1
|
Ibraheem Shelash Al-Hawary S, Saleh RO, AlBajalan AR, Fayzullaev N, Alshuhri M, Hayif Jasim Ali S, Alawadi A, Jawad MA, Alsaadi SB, Ghorayshi Nejad MS. Synthesis of N,N'-alkylidene bisamides and Suzuki-Miyaura coupling reaction derivatives with Pd organometallic catalyst anchored to channels of mesoporous silica MCM-41. Sci Rep 2024; 14:7688. [PMID: 38561414 PMCID: PMC10985085 DOI: 10.1038/s41598-024-58310-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024] Open
Abstract
At first, an organometallic catalyst namely, Pd-DPyE@MCM-41@MNP was prepared through magnetic (Fe3O4) nanoparticles-doped into channels of mesoporous silica MCM-41 and then, anchoring a novel complex composed of di(4-pyridyl)ethylene and palladium on the inner surface of the support. This immobilized catalyst was successfully identified via VSM, ICP-OES, TEM, FTIR, TGA, SEM, BET, XRD, EDX and elemental mapping analyses. After that, it was used as a versatile, heterogeneous, and magnetically reproducible catalyst in the generation of N,N'-alkylidene bisamides (1a-13a, 8-20 min, 90-98%, 50 °C, solvent-free) and Suzuki-Miyaura coupling (SMC) reaction derivatives (1b-26b, 10-140 min, 86-98%, 60 °C, PEG-400). The VSM plot of Pd-DPyE@MCM-41@MNP displays that this nanocatalyst can be easily recycled by applying an external magnetic field. In both synthetic paths, this nanocatalyst was reused at least seven times without palladium leaching and significantly reducing its catalytic performance. Also, stability and heterogeneous nature of catalyst were approved via ICP-OES technique and hot filtration test.
Collapse
Affiliation(s)
| | - Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | | | - Normurot Fayzullaev
- Department of Polymer Chemistry and Chemical Technology, Samarkand State University, 140101, Samarkand, Uzbekistan
| | - Mohammed Alshuhri
- Radiology and Medical Imaging Department, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, 11942, Kharj, Saudi Arabia
| | - Saad Hayif Jasim Ali
- Department of Medical Laboratory, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | - Ahmed Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | | | - Salim B Alsaadi
- Department of Pharmaceutics, Al-Hadi University College, Baghdad, 10011, Iraq
| | | |
Collapse
|
2
|
Azadi S, Azizipour E, Amani AM, Vaez A, Zareshahrabadi Z, Abbaspour A, Firuzyar T, Dortaj H, Kamyab H, Chelliapan S, Mosleh-Shirazi S. Antifungal activity of Fe 3O 4@SiO 2/Schiff-base/Cu(II) magnetic nanoparticles against pathogenic Candida species. Sci Rep 2024; 14:5855. [PMID: 38467729 PMCID: PMC10928175 DOI: 10.1038/s41598-024-56512-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/07/2024] [Indexed: 03/13/2024] Open
Abstract
The antifungal efficacy and cytotoxicity of a novel nano-antifungal agent, the Fe3O4@SiO2/Schiff-base complex of Cu(II) magnetic nanoparticles (MNPs), have been assessed for targeting drug-resistant Candida species. Due to the rising issue of fungal infections, especially candidiasis, and resistance to traditional antifungals, there is an urgent need for new therapeutic strategies. Utilizing Schiff-base ligands known for their broad-spectrum antimicrobial activity, the Fe3O4@SiO2/Schiff-base/Cu(II) MNPs have been synthesized. The Fe3O4@SiO2/Schiff-base/Cu(II) MNPs was characterized by Fourier Transform-Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Dynamic Light Scattering (DLS), Energy-dispersive X-ray (EDX), Vibrating Sample Magnetometer (VSM), and Thermogravimetric analysis (TGA), demonstrating successful synthesis. The antifungal potential was evaluated against six Candida species (C. dubliniensis, C. krusei, C. tropicalis, C. parapsilosis, C. glabrata, and C. albicans) using the broth microdilution method. The results indicated strong antifungal activity in the range of 8-64 μg/mL with the lowest MIC (8 μg/mL) observed against C. parapsilosis. The result showed the MIC of 32 μg/mL against C. albicans as the most common infection source. The antifungal mechanism is likely due to the disruption of the fungal cell wall and membrane, along with increased reactive oxygen species (ROS) generation leading to cell death. The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay for cytotoxicity on mouse L929 fibroblastic cells suggested low toxicity and even enhanced cell proliferation at certain concentrations. This study demonstrates the promise of Fe3O4@SiO2/Schiff-base/Cu(II) MNPs as a potent antifungal agent with potential applications in the treatment of life-threatening fungal infections, healthcare-associated infections, and beyond.
