1
|
Tabatabai ASD, Dehghanian E, Mansouri-Torshizi H. Comparative Linkage of Novel Anti-Tumor Pd(II) Complex with Bio-Macromulecules: Fluorescence, UV-Vis, DFT, Molecular Docking and Molecular Dynamics Simulation Studies. J Fluoresc 2024:10.1007/s10895-024-03820-8. [PMID: 38967860 DOI: 10.1007/s10895-024-03820-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
A novel mononuclear palladium complex, [Pd(dach)(SSA)], where dach and SSA are diaminocyclohexane and sulfosalicylic acid ligands, respectively, has been synthesized and identified utilizing analytical and spectral methods. DFT calculations, namely geometry optimization, MEP, HOMO-LUMO and NBO analysis, have been conducted at B3LYP level by aug-ccpVTZ-PP and 6-311G(d, p) basis sets. NBO and HOMO-LUMO analysis exhibited that the palladium compound is stable. MEP showed the potential sites of molecule for the interaction. By employing MTT assay, the cytotoxicity activity of the aforesaid compound was examined on K562 cell line, which revealed a proper activity compared to cisplatin. To ascertain the lipophilicity of the newly made compound, the partition coefficient measurement was accomplished, which follows the order of cisplatin < Pd(II) complex. Next, investigation of binding properties of the studied compound with DNA of calf thymus and BSA were done by spectroscopic (CD, fluorescence emission and electronic adsorption) and non-spectroscopic (viscosity measurements, DNA gel electrophoresis, molecular docking and molecular dynamics simulation) methods. The outcomes of CD and UV-Vis spectroscopy demonstrated that the title compound refolded the protein via increasing the alpha helix percentage. The data obtained from UV-Vis studies indicated the non-intercalative mutual action between Pd(II) complex with DNA. It also revealed that the Kapp magnitude of CT-DNA (7.43 × 104 M- 1) is higher than the BSA (5.17 × 103 M- 1), and L1/2 (midpoint of transition) of CT-DNA (5 µM) is lower than the BSA (5.7 µM), indicating that the complex has a greater binding affinity to CT-DNA than BSA. Fluorescence quenching mechanism of the two biomolecules by the metal complex is static and the calculated thermodynamic parameters (ΔS° < 0 and ΔH° < 0) suggested the hydrogen bonding and/ or van der Waals forces with DNA and BSA. Further, molecular docking indicated that the studied compound fits into the groove of DNA and the site I of BSA. The stability of metal compound-DNA/-BSA in the presence of H2O solvent and over the time were validated via molecular dynamics simulation.
Collapse
Affiliation(s)
| | - Effat Dehghanian
- Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran.
| | | |
Collapse
|
2
|
Dorafshan Tabatabai AS, Dehghanian E, Mansouri-Torshizi H, Feizi-Dehnayebi M. Computational and experimental examinations of new antitumor palladium(II) complex: CT-DNA-/BSA-binding, in-silico prediction, DFT perspective, docking, molecular dynamics simulation and ONIOM. J Biomol Struct Dyn 2024; 42:5447-5469. [PMID: 37349936 DOI: 10.1080/07391102.2023.2226715] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
Since the design of metal complexes with better biological activities is important, herein a new palladium(II) complex bearing en and acac (en and acac stand for ethylenediamine and acetylacetonato, respectively) as its ligands, [Pd(en)(acac)]NO3 complex, was synthesized and fully characterized. Quantum chemical computations of the palladium(II) complex were done via DFT/B3LYP method. Cytotoxicity activity of the new compound on leukemia cell line (K562) was assessed via MTT method. The findings indicated that the metal complex has remarkable cytotoxic effect than cisplatin. OSIRIS DataWarrior software was employed to calculate in-silico physicochemical and toxicity parameters of the synthesized complex which rendered significant results. To comprehend the interaction type of new metal compound with macromolecules, the in depth investigation of interaction of mentioned complex with CT-DNA and BSA was accomplished by fluorescence, UV-Visible absorption spectroscopy, viscosity measurement, gel electrophoresis, FRET analysis and circular dichroism (CD) spectroscopy. On the other hand, computational molecular docking was carried out and the obtained data demonstrated that H-bond and van der Waals forces are the dominant forces for the binding of the compound to the mentioned biomolecules. Molecular dynamics simulation was also done and confirmed the stability of best docked pose of palladium(II) complex inside DNA or BSA over the time and in presence of water solvent. Also, Our own N-layered Integrated molecular Orbital and molecular Mechanics (ONIOM) methodology based on the hybridization of quantum mechanics and molecular mechanics (QM/MM) methodology was accomplished to inquire about binding of Pd(II) complex with DNA or BSA.HIGHLIGHTSNew biologically active Pd(II) complex was synthesized and characterized.The in silico studies of the designed complex and its ligands were accomplished by OSIRIS DataWarrior softwareInteraction with CT-DNA and BSA was assessed by various spectroscopic methods.Molecular docking simulation supported the interaction with both macromolecules.Based on ONIOM analysis, the structures of the complex and biomolecules are altered after binding. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Effat Dehghanian
- Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran
| | | | | |
Collapse
|
3
|
Dorafshan Tabatabai AS, Dehghanian E, Mansouri-Torshizi H. In-silico and in-detail experimental interaction studies of new antitumor Zn(II) complex with CT-DNA and serum albumin. J Biomol Struct Dyn 2023; 41:9614-9631. [PMID: 36398999 DOI: 10.1080/07391102.2022.2144459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022]
Abstract
In this study, a novel Zn(II) complex with the formula [Zn(pyrr-ac)2] (pyrr-ac: pyrrolidineacetate) was synthesized and characterized through molar conductivity, elemental analysis, 1H Nuclear Magnetic Resonance (1H NMR), UV-Visible spectroscopy, and Fourier transform infrared (FT-IR) methods. B3LYP level of DFT method along with aug-cc-pVTZ-PP/6-311G(d,p) basis set was utilized to perform the geometry optimization and HOMO-LUMO analysis. In addition, MEP, NLO and NBO computations were also performed at the same level of theory. In vitro antitumor activity of the mentioned complex on leukemia cell line, K562, was investigated using the MTT assay which surprisingly revealed the effective antitumor activity of the studied zinc complex. Interaction of this compound with biological macromolecules viz., CT-DNA and BSA was studied via different spectroscopic methods. The results of fluorescence experiment displayed that the metal complex binds to both macromolecules through hydrogen bond (H-bond) and van der Waals (vdW) forces. UV-Vis tests indicated a decline in the absorption spectra of CT-DNA/BSA in the presence of the compound. The interaction was further corroborated for CT-DNA via gel electrophoresis, CD spectroscopy and viscosity experiments and for BSA using CD spectroscopy. Furthermore, molecular docking simulation was done to evaluate the nature of interaction between the aforementioned zinc complex and CT-DNA/BSA. These results were in agreement with experimental findings and demonstrated that the main interaction is hydrogen bonding. The above type of investigations may provide a pathway through which zinc complexes join the anticancer category.[Figure: see text]The in-silico and in-vitro results confirm that the newly made [Zn(pyrr-ac)2] complex interacts with CT-DNA than BSA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Effat Dehghanian
- Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran
| | | |
Collapse
|
4
|
Dorafshan Tabatabai AS, Dehghanian E, Mansouri-Torshizi H. Exploring the Interaction Between the Newly Designed Antitumor Zn(II) Complex and CT-DNA/BSA: Spectroscopic Methods, DFT Computational Analysis, and Docking Simulation. Appl Biochem Biotechnol 2023; 195:6276-6308. [PMID: 36856984 DOI: 10.1007/s12010-023-04394-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/02/2023]
Abstract
A new zinc(II) complex formulated as [Zn(pipr-ac)2], where pipr-ac stands for piperidineacetate, was synthesized and structurally identified with the help of experimental and DFT methods. Frontier molecular orbital (FMO) analysis demonstrated that the new complex has higher biological activity compared to the free ligand. Molecular electrostatic potential (MEP) showed the nitrogen atoms and oxygen of carbonyl groups are the active sites of Zn(II) compound. Also, natural bond orbital (NBO) analysis confirmed the charge transfer from the ligating atoms to the metal ion and formation of four coordinated Zn(II) complex. MTT assay illustrated a noticeable cytotoxic activity of the new zinc(II) complex compared to cisplatin on K562 cell line. The CT-DNA and serum albumin (SA) binding of the Zn(II) complex were explored individually. In this regard, UV-Vis spectroscopy and florescence titration revealed the occurrences of fluorescence quenching of CT-DNA/SA by metal compound via static mechanism and creation of hydrogen bonds and van der Waals interactions between them. The binding was further confirmed by viscosity measurement and gel electrophoresis assay for CT-DNA and circular dichroism spectroscopy for SA. Moreover, molecular docking simulation demonstrated that the new compound binds mainly through hydrogen bonds to the groove of DNA and hydrogen bonds and van der Waals interactions to site I of SA.
