1
|
Emamian S, Soleymani M. Synthesis of tetrazoles through a domino reaction: A molecular electron density theory study of energetics, selectivities, and molecular mechanistic aspects. J Mol Graph Model 2023; 125:108596. [PMID: 37597310 DOI: 10.1016/j.jmgm.2023.108596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/25/2023] [Accepted: 08/06/2023] [Indexed: 08/21/2023]
Abstract
This study corresponds to a molecular electron density theory (MEDT) investigation to shed light on the energetics, selectivities, and molecular mechanistic aspects of an experimental domino reaction. Theoretical evidences at the M06-2X/6-31G(d) level indicates that this domino reaction includes three different successive steps and is initialized by a stepwise HCl elimination from precursor chlorohydrazone NPCH to yield nitrile imine NI-2. A subsequent stepwise and highly regioselective [3 + 2] cycloaddition (32CA) reaction of NI-2 toward tetramethylguanidine TMG-3 affords corresponding formal [3 + 2] cycloadduct CA-1 as the sole product. Finally, a stepwise HNMe2 elimination experienced by CA-1 leads to amino triazole ATA as an aromatic five-membered target product. Computed rate constants reveal that the HCl elimination step should be considered as the bottleneck of this domino reaction. However, a topological analysis of electron localization function (ELF) of NI-2 demonstrates a zwitterionic type (zw-type) 32 C A reaction is expected between NI-2 and TMG-3. This 32CA reaction also displays an almost noticeable polar character arising from moderate electrophilicity and strong nucleophilicity of NI-2 and TMG-3, respectively. The regioselectivity of 32CA reaction can be explained via analysis of Parr functions values calculated at the reactive sites of reagents. The molecular mechanism of the 32CA reaction was explored through portraying bond forming/breaking patterns involved in this polar, stepwise, and zw-type reaction by means of the ELF analysis. Indeed, formation of both C-N single bonds along the first and second steps takes place through coupling of the corresponding pseudoradical centers.
Collapse
Affiliation(s)
- Saeedreza Emamian
- Chemistry Department, Shahrood Branch, Islamic Azad University, Shahrood, Iran.
| | - Mousa Soleymani
- Chemistry Department, Faculty of Science, Ayatollah Boroujerdi University, Boroujerd, Iran.
| |
Collapse
|
2
|
Zhao Q, Yu L, Zhang YD, Guo YQ, Chen M, Ren ZH, Guan ZH. C(alkyl)-C(vinyl) bond cleavage enabled by Retro-Pallada-Diels-Alder reaction. Nat Commun 2023; 14:2572. [PMID: 37142571 PMCID: PMC10160084 DOI: 10.1038/s41467-023-38067-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/12/2023] [Indexed: 05/06/2023] Open
Abstract
Activation and cleavage of carbon-carbon (C-C) bonds is a fundamental transformation in organic chemistry while inert C-C bonds cleavage remains a long-standing challenge. Retro-Diels-Alder (retro-DA) reaction is a well-known and important tool for C-C bonds cleavage but less been explored in methodology by contrast to other strategies. Herein, we report a selective C(alkyl)-C(vinyl) bond cleavage strategy realized through the transient directing group mediated retro-Diels-Alder reaction of a six-membered palladacycle, which is obtained from an in situ generated hydrazone and palladium hydride species. This unprecedented strategy exhibits good tolerances and thus offers new opportunities for late-stage modifications of complex molecules. DFT calculations revealed that an intriguing retro-Pd(IV)-Diels-Alder process is possibly involved in the catalytic cycle, thus bridging both Retro-Diels-Alder reaction and C-C bond cleavage. We anticipate that this strategy should prove instrumental for potential applications to achieve the modification of functional organic skeletons in synthetic chemistry and other fields involving in molecular editing.
Collapse
Affiliation(s)
- Qingyang Zhao
- Key Laboratory of Synthetic and Nature Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an, P.R. China
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, P.R. China
| | - Le Yu
- Key Laboratory of Synthetic and Nature Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an, P.R. China
| | - Yao-Du Zhang
- Key Laboratory of Synthetic and Nature Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an, P.R. China
| | - Yong-Qiang Guo
- Key Laboratory of Synthetic and Nature Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an, P.R. China
| | - Ming Chen
- Key Laboratory of Synthetic and Nature Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an, P.R. China
| | - Zhi-Hui Ren
- Key Laboratory of Synthetic and Nature Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an, P.R. China
| | - Zheng-Hui Guan
- Key Laboratory of Synthetic and Nature Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an, P.R. China.
