1
|
Maduraiveeran G. Enzyme-free electrochemical sensor platforms based on transition metal nanostructures for clinical diagnostics. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6620-6630. [PMID: 38047319 DOI: 10.1039/d3ay01849k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The detection of emergent biomarkers is of key significance in numerous clinical, biological, and biomedical fields. Specifically, the design and development of potent electrochemical lactic acid and glucose sensing platforms are especially in great demand in a variety of industries, including those involved in clinical analysis, biomedicine, biological, food, cosmetics, pharmaceuticals, leather, sports, and chemical industries. Nanostructured transition metal-derived materials have opened the door to electrochemical sensors and biosensors due to their advantages of high surface-to-volume ratio, surface reaction activity, catalytic activity, and strong adsorption capability. The primary aim of the present minireview is to highlight the advancement of enzyme-free electrochemical sensor platforms based on transition metal-derived nanostructures with high electrocatalytic activity and sensing performance towards lactic acid and glucose in practical samples. The preparation approaches, structural and composition monitoring, fabrication of sensing electrodes, catalytic activity, sensing performance in real samples, and the exploration of sensing mechanisms are majorly concentrated on in most of our recent research studies. Moreover, state-of-the-art transition metal-derived nanostructure-derived electrochemical sensor platforms, critical comparison of the analytical performance of the sensor platforms, and the future perspectives of the enzyme-free electrochemical sensor for clinical diagnostics are described.
Collapse
Affiliation(s)
- Govindhan Maduraiveeran
- Materials Electrochemistry Laboratory, Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Chengalpattu, Tamil Nadu, India.
| |
Collapse
|
2
|
Kannan P, Maduraiveeran G. Metal Oxides Nanomaterials and Nanocomposite-Based Electrochemical Sensors for Healthcare Applications. BIOSENSORS 2023; 13:bios13050542. [PMID: 37232903 DOI: 10.3390/bios13050542] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/17/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023]
Abstract
Wide-ranging research efforts have been directed to prioritize scientific and technological inventions for healthcare monitoring. In recent years, the effective utilization of functional nanomaterials in various electroanalytical measurements realized a rapid, sensitive, and selective detection and monitoring of a wide range of biomarkers in body fluids. Owing to good biocompatibility, high organic capturing ability, strong electrocatalytic activity, and high robustness, transition metal oxide-derived nanocomposites have led to enhancements in sensing performances. The aim of the present review is to describe key advancements of transition metal oxide nanomaterials and nanocomposites-based electrochemical sensors, along with current challenges and prospects towards the development of a highly durable and reliable detection of biomarkers. Moreover, the preparation of nanomaterials, electrode fabrication, sensing mechanism, electrode-bio interface, and performance of metal oxides nanomaterials and nanocomposite-based sensor platforms will be described.
Collapse
Affiliation(s)
- Palanisamy Kannan
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Govindhan Maduraiveeran
- Materials Electrochemistry Laboratory, Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| |
Collapse
|
3
|
Chi L, Zhang C, Wu X, Qian X, Sun H, He M, Guo C. Research Progress on Biomimetic Nanomaterials for Electrochemical Glucose Sensors. Biomimetics (Basel) 2023; 8:biomimetics8020167. [PMID: 37092419 PMCID: PMC10123724 DOI: 10.3390/biomimetics8020167] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023] Open
Abstract
Diabetes has become a chronic disease that necessitates timely and accurate detection. Among various detection methods, electrochemical glucose sensors have attracted much attention because of low cost, real-time detection, and simple and easy operation. Nonenzymatic biomimetic nanomaterials are the vital part in electrochemical glucose sensors. This review article summarizes the methods to enhance the glucose sensing performance of noble metal, transition metal oxides, and carbon-based materials and introduces biomimetic nanomaterials used in noninvasive glucose detection in sweat, tear, urine, and saliva. Based on these, this review provides the foundation for noninvasive determination of trace glucose for diabetic patients in the future.