Collapse
Affiliation(s)
- Sedigheh Azadi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Esmat Azizipour
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Zareshahrabadi
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Abbaspour
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Firuzyar
- Department of Nuclear Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hengameh Dortaj
- Department of Anatomy and Cell Biology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hesam Kamyab
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador
- Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, India
- Process Systems Engineering Centre (PROSPECT), Faculty of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Shreeshivadasan Chelliapan
- Department of Engineering and Technology, Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
| | - Sareh Mosleh-Shirazi
- Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz, Iran
| |
Collapse
|
3
|
Momeni S, Ghorbani-Vaghei R. Green synthesis of quinazoline derivatives using a novel recyclable nano-catalyst of magnetic modified graphene oxide supported with copper. Sci Rep 2023; 13:20958. [PMID: 38017065 PMCID: PMC10684527 DOI: 10.1038/s41598-023-48120-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023] Open
Abstract
A new magnetic nano-catalyst system based on graphene oxide was designed and manufactured (GO@Fe3O4@3-chloropropyltrimethoxysilane@(Z)-N'-(2-hydroxybenzylidene)-4-(pyridin-4-yl)benzohydrazide@Cu(II)), and it was checked and confirmed by various analyzes such as FTIR, XRD, EDX, MAPPING, TGA/DSC, VSM and FESEM. This nano-catalyst was used in the three-component one-pot synthesis of quinazoline derivatives. The products were obtained using this efficient catalyst with high efficiency in short time and solvent-free conditions. Easy separation and acceptable recyclability are other advantages of this new nano-catalyst. Also, the catalyst can be recycled 4 times without a significant change in its efficiency.
Collapse
Affiliation(s)
- Sarieh Momeni
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Ramin Ghorbani-Vaghei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran.
| |
Collapse
|
4
|
Baran NY, Baran T, Nasrollahzadeh M. Synthesis of palladium nanoparticles stabilized on Schiff base-modified ZnO particles as a nanoscale catalyst for the phosphine-free Heck coupling reaction and 4-nitrophenol reduction. Sci Rep 2023; 13:12008. [PMID: 37491465 PMCID: PMC10368721 DOI: 10.1038/s41598-023-38898-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023] Open
Abstract
Recently, the development of heterogeneous nanocatalytic systems using solid supports has been gaining importance due to some advantages such as easy handling, high thermal stability, high efficiency, reusability, and so on. Therefore, the design of catalyst supports for the preparation of stable heterogeneous catalytic systems is of great importance. In this work, Schiff base-modified ZnO particles have been developed (ZnO-Scb) as a novel support. A heterogeneous nanocatalyst system has then been prepared by immobilizing palladium nanoparticles (Pd NPs) on the ZnO-Scb surface as the support. The resulting palladium nanocatalyst (Pd-ZnO-Scb) structure has been characterized by different analytical techniques (FT-IR, XRD, TEM, FE-SEM, elemental mapping and EDS) and used to catalyze the Heck coupling reactions and 4-nitrophenol (4-NP) reduction. Test results revealed that Pd-ZnO-Scb could effectively couple various aryl halides with styrene in yields of up to 98% in short reaction times. Pd-ZnO-Scb was also efficiently used in the complete 4-NP reduction within 135 s at room temperature. Additionally, it was found that Pd-ZnO-Scb was more effective than other reported catalysts in the Heck coupling reaction. Moreover, the recycling tests indicated that Pd-ZnO-Scb could be easily isolated from the reaction medium and reused in seven consecutive catalytic runs while retaining its nanostructure.
