1
|
Roychoudhury P, Bose R, Dąbek P, Witkowski A. Photonic Nano-/Microstructured Diatom Based Biosilica in Metal Modification and Removal-A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6597. [PMID: 36233939 PMCID: PMC9572592 DOI: 10.3390/ma15196597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/11/2022] [Accepted: 09/19/2022] [Indexed: 05/30/2023]
Abstract
The siliceous exoskeletal shells of diatoms, commonly known as frustules, have drawn attention because of their photoluminescence property and high volume to surface area. Photonic biosilica can also enhance the plasmonic sensitivity of nanoparticles. Because of this, researchers have studied the effectiveness of various metal particles after combining with biosilica. Additionally, naturally occurring diatom-based biosilica has excellent adsorption and absorption capabilities, which have already been exploited for wastewater treatment. Moreover, the nanoporous, ultra-hydrophilic frustules can easily accumulate more molecules on their surfaces. As a consequence, it becomes easier to conjugate noble metals with silica, making them more stable and effective. The main focus of this review is to agglomerate the utility of biocompatible diatom frustules, which is a no-cost natural resource of biosilica, in metal modification and removal.
Collapse
Affiliation(s)
- Piya Roychoudhury
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383 Szczecin, Poland
| | - Rahul Bose
- Department of Botany, University of Calcutta, Ballygunge Circular Road 35, Kolkata 700019, India
| | - Przemysław Dąbek
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383 Szczecin, Poland
| | - Andrzej Witkowski
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383 Szczecin, Poland
| |
Collapse
|
2
|
De Tommasi E, De Luca AC. Diatom biosilica in plasmonics: applications in sensing, diagnostics and therapeutics [Invited]. BIOMEDICAL OPTICS EXPRESS 2022; 13:3080-3101. [PMID: 35774319 PMCID: PMC9203090 DOI: 10.1364/boe.457483] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 06/01/2023]
Abstract
Several living organisms are able to synthesize complex nanostructures provided with peculiar physical and chemical properties by means of finely-tuned, genetically controlled biomineralization processes. Frustules, in particular, are micro- and nano-structured silica shells produced by ubiquitous diatom microalgae, whose optical properties have been recently exploited in photonics, solar energy harvesting, and biosensing. Metallization of diatom biosilica, both in the shape of intact frustules or diatomite particles, can trigger plasmonic effects that in turn can find application in high-sensitive detection platforms, allowing to obtain effective nanosensors at low cost and on a large scale. The aim of the present review article is to provide a wide, complete overview on the main metallization techniques applied to diatom biosilica and on the principal applications of diatom-based plasmonic devices mainly but not exclusively in the fields of biochemical sensing, diagnostics and therapeutics.
Collapse
Affiliation(s)
- Edoardo De Tommasi
- National Research Council, Institute of Applied Sciences and Intelligent Systems "Eduardo Caianiello", Unit of Naples, Via P. Castellino 111, I-80131, Naples, Italy
| | - Anna Chiara De Luca
- National Research Council, Institute for Endocrinology and Experimental Oncology "Gaetano Salvatore", Unit of Naples, Via P. Castellino 111, I-80131, Naples, Italy
| |
Collapse
|
3
|
Cvjetinovic J, Merdalimova AA, Kirsanova MA, Somov PA, Nozdriukhin DV, Salimon AI, Korsunsky AM, Gorin DA. A SERS platform based on diatomite modified by gold nanoparticles using a combination of layer-by-layer assembly and a freezing-induced loading method. Phys Chem Chem Phys 2022; 24:8901-8912. [PMID: 35363241 DOI: 10.1039/d2cp00647b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Siliceous diatom frustules represent an up-and-coming platform for a range of bio-assisted nanofabrication processes able to overcome the complexity and high cost of current engineering technology solutions in terms of negligibly small power consumption and environmentally friendly processing combined with unique highly porous structures and properties. Herein, the modification of diatomite - a soft, loose, and fine-grained siliceous sedimentary rock composed of the remains of fossilized diatoms - with gold nanoparticles using layer-by-layer technology in combination with a freezing-induced loading approach is demonstrated. The obtained composite structures are characterized by dynamic light scattering, extinction spectroscopy, scanning (SEM) and transmission electron microscopy (TEM), and photoacoustic imaging techniques, and tested as a platform for surface-enhanced Raman scattering (SERS) using Rhodamine 6G. SEM, TEM, and energy dispersive X-ray spectroscopy (EDX) confirmed a dense coating of gold nanoparticles with an average size of 19 nm on the surface of the diatomite and within the pores. The photoacoustic signal excited at a wavelength of 532 nm increases with increasing loading cycles of up to three polyelectrolyte-gold nanoparticle bilayers. The hybrid materials based on diatomite modified with gold nanoparticles can be used as SERS substrates, but also as biosensors, catalysts, and platforms for advanced bioimaging.