Collapse
Affiliation(s)
- Lili Chi
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Chunmei Zhang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xuanyu Wu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xianghao Qian
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Hao Sun
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Mengru He
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Chunxian Guo
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
4
|
Jannath KA, Karim MM, Saputra HA, Seo K, Kim KB, Shim Y. A review on the recent advancements in nanomaterials for
nonenzymatic
lactate sensing. B KOREAN CHEM SOC 2023. [DOI: 10.1002/bkcs.12678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Khatun A. Jannath
- Department of Chemistry Pusan National University Busan Republic of Korea
| | - Md Mobarok Karim
- Department of Chemistry Pusan National University Busan Republic of Korea
| | - Heru Agung Saputra
- Department of Chemistry Pusan National University Busan Republic of Korea
| | - Kyeong‐Deok Seo
- Department of Chemistry Pusan National University Busan Republic of Korea
| | - Kwang Bok Kim
- Digital Health Care R&D Department Korea Institute of Industrial Technology (KITECH) Cheonan Republic of Korea
| | - Yoon‐Bo Shim
- Department of Chemistry Pusan National University Busan Republic of Korea
| |
Collapse
|
5
|
Michaud SE, Barber MM, Rivera Cruz KE, McCrory CCL. Electrochemical Oxidation of Primary Alcohols Using a Co 2NiO 4 Catalyst: Effects of Alcohol Identity and Electrochemical Bias on Product Distribution. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Samuel E. Michaud
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan48109-1055, United States
| | - Michaela M. Barber
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan48109-1055, United States
| | - Kevin E. Rivera Cruz
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan48109-1055, United States
| | - Charles C. L. McCrory
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan48109-1055, United States
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan48109-1055, United States
| |
Collapse
|
6
|
Electrochemical oxidation of meglumine in a pharmaceutical formulation using a nanocomposite anode. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Białas K, Moschou D, Marken F, Estrela P. Electrochemical sensors based on metal nanoparticles with biocatalytic activity. Mikrochim Acta 2022; 189:172. [PMID: 35364739 PMCID: PMC8975783 DOI: 10.1007/s00604-022-05252-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/26/2022] [Indexed: 01/06/2023]
Abstract
Biosensors have attracted a great deal of attention, as they allow for the translation of the standard laboratory-based methods into small, portable devices. The field of biosensors has been growing, introducing innovations into their design to improve their sensing characteristics and reduce sample volume and user intervention. Enzymes are commonly used for determination purposes providing a high selectivity and sensitivity; however, their poor shelf-life is a limiting factor. Researchers have been studying the possibility of substituting enzymes with other materials with an enzyme-like activity and improved long-term stability and suitability for point-of-care biosensors. Extra attention is paid to metal and metal oxide nanoparticles, which are essential components of numerous enzyme-less catalytic sensors. The bottleneck of utilising metal-containing nanoparticles in sensing devices is achieving high selectivity and sensitivity. This review demonstrates similarities and differences between numerous metal nanoparticle-based sensors described in the literature to pinpoint the crucial factors determining their catalytic performance. Unlike other reviews, sensors are categorised by the type of metal to study their catalytic activity dependency on the environmental conditions. The results are based on studies on nanoparticle properties to narrow the gap between fundamental and applied research. The analysis shows that the catalytic activity of nanozymes is strongly dependent on their intrinsic properties (e.g. composition, size, shape) and external conditions (e.g. pH, type of electrolyte, and its chemical composition). Understanding the mechanisms behind the metal catalytic activity and how it can be improved helps designing a nanozyme-based sensor with the performance matching those of an enzyme-based device.
Collapse
Affiliation(s)
- Katarzyna Białas
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio), University of Bath, Bath, BA2 7AY, UK.,Department of Electronic and Electrical Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Despina Moschou
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio), University of Bath, Bath, BA2 7AY, UK.,Department of Electronic and Electrical Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Frank Marken
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio), University of Bath, Bath, BA2 7AY, UK.,Department of Chemistry, University of Bath, Bath, BA2 7AY, UK
| | - Pedro Estrela
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio), University of Bath, Bath, BA2 7AY, UK. .,Department of Electronic and Electrical Engineering, University of Bath, Bath, BA2 7AY, UK.
