1
|
Xu X, Wang H, Tan CH, Ye X. Applications of Vanadium, Niobium, and Tantalum Complexes in Organic and Inorganic Synthesis. ACS ORGANIC & INORGANIC AU 2022; 3:74-91. [PMID: 37035284 PMCID: PMC10080730 DOI: 10.1021/acsorginorgau.2c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022]
Abstract
Organometallic catalysis is a powerful strategy in chemical synthesis, especially with the cheap and low toxic metals based on green chemistry principle. Thus, the selection of the metal is particularly important to plan relevant and applicable processes. The group VB metals have been the subject of exciting and significant advances in both organic and inorganic synthesis. In this Review, we have summarized some reports from recent decades, which are about the development of group VB metals utilized in various types of reactions, such as oxidation, reduction, alkylation, dealkylation, polymerization, aromatization, protein synthesis, and practical water splitting.
Collapse
Affiliation(s)
- Xinru Xu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| | - Choon-Hong Tan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Xinyi Ye
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| |
Collapse
|
2
|
A Direct Method for the Efficient Synthesis of Hydroxyalkyl-Containing Azoxybenzenes. MOLBANK 2022. [DOI: 10.3390/m1384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Reaction of nitrobenzyl alcohol with glucose (200 mol%) in the presence of NaOH in water-ethanol medium gave 1,2-bis(4-(hydroxymethyl)phenyl)diazene oxide, 1,2-bis(2-(hydroxymethyl)phenyl)diazene oxide and 1,2-bis(4-(1-hydroxyethyl)phenyl)diazene oxide in 76%, 76% and 72% yields, respectively.
Collapse
|
3
|
Ding B, Xu B, Ding Z, Zhang T, Wang Y, Qiu H, He J, An P, Yao Y, Hou Z. Catalytic selective oxidation of aromatic amines to azoxy derivatives with an ultralow loading of peroxoniobate salts. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01137a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tartaric acid-coordinated peroxoniobate salts demonstrate an exceptionally high TOF value (up to 4435 h−1) even at an ultralow catalyst loading for the oxidation of aromatic amines to azoxy compounds under green and very mild conditions.
Collapse
Affiliation(s)
- Bingjie Ding
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Beibei Xu
- Physics Department and Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China
| | - Zuoji Ding
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tong Zhang
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yajun Wang
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hewen Qiu
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jingjing He
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Pengfei An
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing Synchrotron Radiation Facility (BSRF), Beijing 100049, China
| | - Yefeng Yao
- Physics Department and Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China
| | - Zhenshan Hou
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, School of Chemistry and Molecular Engineering, Shanghai 200062, China
| |
Collapse
|
4
|
Granato ÁS, de Carvalho GSG, Fonseca CG, Adrio J, Leitão AA, Amarante GW. On the mixed oxides-supported niobium catalyst towards benzylamine oxidation. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Sustainable production of fuels and chemicals from biomass over niobium based catalysts: A review. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.10.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
6
|
Su K, Liu H, Gao Z, Fornasiero P, Wang F. Nb 2O 5-Based Photocatalysts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003156. [PMID: 33898172 PMCID: PMC8061393 DOI: 10.1002/advs.202003156] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/23/2020] [Indexed: 05/02/2023]
Abstract
Photocatalysis is one potential solution to the energy and environmental crisis and greatly relies on the development of the catalysts. Niobium pentoxide (Nb2O5), a typically nontoxic metal oxide, is eco-friendly and exhibits strong oxidation ability, and has attracted considerable attention from researchers. Furthermore, unique Lewis acid sites (LASs) and Brønsted acid sites (BASs) are observed on Nb2O5 prepared by different methods. Herein, the recent advances in the synthesis and application of Nb2O5-based photocatalysts, including the pure Nb2O5, doped Nb2O5, metal species supported on Nb2O5, and other composited Nb2O5 catalysts, are summarized. An overview is provided for the role of size and crystalline phase, unsaturated Nb sites and oxygen vacancies, LASs and BASs, dopants and surface metal species, and heterojunction structure on the Nb2O5-based catalysts in photocatalysis. Finally, the challenges are also presented, which are possibly overcome by integrating the synthetic methodology, developing novel photoelectric characterization techniques, and a profound understanding of the local structure of Nb2O5.