Collapse
Affiliation(s)
- Julijana Cvjetinovic
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, 3 Nobel Str., Moscow, 121205, Russia.
| | - Anastasiia A Merdalimova
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, 3 Nobel Str., Moscow, 121205, Russia.
| | - Maria A Kirsanova
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, 3 Nobel Str., Moscow, 121205, Russia
| | - Pavel A Somov
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, 3 Nobel Str., Moscow, 121205, Russia
| | - Daniil V Nozdriukhin
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, 3 Nobel Str., Moscow, 121205, Russia.
| | - Alexey I Salimon
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, 3 Nobel Str., Moscow, 121205, Russia
| | | | - Dmitry A Gorin
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, 3 Nobel Str., Moscow, 121205, Russia.
| |
Collapse
|
4
|
Khan MJ, Pugazhendhi A, Schoefs B, Marchand J, Rai A, Vinayak V. Perovskite-based solar cells fabricated from TiO 2 nanoparticles hybridized with biomaterials from mollusc and diatoms. CHEMOSPHERE 2022; 291:132692. [PMID: 34718006 DOI: 10.1016/j.chemosphere.2021.132692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/17/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Perovskite solar cells (PVSCs) convert solar energy into electrical energy. Current study employs fabrication of PVSCs using calcium titanate (CaTiO3) prepared by co-precipitation of TiO2 nanoparticle (NP) and CaCO3 NP with later synthesized from mollusc shell. Furthermore, frustules of diatom, Nitzschia palea were used to prepare silica doped CaTiO3 (Si-CaTiO3) nanocomposite. CaTiO3 NP and Si-CaTiO3 nanocomposites film were made on fluorine doped tin oxide (FTO) glass plate using spin coater separately for two different kinds of PVSCs tested at different intensities of light. The perovskite materials were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM) and energy dispersive X-ray (EDX) spectroscopy. Thickness of the film was measured by profilometer. The maximum power density (PDmax) of CaTiO3 made PVSCs was 0.235 mW/m2 under white LED light and 0.041 mW/m2 in broad spectrum light. Whereas, PDmax of PVSCs with Si-CaTiO3 was higher about 0.0083 mW/m2 in broad spectrum light and was 0.0039 mW/m2 in white LED light. This is due to the fact that CaTiO3 allowed blue and red light in broad spectrum to pass through it without being absorbed compared to white LED light which gets reflected. On the offset, in PVSC made of Si-CaTiO3 since diatoms frustules are made up of nanoporous architecture it increases the overall porosity of PVSC making them potentially more efficient in broad spectrum of light compared to white LED light.
Collapse
Affiliation(s)
- Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Sciences, Dr Harisingh Gour Central University, Sagar, Madhya Pradesh, 470003, India
| | - Arivalagan Pugazhendhi
- School of Renewable Energy, Maejo University, Chiang Mai, 50290, Thailand; College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Benoit Schoefs
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, IUML - FR 3473 CNRS, Le Mans, France
| | - Justine Marchand
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, IUML - FR 3473 CNRS, Le Mans, France
| | - Anshuman Rai
- MMU, Deemed University, School of Engineering, Department of Biotechnology, Ambala, Haryana, 133203, India
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Sciences, Dr Harisingh Gour Central University, Sagar, Madhya Pradesh, 470003, India.
| |
Collapse
|
5
|
De Tommasi E, Rea I, Ferrara MA, De Stefano L, De Stefano M, Al-Handal AY, Stamenković M, Wulff A. Underwater Light Manipulation by the Benthic Diatom Ctenophora pulchella: From PAR Efficient Collection to UVR Screening. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2855. [PMID: 34835620 PMCID: PMC8621762 DOI: 10.3390/nano11112855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 12/01/2022]
Abstract
Several species of diatoms, unicellular microalgae which constitute the main component of phytoplankton, are characterized by an impressive photosynthetic efficiency while presenting a noticeable tolerance versus exposure to detrimental UV radiation (UVR). In particular, the growth rate of the araphid diatom Ctenophora pulchella is not significantly affected by harsh treatments with UVR, even in absence of detectable, specific UV-absorbing pigments and even if it is not able to avoid high UV exposure by motility. In this work we applied a multi-disciplinary approach involving numerical computation, photonics, and biological parameters in order to investigate the possible role of the frustule, micro- and nano-patterned silica shell which encloses the cell, in the ability of C. pulchella to efficiently collect photosynthetic active radiation (PAR) and to simultaneously screen the protoplasm from UVR. The characterization of the photonic properties of the frustule has been accompanied by in vivo experiments conducted in water in order to investigate its function as optical coupler between light and plastids.