| |
Collapse
|
8
|
Elghamry I, Al-Jendan SA, Saleh MM, Abdelsalam ME. Bimetallic nickel/manganese phosphate–carbon nanofiber electrocatalyst for the oxidation of formaldehyde in alkaline medium. RSC Adv 2022; 12:20656-20671. [PMID: 35919157 PMCID: PMC9292137 DOI: 10.1039/d2ra03359c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/09/2022] [Indexed: 11/30/2022] Open
Abstract
The development of earth-abundant transition metal-based catalysts, supported by a conductive carbonaceous matrix, has received great attention in the field of conversion of formaldehyde derivatives into toxic-free species. Herein, we report a comprehensive investigation of bimetallic electrocatalyst activity towards the electrooxidation of formaldehyde. The bimetallic phosphate catalyst is prepared by co-precipitation of Ni and Mn phosphate precursors using a simple reflux approach. Then the bimetallic catalyst is produced by mixing the Ni/Mn with carbon fibres (CNFs). The structural properties and crystallinity of the catalyst were investigated by using several techniques, such as scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, and Brunauer Emmett−Teller theory. The system performance was studied under potentiostatic conditions. Some theoretical thermodynamic and kinetic models were applied to assess the system performance. Accordingly, key electrochemical parameters, including surface coverage (Γ) of active species, charge transfer rate (ks), diffusion coefficient of the formaldehyde (D), and catalytic rate constant (kcat) were calculated at Γ = 1.690 × 10−4 mmol cm−2, ks = 1.0800 s−1, D = 1.185 × 10−3 cm2 s−1 and kcat = 1.08 × 105 cm3 mol−1 s−1. These findings demonstrate the intrinsic electrocatalytic activity of formaldehyde electrooxidation on nickel/manganese phosphate- CNFs in alkaline medium. The catalytic performance of bimetallic Ni/Mn phosphate–carbon nanofiber composite catalyst is better than mono metallic catalysts toward electrooxidation of formaldehyde.![]()
Collapse
Affiliation(s)
- Ibrahim Elghamry
- Department of Chemistry, College of Science, King Faisal University, P. O. Box 400, Al-Ahsa, 31982, Saudi Arabia
| | - Samya A. Al-Jendan
- Department of Chemistry, College of Science, King Faisal University, P. O. Box 400, Al-Ahsa, 31982, Saudi Arabia
| | - M. M. Saleh
- Department of Chemistry, College of Science, King Faisal University, P. O. Box 400, Al-Ahsa, 31982, Saudi Arabia
| | - Mamdouh E. Abdelsalam
- Department of Chemistry, College of Science, King Faisal University, P. O. Box 400, Al-Ahsa, 31982, Saudi Arabia
| |
Collapse
|
9
|
Liu Y, Liu P, Men YL, Li Y, Peng C, Xi S, Pan YX. Incorporating MoO 3 Patches into a Ni Oxyhydroxide Nanosheet Boosts the Electrocatalytic Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26064-26073. [PMID: 34038083 DOI: 10.1021/acsami.1c05660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The electrocatalytic oxygen evolution reaction from H2O (OER) is essential in a number of areas like electrocatalytic hydrogen production from H2O. A Ni oxyhydroxide nanosheet (NiNS) is among the most widely studied OER catalysts but still suffers from low activity, sluggish kinetics, and poor stability. Herein, we incorporate MoO3 patches into NiNS to form a nanosheet with an intimate Ni-Mo interface (NiMoNS) for the OER. The overpotential at 10 mA cm-2 and Tafel slope on NiMoNS (260 mV, 54.7 mV dec-1) are lower than those on NiNS (296 mV, 89.3 mV dec-1), implying that higher activity and faster kinetics are achieved on NiMoNS. There is no change in electrocatalytic efficiency of NiMoNS after 18 h of OER, but the electrocatalytic efficiency of NiNS decreases by 56% after only 8 h of OER. Thus, NiMoNS has better stability. The intimate Ni-Mo interface promotes two-dimensional lateral growth of NiMoNS to form a surface area 1.5 times larger than that of NiNS, and facilitates electron transfer from Ni to Mo. This makes the Ni3+/Ni2+ ratio on the NiMoNS surface (1.32) higher than that on the NiNS surface (0.68). Moreover, the Ni3+/Ni2+ ratio on NiMoNS surface increases to 1.81 after 18 h of OER but the Ni3+/Ni2+ ratio on the NiNS surface decreases to 0.51 after 8 h of OER. Therefore, the NiMoNS surface has more abundant and stable Ni3+ sites which are catalytically active toward OER. This could be the reason for the enhanced activity, kinetics, and stability of NiMoNS. The results are very valuable for fabricating more efficient catalysts for electrocatalysis.