| |
Collapse
|
3
|
Mechanistic aspects of the Diels-Alder reaction between (E)-N-benzylidene-2,2-difluoro-1-phenylethenamine and 2-vinyl pyridine: A molecular electron density theory study. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
4
|
Mari G, De Crescentini L, Favi G, Santeusanio S, Mantellini F. A facile protocol for the preparation of 2-carboxylated thieno [2,3- b] indoles: a de novo access to alkaloid thienodolin. Org Biomol Chem 2022; 20:4167-4175. [PMID: 35531860 DOI: 10.1039/d2ob00440b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A metal-free strategy, alternative to the known complex cycloaddition reactions, towards 2-carboxylated thieno [2,3-b] indole derivatives has been successfully developed. The novel approach involves as starting materials easy accessible 1,2-diaza-1,3-dienes and indoline 2-thione and requires mild reaction conditions. Furthermore, the easy work-up required makes this method amenable for a one-pot approach as demonstrated in the preparation of thienodolin, a natural product isolated from Streptomyces albogriseolus that exhibits valuable biological properties.
Collapse
Affiliation(s)
- Giacomo Mari
- Department of Biomolecular Sciences, Section of Chemistry and Pharmaceutical Technologies, University of Urbino "Carlo Bo", Via I Maggetti 24, 61029 Urbino, PU, Italy.
| | - Lucia De Crescentini
- Department of Biomolecular Sciences, Section of Chemistry and Pharmaceutical Technologies, University of Urbino "Carlo Bo", Via I Maggetti 24, 61029 Urbino, PU, Italy.
| | - Gianfranco Favi
- Department of Biomolecular Sciences, Section of Chemistry and Pharmaceutical Technologies, University of Urbino "Carlo Bo", Via I Maggetti 24, 61029 Urbino, PU, Italy.
| | - Stefania Santeusanio
- Department of Biomolecular Sciences, Section of Chemistry and Pharmaceutical Technologies, University of Urbino "Carlo Bo", Via I Maggetti 24, 61029 Urbino, PU, Italy.
| | - Fabio Mantellini
- Department of Biomolecular Sciences, Section of Chemistry and Pharmaceutical Technologies, University of Urbino "Carlo Bo", Via I Maggetti 24, 61029 Urbino, PU, Italy.
| |
Collapse
|
5
|
Fereydooni Naghani F, Emamian S, Zare K. A comprehensive theoretical analysis on the intermolecular hydrogen bond interactions with the Lewis bases having multiple hydrogen bonding ability. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Saeedreza Emamian
- Chemistry Department, Shahrood Branch Islamic Azad University Shahrood Iran
| | - Karim Zare
- Department of Chemistry, Science and Research Branch Islamic Azad University Tehran Iran
| |
Collapse
|
6
|
Chauhan ANS, Mali G, Erande RD. Regioselectivity Switch Towards the Development of Innovative Diels‐Alder Cycloaddition and Productive Applications in Organic Synthesis. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Amar Nath Singh Chauhan
- IIT Jodhpur: Indian Institute of Technology Jodhpur Chemistry Chemistry departmentIIT Jodhpur 342037 Jodhpur INDIA
| | - Ghanshyam Mali
- IIT Jodhpur: Indian Institute of Technology Jodhpur chemistry Chemistry departmentIIT Jodhpur 342037 Jodhpur INDIA
| | - Rohan D. Erande
- Indian Institute of Technology Jodhpur Chemistry Office 103, Department of Chemistry, IIT Jodhpur, N.H. 62, Nagaur Road, Karwar 342037 Jodhpur INDIA
| |
Collapse
|
7
|
Aza-Diels-Alder reaction of both electron-deficient azoalkenes with electron-deficient 3-phencaylideneoxindoles and 3-aryliminooxindol-2-ones. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
8
|
Mlostoń G, Urbaniak K, Sobiecka M, Heimgartner H, Würthwein EU, Zimmer R, Lentz D, Reissig HU. Hetero-Diels-Alder Reactions of In Situ-Generated Azoalkenes with Thioketones; Experimental and Theoretical Studies. Molecules 2021; 26:2544. [PMID: 33925483 PMCID: PMC8123831 DOI: 10.3390/molecules26092544] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 11/18/2022] Open
Abstract
The hetero-Diels-Alder reactions of in situ-generated azoalkenes with thioketones were shown to offer a straightforward method for an efficient and regioselective synthesis of scarcely known N-substituted 1,3,4-thiadiazine derivatives. The scope of the method was fairly broad, allowing the use of a series of aryl-, ferrocenyl-, and alkyl-substituted thioketones. However, in the case of N-tosyl-substituted cycloadducts derived from 1-thioxo-2,2,4,4-tetramethylcyclobutan-3-one and the structurally analogous 1,3-dithione, a more complicated pathway was observed. By elimination of toluene sulfinic acid, the initially formed cycloadducts afforded 2H-1,3,4-thiadiazines as final products. Advanced DFT calculations revealed that the observed high regioselectivity was due to kinetic reaction control and that the (4 + 2)-cycloadditions of sterically less unhindered thiones occurred via highly unsymmetric transition states with shorter C..S-distances (2.27-2.58 Å) and longer N..C-distances (3.02-3.57 Å). In the extreme case of the sterically very hindered 2,2,4,4-tetramethylcyclobutan-1,3-dione-derived thioketones, a zwitterionic intermediate with a fully formed C‒S bond was detected, which underwent ring closure to the 1,3,4-thiadiazine derivative in a second step. For the hypothetical formation of the regioisomeric 1,2,3-thiadiazine derivatives, the DFT calculations proposed more symmetric transition states with considerably higher energies.