Collapse
Affiliation(s)
- Nuray Yılmaz Baran
- Department of Chemistry Technology, Technical Vocational School, Aksaray University, 68100, Aksaray, Turkey
| | - Talat Baran
- Department of Chemistry, Faculty of Science and Letters, Aksaray University, 68100, Aksaray, Turkey
| | - Mahmoud Nasrollahzadeh
- Department of Chemistry, Faculty of Science, University of Qom, Qom, PO Box 37185‑359, Iran.
| |
Collapse
|
5
|
Hasan K, Shehadi IA, Joseph RG, Patole SP, Elgamouz A. β-Cyclodextrin-Functionalized Fe 3O 4-Supported Pd-Nanocatalyst for the Reduction of Nitroarenes in Water at Mild Conditions. ACS OMEGA 2023; 8:23901-23912. [PMID: 37426276 PMCID: PMC10324381 DOI: 10.1021/acsomega.3c02332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023]
Abstract
In this study, a novel heterogeneous catalyst (Fe3O4@β-CD@Pd) has been developed by the deposition of palladium nanoparticles on the β-cyclodextrin-functionalized surface of magnetic Fe3O4. The catalyst was prepared by a simple chemical co-precipitation method and characterized extensively by using Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma-optical emission spectrometry (ICP-OES) analyses. Herein, the applicability of the prepared material was evaluated for the catalytic reduction of environmentally toxic nitroarenes to the corresponding anilines. The catalyst Fe3O4@β-CD@Pd showed excellent efficiency for the reduction of nitroarenes in water under mild conditions. A low catalyst loading of 0.3 mol % Pd is found to be efficient for reducing nitroarenes in excellent to good (99-95%) yields along with high TON values (up to 330). Nevertheless, the catalyst was recycled and reused up to the 5th cycle of reduction of nitroarene without any loss of significant catalytic activity.
Collapse
Affiliation(s)
- Kamrul Hasan
- Department of Chemistry,
Pure and Applied Chemistry Group, College of Sciences, University of Sharjah, P.O. Box 27272, Sharjah 27272, United Arab
Emirates
| | - Ihsan A. Shehadi
- Department of Chemistry,
Pure and Applied Chemistry Group, College of Sciences, University of Sharjah, P.O. Box 27272, Sharjah 27272, United Arab
Emirates
| | - Reshma G. Joseph
- Department of Chemistry,
Pure and Applied Chemistry Group, College of Sciences, University of Sharjah, P.O. Box 27272, Sharjah 27272, United Arab
Emirates
| | - Shashikant P. Patole
- Department of Physics, Khalifa
University of Science and Technology, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
| | - Abdelaziz Elgamouz
- Department of Chemistry,
Pure and Applied Chemistry Group, College of Sciences, University of Sharjah, P.O. Box 27272, Sharjah 27272, United Arab
Emirates
| |
Collapse
|
6
|
Arar W, Ali RB, El May MV, Khatyr A, Jourdain I, Knorr M, Brieger L, Scheel R, Strohmann C, Chaker A, Akacha AB. Synthesis, crystal structures and biological activities of halogeno-(O-alkylphenylcarbamothioate)bis(triarylphosphine)copper(I) complexes. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
7
|
Fattahi B, Dekamin MG. Fe 3O 4/SiO 2 decorated trimesic acid-melamine nanocomposite: a reusable supramolecular organocatalyst for efficient multicomponent synthesis of imidazole derivatives. Sci Rep 2023; 13:401. [PMID: 36624142 PMCID: PMC9829914 DOI: 10.1038/s41598-023-27408-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
This article describes supramolecular Fe3O4/SiO2 decorated trimesic acid-melamine (Fe3O4/SiO2-TMA-Me) nanocomposite that can be prepared with features that combine properties of different materials to fabricate a structurally unique hybrid material. In particular, we have focused on design, synthesis and evaluation a heterogeneous magnetic organocatalyst containing acidic functional-groups for the synthesis of biologically important imidazole derivatives in good to excellent yields. The introduced Fe3O4/SiO2-TMA-Me nanomaterial was characterized by different techniques such as FTIR, XRD, EDX, FESEM, TEM, TGA and DTA. As a noteworthy point, the magnetic catalytic system can be recycled and reused for more than seven consecutive runs while its high catalytic activity remains under the optimized conditions.