Collapse
Affiliation(s)
| | - Effat Dehghanian
- Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran.
| | | |
Collapse
|
5
|
Kumar M, Ansari M, Ansari A. Electronic, geometrical and photophysical facets of five coordinated porphyrin N-heterocyclic carbene transition metals complexes: A theoretical study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121774. [PMID: 36081194 DOI: 10.1016/j.saa.2022.121774] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/21/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
In the realm of dye sensitized solar cells (DSSCs), the 3d transition metals as photosensitizers are scarcely studied. In the present work, electronic structures, FMO, MEP surfaces, NBO analysis, energetics and photophysical properties of earth abundant metals (Mn, Fe and Co) based metalloporphyrins coordinated with NHC-carbene have been explored by using DFT and TDDFT calculations. According to formation energies and energy decomposition analysis (EDA), the cobalt based metalloporphyrins species are found to be more stable while in contrast manganese based species are predicted as more reactive among all. Also, from the ligation point of view, the TPP (meso-tetraphenylporphyrin) ligand forms more steady and rigid coordination as compare to the TTP (meso-tetratolylporphyrin) ligand. FMO analysis also support these observations. NBO and SNO results support the electronic configurations as well as unveil the controversial bonding pattern of NHCcarbon and metal atom and found that there is σ-bonding present between the metal and the NHCcarbon by the overlapping of sp-hybridized orbitals of carbenecarbon and sp/d hybrid orbital of the metal atom. TDDFT results show that the highest light harvesting efficiency (LHE) of all the studied species is found under the range of 360 nm - 380 nm (λ) and this may due to the presence of longer π-conjugations. In-depth investigation of this work may help to design new robust energy harvesting systems for high energy conversion efficiency based on earth abundance metals. Our results are in well agreement with the available experimental findings.
Collapse
Affiliation(s)
- Manjeet Kumar
- Department of Chemistry, Central University of Haryana, Mahendergarh 123031, India
| | - Mursaleem Ansari
- Department of Chemistry, IIT Bombay, Powai, Mumbai 400076, India
| | - Azaj Ansari
- Department of Chemistry, Central University of Haryana, Mahendergarh 123031, India.
| |
Collapse
|
6
|
Synthesis and spectral studies of Ni(Ⅱ) complexes involving functionalized dithiocarbamates and triphenylphosphine: X-ray crystal structure, thermal stability, Hirshfeld surface analysis, DFT and biological evaluation. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2022.121271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Yousuf S, Arjmand F, Tabassum S. ROS -mediated anticancer response of potent copper(II) drug entities derived from S, O and N, N chelating donor scaffold: Single X-ray crystal diffraction and spectroscopic studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
|
9
|
Synthesis, characterization, DFT calculation, antifungal, antioxidant, CT-DNA/pBR322 DNA interaction and molecular docking studies of heterocyclic analogs. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Hussain Dar S, Ansari IA, Tabrez S, Rana M, Usman M, Ul Islam S, Rub A, Rahisuddin. Synthesis, crystal structures, biological and thermal decomposition evaluation of homo and heteroleptic Zn(Ⅱ) dithiocarbamate complexes and use of Zn(Ⅱ) dithiocarbamate to prepare zinc sulfide nanoparticles. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Wojciechowska A, Bregier Jarzębowska R, Komarnicka UK, Kozieł S, Szuster Ciesielska A, Sztandera Tymoczek M, Jarząb A, Staszak Z, Witkowska D, Bojarska Junak A, Jezierska J. Isothiocyanate l-argininato copper(II) complexes - Solution structure, DNA interaction, anticancer and antimicrobial activity. Chem Biol Interact 2021; 348:109636. [PMID: 34506769 DOI: 10.1016/j.cbi.2021.109636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/16/2021] [Accepted: 09/06/2021] [Indexed: 11/22/2022]
Abstract