Collapse
Affiliation(s)
- Grzegorz Mlostoń
- Department of Organic and Applied Chemistry, Faculty of Chemistry, University of Lodz, 12 Tamka Street, 91-403 Lodz, Poland; (K.U.); (M.S.)
| | - Katarzyna Urbaniak
- Department of Organic and Applied Chemistry, Faculty of Chemistry, University of Lodz, 12 Tamka Street, 91-403 Lodz, Poland; (K.U.); (M.S.)
| | - Malwina Sobiecka
- Department of Organic and Applied Chemistry, Faculty of Chemistry, University of Lodz, 12 Tamka Street, 91-403 Lodz, Poland; (K.U.); (M.S.)
| | - Heinz Heimgartner
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland;
| | - Ernst-Ulrich Würthwein
- Organisch-Chemisches Institut and Center for Multiscale Theory and Computation (CMTC), Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Reinhold Zimmer
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany; (R.Z.); (D.L.)
| | - Dieter Lentz
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany; (R.Z.); (D.L.)
| | - Hans-Ulrich Reissig
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany; (R.Z.); (D.L.)
| |
Collapse
|
9
|
Regio- and stereochemistry in the intramolecular [4 + 2] and intermolecular [3 + 2] cycloaddition reactions in the synthesis of epoxypyrrolo[3,4-g]indazoles: a density functional theory study. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-020-01359-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Vinogradov MG, Turova OV, Zlotin SG. Catalytic Asymmetric Aza‐Diels‐Alder Reaction: Pivotal Milestones and Recent Applications to Synthesis of Nitrogen‐Containing Heterocycles. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001307] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Maxim G. Vinogradov
- N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky prosp. 119991 Moscow Russian Federation
| | - Olga V. Turova
- N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky prosp. 119991 Moscow Russian Federation
| | - Sergei G. Zlotin
- N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky prosp. 119991 Moscow Russian Federation
| |
Collapse
|
11
|
Ye R, Sun J, Han Y, Yan CG. Molecular diversity of TEMPO-mediated cycloaddition of ketohydrazones and 3-phenacylideneoxindoles. NEW J CHEM 2021. [DOI: 10.1039/d0nj06036d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This reaction selectively proceeded via aza-Diels–Alder reaction, [3+2] cycloaddition and ring-opening of oxindole to give diverse spirooxindoles and polysubstituted pyrazoles.