Collapse
Affiliation(s)
- Babak Fattahi
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohammad G Dekamin
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| |
Collapse
|
8
|
Azizi Amiri M, Pasha GF, Tajbakhsh M, Asghari S. Copper‐amine complex immobilized on nano NaY zeolite as a recyclable nanocatalyst for the environmentally friendly synthesis of 2‐amino‐4
H
‐chromenes. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Mahmood Tajbakhsh
- Department of Organic Chemistry, Faculty of Chemistry University of Mazandaran Babolsar Iran
| | - Sakineh Asghari
- Department of Organic Chemistry, Faculty of Chemistry University of Mazandaran Babolsar Iran
| |
Collapse
|
9
|
Patra I, H. Mohammed F, Obaid Aldulaimi AK, Abbas khudhair D, Fakri Mustafa Y. A novel and efficient magnetically recoverable copper catalyst [MNPs-guanidine-bis(ethanol)-Cu] for Pd-free Sonogashira coupling reaction. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2116718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Indrajit Patra
- Department of Chemistry, West Bengal University, Kolkata, India
| | - Faris H. Mohammed
- Department of Chemistry, West Bengal University, Kolkata, India
- College of Science, University of Babylon, Babylon, Iraq
| | - Ahmed Kareem Obaid Aldulaimi
- Department of Chemistry, West Bengal University, Kolkata, India
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Dunia Abbas khudhair
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
10
|
A comprehensive review on the synthesis, characterization, and catalytic application of transition-metal Schiff-base complexes immobilized on magnetic Fe3O4 nanoparticles. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
Esmaili S, Moosavi-Zare AR, Khazaei A. Nano-[Fe3O4@SiO2/N-propyl-1-(thiophen-2-yl)ethanimine][ZnCl2] as a nano magnetite Schiff base complex and heterogeneous catalyst for the synthesis of pyrimido[4,5-b]quinolones. RSC Adv 2022; 12:5386-5394. [PMID: 35425540 PMCID: PMC8981359 DOI: 10.1039/d2ra00213b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/04/2022] [Indexed: 01/07/2023] Open
Abstract
Nano-[Fe3O4@SiO2/N-propyl-1-(thiophen-2-yl)ethanimine][ZnCl2] as a nano magnetite Schiff base complex was designed and fully characterized by various analyses such as Fourier transform infrared spectroscopy (FT-IR), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), differential thermal gravimetric analysis (DTA), vibrating sample magnetometry (VSM), scanning electron microscopy (SEM), and transmission electron micrographs (TEM). The presented nano magnetite Schiff base complex was used as a heterogeneous catalyst for the synthesis of pyrimido[4,5-b]quinolones by the reaction of aryl aldehyde, dimedone and 6-amino-1,3-dimethyluracil in EtOH : H2O (7 : 3) as a solvent at 60 °C. Nano-[Fe3O4@SiO2/N-propyl-1-(thiophen-2-yl)ethanimine][ZnCl2] as a nano magnetite Schiff base complex was designed and successfully tested for the synthesis of pyrimido[4,5-b]quinolones.![]()
Collapse
Affiliation(s)
- Soheila Esmaili
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | | | - Ardeshir Khazaei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| |
Collapse
|
12
|
Zhu X, He J, Yang Y, Zhou S, Wei Y, Wang S. Synthesis of rare-earth metal complexes with a morpholine-functionalized β-diketiminato ligand and their catalytic activities towards C–O and C–N bond formation. Dalton Trans 2022; 51:13227-13235. [DOI: 10.1039/d2dt02053j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unusual tridentate β-diketiminato rare-earth metal chlorides LRECl(µ-Cl)2Li(THF)2 (RE = Y (1a), Yb (1b), Lu (1c); L = MeC(NDipp)CHC(Me)N(CH2)2NC4H8O; Dipp = 2,6-iPr2C6H3) and the corresponding dialkyl complexes LRE(CH2SiMe3)2 (RE = Y...