Collapse
Affiliation(s)
- Edoardo De Tommasi
- National Research Council, Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, Via P. Castellino 111, 80131 Naples, Italy; (I.R.); (M.A.F.); (L.D.S.)
| | - Ilaria Rea
- National Research Council, Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, Via P. Castellino 111, 80131 Naples, Italy; (I.R.); (M.A.F.); (L.D.S.)
| | - Maria Antonietta Ferrara
- National Research Council, Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, Via P. Castellino 111, 80131 Naples, Italy; (I.R.); (M.A.F.); (L.D.S.)
| | - Luca De Stefano
- National Research Council, Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, Via P. Castellino 111, 80131 Naples, Italy; (I.R.); (M.A.F.); (L.D.S.)
| | - Mario De Stefano
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy;
| | - Adil Y. Al-Handal
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Göteborg, Sweden; (A.Y.A.-H.); (M.S.); (A.W.)
| | - Marija Stamenković
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Göteborg, Sweden; (A.Y.A.-H.); (M.S.); (A.W.)
- Department of Ecology, Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Angela Wulff
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Göteborg, Sweden; (A.Y.A.-H.); (M.S.); (A.W.)
| |
Collapse
|
6
|
Aggrey P, Nartey M, Kan Y, Cvjetinovic J, Andrews A, Salimon AI, Dragnevski KI, Korsunsky AM. On the diatomite-based nanostructure-preserving material synthesis for energy applications. RSC Adv 2021; 11:31884-31922. [PMID: 35495528 PMCID: PMC9041881 DOI: 10.1039/d1ra05810j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/06/2021] [Indexed: 12/03/2022] Open
Abstract
The present article overviews the current state-of-the-art and future prospects for the use of diatomaceous earth (DE) in the continuously expanding sector of energy science and technology. An eco-friendly direct source of silica and the production of silicon, diatomaceous earth possesses a desirable nano- to micro-structure that offers inherent advantages for optimum performance in existing and new applications in electrochemistry, catalysis, optoelectronics, and biomedical engineering. Silica, silicon and silicon-based materials have proven useful for energy harvesting and storage applications. However, they often encounter setbacks to their commercialization due to the limited capability for the production of materials possessing fascinating microstructures to deliver optimum performance. Despite many current research trends focusing on the means to create the required nano- to micro-structures, the high cost and complex, potentially environmentally harmful chemical synthesis techniques remain a considerable challenge. The present review examines the advances made using diatomaceous earth as a source of silica, silicon-based materials and templates for energy related applications. The main synthesis routes aimed at preserving the highly desirable naturally formed neat nanostructure of diatomaceous earth are assessed in this review that culminates with the discussion of recently developed pathways to achieving the best properties. The trend analysis establishes a clear roadmap for diatomaceous earth as a source material of choice for current and future energy applications.
Collapse
Affiliation(s)
- Patrick Aggrey
- Hierarchically Structured Materials, Center for Energy Science and Technology, Skolkovo Institute of Science and Technology Bolshoy Boulevard 30, bld. 1 Moscow Russia 121205
| | - Martinson Nartey
- Department of Materials Engineering, Kwame Nkrumah University of Science and Technology Private Mail Box Kumasi Ghana
| | - Yuliya Kan
- Hierarchically Structured Materials, Center for Energy Science and Technology, Skolkovo Institute of Science and Technology Bolshoy Boulevard 30, bld. 1 Moscow Russia 121205
| | - Julijana Cvjetinovic
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology Bolshoy Boulevard 30, bld. 1 Moscow Russia 121205
| | - Anthony Andrews
- Department of Materials Engineering, Kwame Nkrumah University of Science and Technology Private Mail Box Kumasi Ghana
| | - Alexey I Salimon
- Hierarchically Structured Materials, Center for Energy Science and Technology, Skolkovo Institute of Science and Technology Bolshoy Boulevard 30, bld. 1 Moscow Russia 121205
| | - Kalin I Dragnevski
- Department of Engineering Science, University of Oxford Parks Road Oxford OX1 3PJ UK
| | - Alexander M Korsunsky
- Department of Engineering Science, University of Oxford Parks Road Oxford OX1 3PJ UK
| |
Collapse
|
7
|
Physical, Chemical, and Genetic Techniques for Diatom Frustule Modification: Applications in Nanotechnology. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10238738] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diatom frustules represent one of the most complex examples of micro- and nano-structured materials found in nature, being the result of a biomineralization process refined through tens of milions of years of evolution. They are constituted by an intricate, ordered porous silica matrix which recently found several applications in optoelectronics, sensing, solar light harvesting, filtering, and drug delivery, to name a few. The possibility to modify the composition and the structure of frustules can further broaden the range of potential applications, adding new functions and active features to the material. In the present work the most remarkable physical and chemical techniques aimed at frustule modification are reviewed, also examining the most recent genetic techniques developed for its controlled morphological mutation.