Collapse
Affiliation(s)
- Yi Liu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peng Liu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu-Long Men
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yibao Li
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Chong Peng
- Dalian Research Institute of Petroleum and Petrochemicals, SINOPEC, Dalian 116045, Liaoning, China
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, A*STAR, 1 Pesek Road, Jurong Island, 627833 Singapore
| | - Yun-Xiang Pan
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
10
|
Arivazhagan M, Manova Santhosh Y, Maduraiveeran G. Non-Enzymatic Glucose Detection Based on NiS Nanoclusters@NiS Nanosphere in Human Serum and Urine. MICROMACHINES 2021; 12:403. [PMID: 33916480 PMCID: PMC8067435 DOI: 10.3390/mi12040403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/23/2021] [Accepted: 04/02/2021] [Indexed: 11/25/2022]
Abstract
Herein, we report a non-enzymatic electrochemical glucose sensing platform based on NiS nanoclusters dispersed on NiS nanosphere (NC-NiS@NS-NiS) in human serum and urine samples. The NC-NiS@NS-NiS are directly grown on nickel foam (NF) (NC-NiS@NS-NiS|NF) substrate by a facile, and one-step electrodeposition strategy under acidic solution. The as-developed nanostructured NC-NiS@NS-NiS|NF electrode materials successfully employ as the enzyme-mimic electrocatalysts toward the improved electrocatalytic glucose oxidation and sensitive glucose sensing. The NC-NiS@NS-NiS|NF electrode presents an outstanding electrocatalytic activity and sensing capability towards the glucose owing to the attribution of great double layer capacitance, excessive electrochemical active surface area (ECASA), and high electrochemical active sites. The present sensor delivers a limit of detection (LOD) of ~0.0083 µM with a high sensitivity of 54.6 µA mM-1 cm-2 and a wide linear concentration range (20.0 µM-5.0 mM). The NC-NiS@NS-NiS|NF-based sensor demonstrates the good selectivity against the potential interferences and shows high practicability by glucose sensing in human urine and serum samples.
Collapse
Affiliation(s)
| | | | - Govindhan Maduraiveeran
- Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India; (M.A.); (Y.M.S.)
| |
Collapse
|
11
|
Li L, Zhang B, Wang S, Fan F, Chen J, Li Y, Fu Y. Bimetallic NiCo Metal-Organic Framework-Derived Hierarchical Spinel NiCo2O4 Microflowers for Efficient Non-Enzymatic Glucose Sensing. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200344] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Linlin Li
- College of Science, Northeastern University, Shenyang 100819, P. R. China
| | - Bing Zhang
- College of Science, Northeastern University, Shenyang 100819, P. R. China
| | - Sha Wang
- College of Science, Northeastern University, Shenyang 100819, P. R. China
| | - Fuqiang Fan
- College of Science, Northeastern University, Shenyang 100819, P. R. China
| | - Junyi Chen
- College of Life Science, Tarim University, Xinjiang Uygur Autonomous Region, Alaer 843300, P. R. China
| | - Yunong Li
- College of Science, Northeastern University, Shenyang 100819, P. R. China
| | - Yu Fu
- College of Science, Northeastern University, Shenyang 100819, P. R. China
| |
Collapse
|
12
|
Peng X, Nie X, Zhang L, Liang T, Liu Y, Liu P, Men YL, Niu L, Zhou J, Cui D, Pan YX. Carbon-Coated Tungsten Oxide Nanospheres Triggering Flexible Electron Transfer for Efficient Electrocatalytic Oxidation of Water and Glucose. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56943-56953. [PMID: 33307676 DOI: 10.1021/acsami.0c13547] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Electrocatalytic oxidation of water (i.e., oxygen evolution reaction, OER) plays crucial roles in energy, environment, and biomedicine. It is a key factor affecting the efficiencies of electrocatalytic reactions conducted in aqueous solution, e.g., electrocatalytic water splitting and glucose oxidation reaction (GOR). However, electrocatalytic OER still suffers from problems like high overpotential, sluggish kinetics, and over-reliance on expensive noble-metal-based catalysts. Herein, 15 nm thick carbon-based shell coated tungsten oxide (CTO) nanospheres are loaded on nickel foam to form CTO/NF. An enhanced electrocatalytic OER is triggered on CTO/NF, with the overpotential at 50 mA cm-2 (317 mV) and the Tafel slope (70 mV dec-1) on CTO/NF lower than those on pure tungsten oxide (360 mV, 117 mV dec-1) and noble-metal-based IrO2 catalysts (328 mV, 96 mV dec-1). A promoted electrocatalytic GOR is also achieved on CTO/NF, with efficiency as high as 189 μA mM-1 cm-2. The carbon-based shell on CTO is flexible for electron transfer between catalyst and reactants and provides catalytically active sites. This improves reactant adsorption and O-H bond dissociation on the catalyst, which are key steps in OER and GOR. The carbon-based shell on CTO retains the catalyst as nanospheres with a higher surface area, which facilitates OER and GOR. It is the multiple roles of the carbon-based shell that increases the electrocatalytic efficiency. These results are helpful for fabricating more efficient noble-metal-free electrocatalysts.