Collapse
|
13
|
Esmati M, Zeynizadeh B. Introducing rGO@Fe
3
O
4
@Ni as an efficient magnetic nanocatalyst for the synthesis of tetrahydrobenzopyranes via multicomponent coupling reactions of dimedone, malononitrile, and aromatic aldehydes. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
14
|
Nemati R, Elhamifar D, Zarnegaryan A, Shaker M. Core‐shell structured magnetite silica‐supported hexatungstate: A novel and powerful nanocatalyst for the synthesis of biologically active pyrazole derivatives. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ramin Nemati
- Department of Chemistry Yasouj University Yasouj Iran
| | | | | | | |
Collapse
|
15
|
Azizi N, Heidarzadeh F, Farzaneh F. Facile fabrication of porous magnetic covalent organic frameworks as robust platform for multicomponent reaction. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Najmedin Azizi
- Department of Green Chemistry Chemistry and Chemical Engineering Research Center of Iran Tehran Iran
| | - Fatemeh Heidarzadeh
- Department of Green Chemistry Chemistry and Chemical Engineering Research Center of Iran Tehran Iran
| | - Fezeh Farzaneh
- Department of Green Chemistry Chemistry and Chemical Engineering Research Center of Iran Tehran Iran
| |
Collapse
|
16
|
Kumar B, Reddy MS, Dwivedi KD, Dahiya A, Babu JN, Chowhan LR. Synthesis of in situ immobilized iron oxide nanoparticles (Fe
3
O
4
) on microcrystalline cellulose: Ecofriendly and recyclable catalyst for Michael addition. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Bhupender Kumar
- School of Applied Material Sciences Central University of Gujarat Gandhinagar India
| | - Marri Sameer Reddy
- School of Applied Material Sciences Central University of Gujarat Gandhinagar India
| | | | - Amarjeet Dahiya
- Department of Chemical Sciences, School of Basic Sciences Central University of Punjab Bathinda Punjab India
| | - J. Nagendra Babu
- Department of Chemical Sciences, School of Basic Sciences Central University of Punjab Bathinda Punjab India
| | - L. Raju Chowhan
- School of Applied Material Sciences Central University of Gujarat Gandhinagar India
| |
Collapse
|
17
|
Karimkhah F, Elhamifar D, Shaker M. Ag 2CO 3 containing magnetic nanocomposite as a powerful and recoverable catalyst for Knoevenagel condensation. Sci Rep 2021; 11:18736. [PMID: 34548589 PMCID: PMC8455631 DOI: 10.1038/s41598-021-98287-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023] Open
Abstract
In this paper, the synthesis, characterization and catalytic application of a novel magnetic silica-supported Ag2CO3 (MS/Ag2CO3) with core-shell structure are developed. The MS/Ag2CO3 nanocomposite was prepared through chemical modification of magnetic MS nanoparticles with AgNO3 under alkaline conditions. The structure, chemical composition and magnetic properties of MS/Ag2CO3 were investigated by using VSM, PXRD, FT-IR, EDX and SEM techniques. The MS/Ag2CO3 nanocomposite was used as an effective catalyst for the Knoevenagel condensation under solvent-free conditions at 60 °C in an ultrasonic bath. The recovery and leaching tests were performed to study the nature of the MS/Ag2CO3 catalyst under applied conditions.
