and Materials (IPREM - UMR 5254), Pau
| | - Philippe Robert
- From the Guerbet Research and Innovation Department, Aulnay-sous-Bois
| | - Joanna Szpunar
- Universite de Pau, E2S-UPPA, CNRS, Institute of Analytical and Physical Chemistry for the Environment and Materials (IPREM - UMR 5254), Pau
| | - Claire Corot
- From the Guerbet Research and Innovation Department, Aulnay-sous-Bois
| | - Ryszard Lobinski
- Universite de Pau, E2S-UPPA, CNRS, Institute of Analytical and Physical Chemistry for the Environment and Materials (IPREM - UMR 5254), Pau
- Chair of Analytical Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| |
Collapse
|