l-argininato copper(II) complexes have been intensively investigated in a variety of diseases due to their therapeutic potential. Here we report the results of comprehensive structural studies (ESI-MS, NIR-VIS-UV, EPR) on the complexes arising in aqueous solutions of two ternary copper(II) complexes with molecular formulas from crystal structures, [Cu(l-Arg)2(NCS)](NCS)·H2O (1) and [Cu(l-Arg)(NCS)2] (2) (l-Arg = l-arginine). Reference systems, the ternary Cu(II)/l-Arg/NCS- as well as binary Cu(II)/NCS- and Cu(II)/l-Arg, were studied in parallel in aqueous solutions by pH-potentiometric titration, EPR and VIS spectroscopy to characterize stability, structures and speciation of the formed species over the broad pH range. Comparative analysis of the obtained results showed that at a pH close to 7.0 mononuclear [Cu(l-Arg)2(NCS)]+ is the only species in water solution of 1, while equilibrium between [Cu(l-Arg)(SCN)]+ and binary [Cu(l-Arg)2]2+ was detected in water solution of 2. According to DNA binding studies, the [Cu(l-Arg)2(NCS)]+, [Cu(l-Arg)(SCN)]+ and [Cu(l-Arg)2]2+ species could be considered as strong minor groove binding agents causing, in the presence of H2O2, the involvement of ROS in plasmid damage. The human carcinoma cells (A549 cell line) were generally significantly more sensitive to cytotoxic and antiproliferative effect of compounds 1 and 2 than human normal cells. The studied compounds shown antimicrobial activity against bacteria belonging to Enterobacteriaceae family.
Collapse
Affiliation(s)
- Agnieszka Wojciechowska
- Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370, Wrocław, Poland.
| | | | - Urszula K Komarnicka
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Sandra Kozieł
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383, Wrocław, Poland
| | | | - Monika Sztandera Tymoczek
- Department of Virology and Immunology, M. Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Anna Jarząb
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114, Wrocław, Poland
| | - Zbigniew Staszak
- Faculty of Computer Science and Management, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-270, Wrocław, Poland
| | - Danuta Witkowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114, Wrocław, Poland
| | - Agnieszka Bojarska Junak
- Chair and Department of Clinical Immunology, Medical University of Lublin, Chodźki 4a, 20-093, Lublin, Poland
| | - Julia Jezierska
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383, Wrocław, Poland
| |
Collapse
|
12
|
Iman K, Raza MK, Ansari M, Monika, Ansari A, Ahmad M, Ahamad MN, Qasem KMA, Hussain S, Akhtar MN, Shahid M. Novel {Cu 4} and {Cu 4Cd 6} clusters derived from flexible aminoalcohols: synthesis, characterization, crystal structures, and evaluation of anticancer properties. Dalton Trans 2021; 50:11941-11953. [PMID: 34378588 DOI: 10.1039/d1dt00324k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two new copper clusters, {Cu4} and {Cu4Cd6}, with polydentate aminoalcohol ligands, diethanol propanolamine (H3L1) and bis-tris{2-[bis(2-hydroxyethyl)amino]-2-(hydroxymethyl)propane-1,3-diol} (H6L2), have been synthesized under mild conditions and characterized thoroughly by single-crystal X-ray diffraction (XRD), infrared spectroscopy, elemental analysis, powder XRD, magnetic and DFT studies, and absorption and fluorescence spectroscopy. The cluster {Cu4} exhibits a rare tetranuclear copper cubane core whereas {Cu4Cd6} forms an unusual heterometallic cage owing to the introduction of the second metal Cd into the ligand. A hexapodal ligand (H6L2) with N and O donor atoms was chosen deliberately for the construction of a high-nuclearity cluster, i.e., {Cu4Cd6}. Interestingly, both the clusters displayed significant cytotoxicity towards human cervical (HeLa) and lung (A549) cancer cells as evident from the shallow IC50 values [15.6 ± 0.8 μM (HeLa), 18.5 ± 1.9 μM (A549) for {Cu4}, and 11.1 ± 1.5 μM (HeLa), 10.2 ± 1.3 μM (A549) for {Cu4Cd6}] obtained after a 24 h incubation. However, moderate toxicity was observed toward immortalized lung epithelial normal cells (HPL1D) with IC50 values of 32.4 ± 1.2 μM for {Cu4} and 27.6 ± 1.7 μM for {Cu4Cd6}. A cellular apoptotic study using HeLa cells revealed that the {Cu4} cluster triggered apoptosis at both the early and late phases while the {Cu4Cd6} cluster facilitate apoptosis mainly at the late apoptotic stage. A standard 2',7'-dichlorodihydrofluorescein-diacetate (DCFH-DA) test affirms that both the clusters enhanced ROS production inside the cancer cells, responsible for promoting cell apoptosis. The decanuclear {Cu4Cd6} clusters demonstrated better anticancer activity compared to the tetranuclear {Cu4} clusters, indicating the role of high nuclearity and additional Cd metal in the enhanced intracellular production of ROS.