Collapse
Affiliation(s)
- Fatemeh Karimkhah
- Department of Chemistry, Yasouj University, 75918-74831, Yasouj, Iran
| | - Dawood Elhamifar
- Department of Chemistry, Yasouj University, 75918-74831, Yasouj, Iran.
| | - Masoumeh Shaker
- Department of Chemistry, Yasouj University, 75918-74831, Yasouj, Iran
| |
Collapse
|
18
|
Zare Fekri L. Green Synthesis of New Category of Pyrano[3,2-c]Chromene-Diones Catalyzed by Nanocomposite as Fe3O4@SiO2-Propyl Covalented Dapsone-Copper Complex. Front Chem 2021; 9:720555. [PMID: 34540801 PMCID: PMC8440806 DOI: 10.3389/fchem.2021.720555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/27/2021] [Indexed: 11/13/2022] Open
Abstract
Nanomagnetic dapsone-Cu supported on the silica-coated Fe3O4 (Fe3O4@SiO2-pr@dapsone-Cu) nanocomposite was synthesized and characterized by Fourier transform infrared (FT-IR), energy-dispersive X-ray (EDX), X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), zeta potential, vibrating sample magnetometer (VSM), and thermogravimetric analysis (TGA). This newly synthesized nanocomposite was chosen to act as a green, efficient, and recyclable Lewis acid for the multicomponent synthesis of new derivatives of pyrano[3,2-c]chromene-diones through the reaction of aromatic aldehydes, indandione, and 4-hydroxycoumarin in water. All of the synthesized compounds are new and are recognized by FT-IR, NMR, and elemental analysis; this avenue is new and has advantages such as short reaction times, high productivity, economical synthesis, and use of green solvent, H2O, as a medium. The catalyst is magnetically recoverable and can be used after six runs without a decrease in the efficiency.
Collapse
|
19
|
Xu Z, Xu J, Li Y. CuSO
4
nanoparticles loaded on carboxymethylcellulose/polyaniline composites: A highly efficient catalyst with enhanced catalytic activity in the synthesis of propargylamines, benzofurans, and 1,2,3‐triazoles. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Zhian Xu
- Department of Chemistry, College of Chemistry and Materials Science, Panyu Campus Jinan University Guangzhou China
| | - Jinxi Xu
- Department of Chemistry, College of Chemistry and Materials Science, Panyu Campus Jinan University Guangzhou China
| | - Yiqun Li
- Department of Chemistry, College of Chemistry and Materials Science, Panyu Campus Jinan University Guangzhou China
| |
Collapse
|
20
|
Efficient nickel(II) immobilized on EDTA‐modified Fe3O4@SiO2 nanospheres as a novel nanocatalyst for amination of heteroaryl carbamates and sulfamates through the cleavage of C-O bond. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110915] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
Dindarloo Inaloo I, Majnooni S, Eslahi H, Esmaeilpour M. Air‐Stable Fe
3
O
4
@SiO
2
‐EDTA‐Ni(0) as an Efficient Recyclable Magnetic Nanocatalyst for Effective Suzuki‐Miyaura and Heck Cross‐Coupling via Aryl Sulfamates and Carbamates. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5662] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Sahar Majnooni
- Department of Chemistry University of Isfahan Isfahan 81746‐73441 Iran
| | - Hassan Eslahi
- Chemistry Department, College of Sciences Shiraz University Shiraz Iran
| | | |
Collapse
|
22
|
Dindarloo Inaloo I, Majnooni S, Eslahi H, Esmaeilpour M. Nickel(II) Nanoparticles Immobilized on EDTA-Modified Fe 3O 4@SiO 2 Nanospheres as Efficient and Recyclable Catalysts for Ligand-Free Suzuki-Miyaura Coupling of Aryl Carbamates and Sulfamates. ACS OMEGA 2020; 5:7406-7417. [PMID: 32280882 PMCID: PMC7144170 DOI: 10.1021/acsomega.9b04450] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 03/16/2020] [Indexed: 05/09/2023]
