1
|
Preparation of Fluorescent Carbon Dots from Chinese Herbal Medicine Alisma and Its Potential Applications in Photocatalytic Degradation of Malachite Green and Cell Imaging. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2142-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
2
|
Mei X, Chen S, Wang G, Chen W, Lu W, Zhang B, Fang Y, Qi C. Metal-free carboxyl modified g-C3N4 for enhancing photocatalytic degradation activity of organic pollutants through peroxymonosulfate activation in wastewater under solar radiation. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Ai L, Shi R, Yang J, Zhang K, Zhang T, Lu S. Efficient Combination of G-C 3 N 4 and CDs for Enhanced Photocatalytic Performance: A Review of Synthesis, Strategies, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007523. [PMID: 33683817 DOI: 10.1002/smll.202007523] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/01/2021] [Indexed: 05/14/2023]
Abstract
Recently, heterogeneous photocatalysts have achieved much interest on account of their great potential applications in resolving many tough energy and environmental troubles around the world through an ecologically sustainable way. Heterogeneous nanocomposites composed of graphitic carbon nitride (g-C3 N4 ) and carbon dots (CDs) possess broad spectrum absorption, appropriate electronic band structures, rapid carrier mobility, abundant reserves, excellent chemical stability, and facile synthesis methods, which make them promising composite photocatalysts for suitable applications such as photocatalytic solar fuels production and contaminant decomposition. With the rapid development in photocatalysis by hybridization of g-C3 N4 and CDs, a systematic summary and prospection of performance improvement are urgent and meaningful. This review first focuses on various kinds of effectively synthetic methods of composites. Following, the strategies available for enhanced performance, including morphology optimization, spectral absorption improvement, ternary or quaternary composition hybrid, lateral or vertical heterostructures construction, heteroatom doping, and so forth, are fully discussed. Then, the applications mainly in efficient photocatalytic hydrogen generation, photocatalytic carbon dioxide reduction, and organic pollutants degradation are systematically demonstrated. Finally, the remaining issues and prospect of further development are proposed as some kind of guidance for powerful combination of g-C3 N4 and CDs with high efficiency to photocatalysis.
Collapse
Affiliation(s)
- Lin Ai
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Run Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jie Yang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Kan Zhang
- MIIT Key Laboratory of Advanced Display Material and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Siyu Lu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
4
|
Xing P, Zhou F, Zhan S. Catalytic conversion of seawater to fuels: Eliminating N vacancies in g-C 3N 4 to promote photocatalytic hydrogen production. ENVIRONMENTAL RESEARCH 2021; 197:111167. [PMID: 33861976 DOI: 10.1016/j.envres.2021.111167] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/17/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
The use of solar energy to decompose seawater and produce hydrogen is of great significance in solving the energy crisis. Numerous studies have shown that vacancies can significantly improve photocatalytic activity due to their electron-rich nature. However, our recent research has shown that materials with vacancies are not suitable for photocatalytic reactions in seawater. In this study, g-C3N4 with rich N vacancies was selected as the research object, and urea was used as the precursor; in this system, the N vacancies in g-C3N4 could be effectively reduced by the addition of ZIF-8 (ZCNQx). The activity of ZCNQ40 was 5.6 times higher than that of g-C3N4 in fresh seawater, but only 3.1 times higher in freshwater. Based on the analysis of the experimental results, we believe that g-C3N4 has a limiting relationship between H+ adsorption catalysis and H2 product desorption. In addition, seawater contains many heteroatoms that will also compete with proton (H+) reduction. The results of our study show that catalysts with vacancies are not necessarily suitable for catalytic reactions in seawater media. This research will stimulate new ideas for research into the conversion of solar energy to chemical energy in seawater media.