Collapse
Affiliation(s)
- Khushboo Iman
- Functional Inorganic Materials Lab (FIML), Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Rana M, Arif R, Khan FI, Maurya V, Singh R, Faizan MI, Yasmeen S, Dar SH, Alam R, Sahu A, Ahmad T, Rahisuddin. Pyrazoline analogs as potential anticancer agents and their apoptosis, molecular docking, MD simulation, DNA binding and antioxidant studies. Bioorg Chem 2021; 108:104665. [PMID: 33571809 DOI: 10.1016/j.bioorg.2021.104665] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/08/2020] [Accepted: 01/16/2021] [Indexed: 12/12/2022]
Abstract
N-formyl pyrazoline derivatives (3a-3l) were designed and synthesized via Michael addition reaction through cyclization of chalcones with hydrazine hydrate in presence of formic acid. The structural elucidation of N-formyl pyrazoline derivatives was carried out by various spectroscopic techniques such as 1H, 13C NMR, FT-IR, UV-visible spectroscopy, mass spectrometry and elemental analysis. Anticancer activity of the pyrazoline derivatives (3a-3l) was evaluated against human lung cancer (A549), fibrosarcoma cell lines (HT1080) and human primary normal lung cells (HFL-1) by MTT assay. The results of anticancer activity showed that potent analogs 3b and 3d exhibited promising activity against A549 (IC50 = 12.47 ± 1.08 and 14.46 ± 2.76 µM) and HT1080 (IC50 = 11.40 ± 0.66 and 23.74 ± 13.30 µM) but low toxic against the HFL-1 (IC50 = 116.47 ± 43.38 and 152.36 ± 22.18 µM). The anticancer activity of potent derivatives (3b and 3d) against A549 cancer cell line was further confirmed by flow cytometry based approach. DNA binding interactions of the pyrazoline derivatives 3b and 3d have been carried out with calf thymus DNA (Ct-DNA) using absorption, fluorescence and viscosity measurements, circular dichroism and cyclic voltammetry. Antioxidant potential of N-formyl pyrazoline derivatives (3a-3l) has been also estimated through DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical and H2O2. Results revealed that all the compounds exhibited significant antioxidant activity. In silico molecular modelling and ADMET properties of pyrazoline derivatives were also studied using PyRx software against topoisomerase II receptor with PDB ID: 1ZXM to explore their best hits. MD simulation of 3b and 3d was also carried out with topoisomerase II for structure-function correlation in a protein. HuTopoII inhibitory activity of the analogs (3a-3l) was examined by relaxation assay at varying concentrations 100-1000 µM.