Collapse
Affiliation(s)
- Kaiyi Su
- State Key Laboratory of Catalysis (SKLC)Dalian National Laboratory for Clean Energy (DNL)Dalian Institute of Chemical Physics (DICP)Chinese Academy of SciencesDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
| | - Huifang Liu
- State Key Laboratory of Catalysis (SKLC)Dalian National Laboratory for Clean Energy (DNL)Dalian Institute of Chemical Physics (DICP)Chinese Academy of SciencesDalian116023China
| | - Zhuyan Gao
- State Key Laboratory of Catalysis (SKLC)Dalian National Laboratory for Clean Energy (DNL)Dalian Institute of Chemical Physics (DICP)Chinese Academy of SciencesDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical SciencesINSTM ‐ Trieste and ICCOM ‐ CNR TriesteUniversity of TriesteVia L. Giorgieri 1Trieste34127Italy
| | - Feng Wang
- State Key Laboratory of Catalysis (SKLC)Dalian National Laboratory for Clean Energy (DNL)Dalian Institute of Chemical Physics (DICP)Chinese Academy of SciencesDalian116023China
| |
Collapse
|
7
|
Morawa Eblagon K, Malaika A, Ptaszynska K, Pereira MFR, Figueiredo JL. Impact of Thermal Treatment of Nb 2O 5 on Its Performance in Glucose Dehydration to 5-Hydroxymethylfurfural in Water. NANOMATERIALS 2020; 10:nano10091685. [PMID: 32867154 PMCID: PMC7559716 DOI: 10.3390/nano10091685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/14/2020] [Accepted: 08/21/2020] [Indexed: 11/16/2022]
Abstract
The cascade dehydration of glucose to 5-hydroxymethylfurfural (HMF) was carried out in water over a series of Nb2O5 catalysts, which were derived from the thermal treatment of niobic acid at 300 and 550 °C, under air or inert atmosphere. Amorphous niobic acid showed high surface area (366 m2/g) and large acidity (2.35 mmol/g). With increasing the temperature of the thermal treatment up to 550 °C, the amorphous Nb2O5 was gradually transformed into a pseudohexagonal phase, resulting in a decrease in surface area (27-39 m2/g) and total acidity (0.05-0.19 mmol/g). The catalysts' performance in cascade dehydration of glucose realized in pure water was strongly influenced by the total acidity of these materials. A remarkable yield of 37% HMF in one-pot reaction in water was achieved using mesoporous amorphous niobium oxide prepared by thermal treatment of niobic acid at 300 °C in air. The best-performing catalyst displayed a total acidity lower than niobic acid (1.69 mmol/g) which afforded a correct balance between a high glucose conversion and limited further conversion of the target product to numerous polymers and humins. On the other hand, the treatment of niobic acid at 550 °C, independently of the atmosphere used during the sample preparation (i.e., air or N2), resulted in Nb2O5 catalysts with a high ratio of Lewis to Brønsted acid sites and poor total acidity. These materials excelled at catalyzing the isomerization step in the tandem process.
Collapse
Affiliation(s)
- Katarzyna Morawa Eblagon
- Associate Laboratory LSRE-LCM, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal; (K.P.); (M.F.R.P.); (J.L.F.)
- Correspondence: (K.M.E.); (A.M.)
| | - Anna Malaika
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
- Correspondence: (K.M.E.); (A.M.)
| | - Karolina Ptaszynska
- Associate Laboratory LSRE-LCM, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal; (K.P.); (M.F.R.P.); (J.L.F.)
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Manuel Fernando R. Pereira
- Associate Laboratory LSRE-LCM, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal; (K.P.); (M.F.R.P.); (J.L.F.)
| | - José Luís Figueiredo
- Associate Laboratory LSRE-LCM, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal; (K.P.); (M.F.R.P.); (J.L.F.)
| |
Collapse
|
8
|
de Carvalho GSG, de Siqueira MM, do Nascimento MP, de Oliveira MAL, Amarante GW. Nb 2O 5 supported in mixed oxides catalyzed mineralization process of methylene blue. Heliyon 2020; 6:e04128. [PMID: 32529083 PMCID: PMC7281808 DOI: 10.1016/j.heliyon.2020.e04128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/07/2020] [Accepted: 06/01/2020] [Indexed: 01/19/2023] Open
Abstract
Heterogeneous photocatalysis has become a significant green technology for water treatment. The application of Nb2O5 catalyst for the photodegradation of contaminants has merged as an important tool to this process. Furthermore, it is known that catalytic phases supported on metal oxides are an alternative method for enhancing its activity. In this work, supported Nb2O5 on mixed oxides as catalyst was applied to degrade methylene blue dye, leading to almost 100% of dye degradation without the need of any additives, after only three hours of sunlight exposure. The effect of catalyst concentration, exposure time and light source were investigated. The best catalyst activity was found at 1.5 g L-1 and for higher catalyst concentrations the degradation was kept constant. Plausible intermediates of this degradation process were observed and characterized by NMR, LC/MS and CZE techniques. After degradation, the catalyst was recovered and could be further re-applied in other three reaction cycles without significant loss of catalytic activity.
Collapse
|