Collapse
Affiliation(s)
- Peng Xing
- Key Laboratory of Ship-Machinery Maintenance and Manufacture for Ministry of Transport, Dalian Maritime University, Dalian, 116026, PR China
| | - Feng Zhou
- Key Laboratory of Ship-Machinery Maintenance and Manufacture for Ministry of Transport, Dalian Maritime University, Dalian, 116026, PR China.
| | - Su Zhan
- Key Laboratory of Ship-Machinery Maintenance and Manufacture for Ministry of Transport, Dalian Maritime University, Dalian, 116026, PR China
| |
Collapse
|
5
|
Bai X, Wang X, Lu X, Liang Y, Li J, Wu L, Li H, Hao Q, Ni BJ, Wang C. Surface defective g-C 3N 4-xCl x with unique spongy structure by polarization effect for enhanced photocatalytic removal of organic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122897. [PMID: 32516728 DOI: 10.1016/j.jhazmat.2020.122897] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Natural sponge is an ancient marine organism with a single lamellar structure, on which there are abundant porous channels to compose full-fledged spatial veins. Illumined by the natural spongy system, herein, the Cl doped surface defective graphite carbon nitride (g-C3N4-xClx) was constructed through microwave etching. In this process, microwave with HCl was employed to produce surface defects and peel bulk g-C3N4 to form natural spongy structured g-C3N4-xClx with three-dimensional networks. The spongy structure of the photocatalyst could provide abundant and unobstructed pathways for the transfer and separation of electron-hole pairs, and it was beneficial for photocatalytic reaction. The spongy defective g-C3N4-xClx achieved excellent degradation of diclofenac sodium (100%), bisphenol A (88.2%), phenol (85.7%) and methylene blue (97%) solution under simulated solar irradiation, respectively. The chlorine atoms were introduced into the g-C3N4 skeleton in microwave field with HCl, forming C-Cl bonds and surface polarization field, which could significantly accelerate the separation of photogenerated electrons and holes. As an efficient and universal approach, microwave etching can be generally used to create surface defects for most photocatalysts, which may have potential applications in environmental purification, energy conversion and photodynamic therapy.
Collapse
Affiliation(s)
- Xiaojuan Bai
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Advanced Innovation Center For Future Urban Design, Beijing, 100044, China.
| | - Xuyu Wang
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Xiongwei Lu
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Yunjie Liang
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Junqi Li
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Advanced Innovation Center For Future Urban Design, Beijing, 100044, China
| | - Liyuan Wu
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Advanced Innovation Center For Future Urban Design, Beijing, 100044, China
| | - Haiyan Li
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Advanced Innovation Center For Future Urban Design, Beijing, 100044, China.
| | - Qiang Hao
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Sydney, NSW 2007, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Sydney, NSW 2007, Australia
| | - Chongchen Wang
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
6
|
Wang B, Liu X, Dai S, Lu H. α−Fe
2
O
3
Nanoparticles/Porous g−C
3
N
4
Hybrids Synthesized by Calcinations of Fe‐based MOF/Melamine Mixtures for Boosting Visible‐Light Photocatalytic Tetracycline Degradation. ChemistrySelect 2020. [DOI: 10.1002/slct.201904388] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Baogang Wang
- College of Chemistry and Chemical EngineeringSouthwest Petroleum University Chengdu 610500 P. R. China
| | - Xing Liu
- College of Chemistry and Chemical EngineeringSouthwest Petroleum University Chengdu 610500 P. R. China
| | - Shanshan Dai
- College of Chemistry and Chemical EngineeringSouthwest Petroleum University Chengdu 610500 P. R. China
| | - Hongsheng Lu
- College of Chemistry and Chemical EngineeringSouthwest Petroleum University Chengdu 610500 P. R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province Chengdu 610500 P. R. China
| |
Collapse
|
7
|
Fahimirad B, Asghari A. The simple design of a new recyclable magnetic carbon graphite adsorbent based on 2-amino-5-mercapto-1,3,4-thiadiazole for the fast extraction of two anti-depressant drugs. NEW J CHEM 2020. [DOI: 10.1039/d0nj00053a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, an efficient magnetic nanoadsorbent, cubic SnFe2O4/graphitic carbon nitride (g-C3N4) modified by 2-amino-5-mercapto-1,3,4-thiadiazole (AMT), was synthesized.
Collapse
Affiliation(s)
| | - Alireza Asghari
- Department of Chemistry
- Semnan University
- Semnan 35195-363
- Iran
| |
Collapse
|