Collapse
|
8
|
Brzozowska W, Sprynskyy M, Wojtczak I, Dąbek P, Witkowski A, Buszewski B. "Outsourcing" Diatoms in Fabrication of Metal-Doped 3D Biosilica. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2576. [PMID: 32516920 PMCID: PMC7321626 DOI: 10.3390/ma13112576] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 12/23/2022]
Abstract
Diatoms have an ability that is unique among the unicellular photoautotrophic organisms to synthesize an intricately ornamented siliceous (biosilica) exoskeleton with an ordered, hierarchical, three-dimensional structure on a micro- to nanoscale. The unique morphological, structural, mechanical, transport, photonic, and optoelectronic properties of diatomaceous biosilica make it a desirable material for modern technologies. This review presents a summary and discussion of published research on the metabolic insertion of chemical elements with specific functional activity into diatomaceous biosilica. Included in the review is research on innovation in methods of synthesis of a new generation of functional siliceous materials, where the synthesis process is "outsourced" to intelligent microorganisms, referred to here as microtechnologists, by providing them with appropriate conditions and reagents.
Collapse
Affiliation(s)
- Weronika Brzozowska
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16, 70-383 Szczecin, Poland; (W.B.); (P.D.); (A.W.)
| | - Myroslav Sprynskyy
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Str., 87-100 Toruń, Poland; (I.W.); (B.B.)
| | - Izabela Wojtczak
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Str., 87-100 Toruń, Poland; (I.W.); (B.B.)
| | - Przemysław Dąbek
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16, 70-383 Szczecin, Poland; (W.B.); (P.D.); (A.W.)
| | - Andrzej Witkowski
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16, 70-383 Szczecin, Poland; (W.B.); (P.D.); (A.W.)
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Str., 87-100 Toruń, Poland; (I.W.); (B.B.)
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland
| |
Collapse
|
9
|
A Visible-NIR Responsive Dye-Sensitized Solar Cell Based on Diatom Frustules and Cosensitization of Photopigments from Diatom and Purple Bacteria. J CHEM-NY 2020. [DOI: 10.1155/2020/1710989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Diatoms exhibit high solar energy harvesting efficiency due to their remarkably organized, hierarchical micro/nanoporous, light-trapping, and scattering frustules. At present, few studies focus on cosensitization of natural near-infrared dye to expand the spectral response of dye-sensitized solar cells. In this study, the diatom frustule-TiO2 (12 : 5) composite film was prepared and assembled it on the TiO2 electrode. Compared to the single TiO2 layer film, diatom frustule-TiO2 (12 : 5) composite film sensitized by diatom’s dye showed the conversion efficiency of 0.719%. To expand the light-harvesting response to near-infrared region spectra, the cosensitized dyes were used to fabricate the visible-near-infrared responsive dye-sensitized solar cells. The cosensitization diatom frustule-TiO2 (12 : 5) composite film exhibited two distinct absorption bands in the near-infrared region and reached a higher conversion efficiency of 1.321%, which was approximately 1.4 or 1.7 folds higher than that of cosensitization double-TiO2 film or single TiO2 layer film, respectively, and approximately 3.7 or 1.7 folds higher than that of the single TiO2 layer film sensitized by diatom dye or purple bacterial dye, respectively. The results showed that the combination between diatom frustule-TiO2 with cosensitization natural dyes could significantly improve the photoelectric performance of visible-near-infrared responsive dye-sensitized solar cells.
Collapse
|