Abstract
A highly efficient and air-, thermal-, and moisture-stable nickel-based catalyst with excellent magnetic properties supported on silica-coated magnetic Fe3O4 nanoparticles was successfully synthesized. It was well characterized by Fourier transform infrared spectroscopy, powder X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, thermogravimetric analysis, dynamic light scattering (DLS), X-ray photoelectron spectroscopy, vibration sample magnetometry, energy-dispersive X-ray analysis, inductively coupled plasma analysis, and nitrogen adsorption-desorption isotherm analysis. The Suzuki-Miyaura coupling reaction between aryl carbamates and/or sulfamates with arylboronic acids was selected to demonstrate the catalytic activity and efficiency of the as-prepared magnetic nanocatalyst. Using the mentioned heterogeneous nanocatalyst in such reactions generated corresponding products in good to excellent yields in which the catalyst could easily be recovered from the reaction mixture with an external magnetic field to reuse directly for the next several cycles without significant loss of its activity.
Collapse
Affiliation(s)
- Iman Dindarloo Inaloo
- Chemistry
Department, College of Sciences, Shiraz
University, Shiraz 71946 84795, Iran
| | - Sahar Majnooni
- Department
of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Hassan Eslahi
- Chemistry
Department, College of Sciences, Shiraz
University, Shiraz 71946 84795, Iran
| | - Mohsen Esmaeilpour
- Chemistry
Department, College of Sciences, Shiraz
University, Shiraz 71946 84795, Iran
| |
Collapse
|
23
|
Dindarloo Inaloo I, Majnooni S, Eslahi H, Esmaeilpour M. N-Arylation of (hetero)arylamines using aryl sulfamates and carbamates via C–O bond activation enabled by a reusable and durable nickel(0) catalyst. NEW J CHEM 2020. [DOI: 10.1039/d0nj01610a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An effective and general aryl amination protocol has been developed using a magnetically recoverable Ni(0) based nanocatalyst.
Collapse
Affiliation(s)
| | - Sahar Majnooni
- Department of Chemistry
- University of Isfahan
- Isfahan 81746-73441
- Iran
| | - Hassan Eslahi
- Chemistry Department
- College of Sciences
- Shiraz University
- Shiraz 71946 84795
- Iran
| | - Mohsen Esmaeilpour
- Chemistry Department
- College of Sciences
- Shiraz University
- Shiraz 71946 84795
- Iran
| |
Collapse
|
24
|
Inaloo ID, Majnooni S. A Fe3
O4
@SiO2
/Schiff Base/Pd Complex as an Efficient Heterogeneous and Recyclable Nanocatalyst for One-Pot Domino Synthesis of Carbamates and Unsymmetrical Ureas. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901140] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Iman Dindarloo Inaloo
- Chemistry Department; College of Sciences; Shiraz University; 84795 71946 Shiraz Iran
| | - Sahar Majnooni
- Chemistry Department; College of Sciences; University of Isfahan; 81746-73441 Isfahan Iran
| |
Collapse
|
25
|
Dindarloo Inaloo I, Majnooni S. Carbon dioxide utilization in the efficient synthesis of carbamates by deep eutectic solvents (DES) as green and attractive solvent/catalyst systems. NEW J CHEM 2019. [DOI: 10.1039/c9nj02810b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Deep eutectic solvents as a green solvent/catalyst system for directly synthesizing carbamates from amines, CO2 and alkyl halides.
Collapse
Affiliation(s)
| | - Sahar Majnooni
- Department of Chemistry
- University of Isfahan
- Isfahan 81746-73441
- Iran
| |
Collapse
|