Collapse
Affiliation(s)
- Manish Rana
- Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Rizwan Arif
- Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Faez Iqbal Khan
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, China
| | - Vikas Maurya
- Special Centre for Molecular Medicine, Jawharlal Nehru University, New Delhi 110067, India
| | - Raja Singh
- Special Centre for Molecular Medicine, Jawharlal Nehru University, New Delhi 110067, India
| | - Md Imam Faizan
- Multidisciplinary Centre for Advanced Research & Studies, Jamia Millia Islamia, New Delhi 110025, India
| | - Shama Yasmeen
- Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Sajad Hussain Dar
- Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Raquib Alam
- Department of Applied Sciences, University Polytechnic, Jamia Millia Islamia, New Delhi 110025, India
| | - Ankita Sahu
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi 110029, India
| | - Tanveer Ahmad
- Multidisciplinary Centre for Advanced Research & Studies, Jamia Millia Islamia, New Delhi 110025, India
| | - Rahisuddin
- Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
14
|
Synthesis and Characterization for New Nanometer Cu(II) Complexes, Conformational Study and Molecular Docking Approach Compatible with Promising in Vitro Screening. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-04814-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
I. M, Shahid M, Kumar M, Ansari A, Akhtar MN, AlDamen MA, Song Y, Ahmad M, Khan IM. Exploring solvent dependent catecholase activity in transition metal complexes: an experimental and theoretical approach. NEW J CHEM 2020. [DOI: 10.1039/c9nj04374h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Four coordination compounds are designed with pyridinemethanol ligands, characterized with spectral, magnetic and X-ray analyses, and assessed for catecholase activity in various solvents.
Collapse
Affiliation(s)
- Mantasha I.
- Department of Chemistry
- Aligarh Muslim University
- Aligarh-202002
- India
| | - M. Shahid
- Department of Chemistry
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Manjeet Kumar
- Department of Chemistry
- Central University of Haryana
- Mahendergarh-123031
- India
| | - Azaj Ansari
- Department of Chemistry
- Central University of Haryana
- Mahendergarh-123031
- India
| | - Muhammad Nadeem Akhtar
- Department of Chemistry
- Khwaja Fareed University of Engineering & Information Technology
- Rahim Yar Khan 64200
- Pakistan
| | - Murad A. AlDamen
- Department of Chemistry
- Faculty of Science
- The University of Jordan
- Amman 11942
- Jordan
| | - You Song
- State Key Laboratory of Coordination Chemistry
- Nanjing University
- Nanjing 210023
- P. R. China
| | - Musheer Ahmad
- Department of Applied Chemistry (ZHCET)
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Ishaat M. Khan
- Department of Chemistry
- Aligarh Muslim University
- Aligarh-202002
- India
| |
Collapse
|
16
|
Anticancer properties, apoptosis and catecholase mimic activities of dinuclear cobalt(II) and copper(II) Schiff base complexes. Bioorg Chem 2020; 95:103561. [DOI: 10.1016/j.bioorg.2019.103561] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/15/2019] [Accepted: 12/27/2019] [Indexed: 01/26/2023]
|
17
|
Ahmad MS, Khalid M, Khan MS, Shahid M, Ahmad M, Monika, Ansari A, Ashafaq M. Exploring catecholase activity in dinuclear Mn(ii) and Cu(ii) complexes: an experimental and theoretical approach. NEW J CHEM 2020. [DOI: 10.1039/d0nj00605j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Two dinuclear Mn(ii) and Cu(ii) complexes were prepared, characterised and assessed for non-covalent interactions and catecholase oxidase properties. The catecholase activity of2is further corroborated by theoretical calculations using DFT.