Collapse
Affiliation(s)
- Rong Ye
- College of Chemistry & Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- People's Republic of China
| | - Jing Sun
- College of Chemistry & Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- People's Republic of China
| | - Ying Han
- College of Chemistry & Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- People's Republic of China
| | - Chao-Guo Yan
- College of Chemistry & Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- People's Republic of China
| |
Collapse
|
12
|
A molecular electron density theory study of polar Diels-Alder reaction between 2,4–dimethyl–5–ethoxyoxazole and ethyl 4,4,4–trifluorocrotonate. Struct Chem 2020. [DOI: 10.1007/s11224-020-01662-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Mari G, De Crescentini L, Favi G, Santeusanio S, Mantellini F. Metal and Oxidant Free Construction of Substituted‐ and/or Polycyclic Indoles: A Useful Alternative to Bischler and Related Syntheses. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Giacomo Mari
- Department of Biomolecular Sciences University of Urbino “Carlo Bo” Via I Maggetti 24 61029 Urbino (PU) Italy
| | - Lucia De Crescentini
- Department of Biomolecular Sciences University of Urbino “Carlo Bo” Via I Maggetti 24 61029 Urbino (PU) Italy
| | - Gianfranco Favi
- Department of Biomolecular Sciences University of Urbino “Carlo Bo” Via I Maggetti 24 61029 Urbino (PU) Italy
| | - Stefania Santeusanio
- Department of Biomolecular Sciences University of Urbino “Carlo Bo” Via I Maggetti 24 61029 Urbino (PU) Italy
| | - Fabio Mantellini
- Department of Biomolecular Sciences University of Urbino “Carlo Bo” Via I Maggetti 24 61029 Urbino (PU) Italy
| |
Collapse
|
14
|
Regio- and stereochemistry in the aza-Diels–Alder reaction of an azoalkene with furan and 2,3-dihydrofuran: a molecular electron density theory study. Struct Chem 2020. [DOI: 10.1007/s11224-020-01572-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Pakdel M, Raissi H, Hosseini ST. Evaluation the synergistic antitumor effect of methotrexate-camptothecin codelivery prodrug from self-assembly process to acid-catalyzed both drugs release: A comprehensive theoretical study. J Comput Chem 2020; 41:1486-1496. [PMID: 32190916 DOI: 10.1002/jcc.26192] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 12/10/2019] [Accepted: 03/09/2020] [Indexed: 12/19/2022]
Abstract
Therapeutic efficiency of amphiphilic methotrexate-camptothecin (MTX-CPT) prodrug compared to free drug mixture (MTX/CPT) has been investigated using all-atom molecular dynamics simulation and first principles density functional theory calculations. This comparison revealed that MTX-CPT prodrug tends to form spherical self-assembled nanoparticle (NP), while free MTX/CPT mixture forms rod-shape NP. These observations are attributed to a structural defect in the MTX-CPT prodrug and solvation free energies of MTX, CPT and MTX-CPT molecules. The results provided evidence that noncovalent interactions (NCIs) among the pharmaceutical drugs play a very important role in anticancer agents aggregation process, leading to enhanced stability of the self-assembled NPs. It is found that the stability of MTX-CPT self-assembled NP is greater than the MTX/CPT NP due to the synergistic effect of hydrogen bonding between monomers and solvent (water). Moreover, the noncatalyzed as well as catalyzed hydrolysis reactions of MTX-CPT prodrug are theoretically studied at the PCM(water)//M06-2X/6-31G(d,p) computational level to shed additional light on the role of acidic condition in tumor tissues. We found that the ester hydrolysis in mild acidic solutions is a concerted reaction. In an agreement between theory and experiment, we also confirmed that the activation energies of the catalyzed-hydrolysis steps are much lower than the activation energies of the corresponding steps in the noncatalyzed reaction. Thus, the MTX-CPT prodrug reveals very promising properties as a pH-controlled drug delivery system.
Collapse
Affiliation(s)
- Majid Pakdel
- Department of Chemistry, Faculty of Science, University of Birjand, Birjand, Iran
| | - Heidar Raissi
- Department of Chemistry, Faculty of Science, University of Birjand, Birjand, Iran
| | - Seyede T Hosseini
- Department of Chemistry, Faculty of Science, University of Birjand, Birjand, Iran
| |
Collapse
|
16
|
Emamian S, Domingo LR, Javad Hosseini S, Ali‐Asgari S. A Study of the Effects of the Lewis Acid Catalysts on Oxa‐Diels‐Alder Reactions through Molecular Electron Density Theory. ChemistrySelect 2020. [DOI: 10.1002/slct.202001061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Saeedreza Emamian
- Chemistry Department, Shahrood BranchIslamic Azad University Shahrood Iran
| | - Luis R. Domingo
- Department of Organic ChemistryUniversity of Valencia, Dr. Moliner 50 46100 Burjassot, Valencia Spain
| | | | - Safa Ali‐Asgari
- Chemistry Department, Shahrood BranchIslamic Azad University Shahrood Iran
| |
Collapse
|
17
|
Ye R, Yan CG. Construction of Spiro[indoline-3,3′-pyridazines] and Spiro[indene-2,3′-pyridazines] via TEMPO-Mediated Oxidative Aza-Diels-Alder Reactions. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900955] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rong Ye
- College of Chemistry & Chemical Engineering; Yangzhou University; 225002 Yangzhou China
| | - Chao-Guo Yan
- College of Chemistry & Chemical Engineering; Yangzhou University; 225002 Yangzhou China
| |
Collapse
|