Collapse
Affiliation(s)
- M. Shahwaz Ahmad
- Department of Chemistry
- Aligarh Muslim University
- Aligarh 202002
- India
| | - Mohd Khalid
- Department of Chemistry
- Aligarh Muslim University
- Aligarh 202002
- India
| | | | - M. Shahid
- Department of Chemistry
- Aligarh Muslim University
- Aligarh 202002
- India
| | - Musheer Ahmad
- Department of Applied Chemistry
- Aligarh Muslim University
- Aligarh 202002
- India
| | - Monika
- Department of Chemistry
- Central University of Haryana
- Mahendergarh-123031
- India
| | - Azaj Ansari
- Department of Chemistry
- Central University of Haryana
- Mahendergarh-123031
- India
| | - Mo Ashafaq
- Department of Chemistry
- Aligarh Muslim University
- Aligarh 202002
- India
| |
Collapse
|
18
|
Pahonțu E, Proks M, Shova S, Lupașcu G, Ilieș D, Bărbuceanu Ș, Socea L, Badea M, Păunescu V, Istrati D, Gulea A, Drăgănescu D, Pîrvu CED. Synthesis, characterization, molecular docking studies andin vitroscreening of new metal complexes with Schiff base as antimicrobial and antiproliferative agents. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5185] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Elena Pahonțu
- General and Inorganic Chemistry Department, Faculty of PharmacyUniversity of Medicine and Pharmacy ‘Carol Davila’ 6 Traian Vuia Street 020956 Bucharest Romania
| | - Maria Proks
- Functional Sciences Department, Faculty of MedicineUniversity of Medicine and Pharmacy ‘Victor Babeș’, ‘Pius Brinzeu’, County Emergency Clinical Hospital, Oncogen Institute 156 Liviu Rebreanu 300723 Timișoara Romania
| | - Sergiu Shova
- Institute of Macromolecular Chemistry ‘Petru Poni’ 41A Grigore Ghica Voda Alley 700487 Iași Romania
| | - Gina Lupașcu
- Physiology Department, Faculty of PharmacyUniversity of Medicine and Pharmacy ‘Carol Davila’ 6 Traian Vuia Street 020956 Bucharest Romania
| | - Diana‐Carolina Ilieș
- Organic Chemistry Department, Faculty of PharmacyUniversity of Medicine and Pharmacy ‘Carol Davila’ 6 Traian Vuia Street 020956 Bucharest Romania
| | - Ștefania‐Felicia Bărbuceanu
- Organic Chemistry Department, Faculty of PharmacyUniversity of Medicine and Pharmacy ‘Carol Davila’ 6 Traian Vuia Street 020956 Bucharest Romania
| | - Laura‐Ileana Socea
- Organic Chemistry Department, Faculty of PharmacyUniversity of Medicine and Pharmacy ‘Carol Davila’ 6 Traian Vuia Street 020956 Bucharest Romania
| | - Mihaela Badea
- Inorganic Chemistry Department, Faculty of ChemistryUniversity of Bucharest 23 Dumbrava Rosie Street 020462 Bucharest Romania
| | - Virgil Păunescu
- Functional Sciences Department, Faculty of MedicineUniversity of Medicine and Pharmacy ‘Victor Babeș’, ‘Pius Brinzeu’, County Emergency Clinical Hospital, Oncogen Institute 156 Liviu Rebreanu 300723 Timișoara Romania
| | - Dorin Istrati
- Department of Therapeutic DentistryFaculty of Dentistry ‘Nicolae Testemiţanu’, State University of Medicine and Pharmacy 165 Stefan cel Mare si Sfant Street 2009 Chişinău Moldova
| | - Aurelian Gulea
- Laboratory of Advanced Materials in Biofarmaceuticals and TechnicsMoldova State University 60 Mateevici Street 2009 Chisinau Moldova
| | - Doina Drăgănescu
- Pharmaceutical Physics Department, Faculty of PharmacyUniversity of Medicine and Pharmacy ‘Carol Davila’ 6 Traian Vuia Street 020956 Bucharest Romania
| | - Cristina Elena Dinu Pîrvu
- Physical and Colloidal Chemistry Department, Faculty of PharmacyUniversity of Medicine and Pharmacy ‘Carol Davila’ 6 Traian Vuia Street 020956 Bucharest Romania
| |
Collapse
|
19
|
Ahamad MN, Kumar M, Ansari A, I. M, Ahmad M, Shahid M. Synthesis, characterization, theoretical studies and catecholase like activities of [MO6] type complexes. NEW J CHEM 2019. [DOI: 10.1039/c9nj03729b] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Co(ii) and Zn(ii) complexes are prepared and characterized through spectral, crystallographic and theoretical studies. The Co(ii) complex is shown to be a catechol oxidase mimic and the activity is corroborated by DFT results.
Collapse
Affiliation(s)
- M. Naqi Ahamad
- Department of Chemistry
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Manjeet Kumar
- Department of Chemistry
- Central University of Haryana
- Mahendergarh-123031
- India
| | - Azaj Ansari
- Department of Chemistry
- Central University of Haryana
- Mahendergarh-123031
- India
| | - Mantasha I.
- Department of Chemistry
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Musheer Ahmad
- Department of Applied Chemistry (ZHCET)
- Aligarh Muslim University
- Aligarh-202002
- India
| | - M. Shahid
- Department of Chemistry
- Aligarh Muslim University
- Aligarh-202002
- India
| |
Collapse
|