Collapse
Affiliation(s)
- Xingcui Peng
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xuezhong Nie
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lei Zhang
- Department of Vascular Surgery, Changhai Hospital, Navy Medical University, Shanghai 200433, P. R. China
| | - Taiping Liang
- Department of Vascular Surgery, Changhai Hospital, Navy Medical University, Shanghai 200433, P. R. China
| | - Yi Liu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Peng Liu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yu-Long Men
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Lin Niu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jian Zhou
- Department of Vascular Surgery, Changhai Hospital, Navy Medical University, Shanghai 200433, P. R. China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- National Engineering Research Center for Nanotechnology, Shanghai 200241, P. R. China
| | - Yun-Xiang Pan
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- National Engineering Research Center for Nanotechnology, Shanghai 200241, P. R. China
| |
Collapse
|
13
|
Bhosale SV, Al Kobaisi M, Jadhav RW, Jones LA. Flower-Like Superstructures: Structural Features, Applications and Future Perspectives. CHEM REC 2020; 21:257-283. [PMID: 33215848 DOI: 10.1002/tcr.202000129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/20/2022]
Abstract
Mimicking natural objects such as flowers, is an objective of scientists not only because of their attractive appearance, but also to understand the natural phenomena that underpin real world applications such as drug delivery, enzymatic reactions, electronics, and catalysis, to name few. This article reviews the types, preparation methods, and structural features of flower-like structures along with their key applications in various fields. We discuss the various types of flower-like structures composed of inorganic, organic-inorganic hybrid, inorganic-protein, inorganic-enzyme and organic compositions. We also discuss recent development in flower-like structures prepared by self-assembly approaches. Finally, we conclude our review with the future prospects of flower-like micro-structures in key fields, being biomedicine, sensing and catalysis.
Collapse
Affiliation(s)
| | - Mohammad Al Kobaisi
- School of Applied Sciences, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Ratan W Jadhav
- School of Chemical Sciences, Goa University, Goa, 403206, India
| | - Lathe A Jones
- School of Applied Sciences, RMIT University, Melbourne, Victoria, 3001, Australia
| |
Collapse
|
14
|
Hollow sphere nickel sulfide nanostructures-based enzyme mimic electrochemical sensor platform for lactic acid in human urine. Mikrochim Acta 2020; 187:468. [PMID: 32700244 DOI: 10.1007/s00604-020-04431-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/07/2020] [Indexed: 12/22/2022]
Abstract
An enzyme-free electrochemical sensor platform is reported based on hollow sphere structured nickel sulfide (HS-NiS) nanomaterials for the sensitive lactic acid (LA) detection in human urine. Hollow sphere nickel sulfide nanostructures directly grow on the nickel foam (NiF) substrate by using facile and one-step electrochemical deposition strategy towards the electrocatalytic lactic acid oxidation and sensing for the first time. The as-developed nickel sulfide nanostructured electrode (NiF/HS-NiS) has been successfully employed as the enzyme mimic electrode towards the enhanced electrocatalytic oxidation and detection of lactic acid. The NiF/HS-NiS electrode exhibits an excellent electrocatalytic activity and sensing ability with low positive potential (~ 0.52 V vs Ag/AgCl), catalytic current density (~ 1.34 mA), limit of detection (LOD) (0.023 μM), linear range from 0.5 to 88.5 μM with a correlation coefficient of R2 = 0.98, sensitivity (0.655 μA μM-1 cm-2), and selectivity towards the lactic acid owing to the ascription of high inherent electrical conductivity, large electrochemical active surface area (ECASA), high electrochemical active sites, and strong adsorption ability. The sensors developed in this work demonstrate the selectivity against potential interferences, including uric acid (UA), ascorbic acid (AA), paracetamol (PA), Mg2+, Na+, and Ca2+. Furthermore, the developed sensors show practicability by sensing lactic acid in human urine samples, suggesting that the HS-NiS nanostructures device has promising clinical diagnostic potential. Graphical abstract.
Collapse
|
15
|
Rahmani K, Habibi B. Electrofabrication of the Ternary NiCuFe Alloy Nanoparticles/ERGO Nanocomposite: Effective Electrooxidation of the Glucose and Glycerol in Alkaline Media. ChemistrySelect 2020. [DOI: 10.1002/slct.202001561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kaveh Rahmani
- Electroanalytical Chemistry LaboratoryDepartment of Chemistry, Faculty of SciencesAzarbaijan Shahid Madani University Tabriz 53714-161 Iran
| | - Biuck Habibi
- Electroanalytical Chemistry LaboratoryDepartment of Chemistry, Faculty of SciencesAzarbaijan Shahid Madani University Tabriz 53714-161 Iran
| |
Collapse
|
16
|
Kumar R. NiCo 2O 4 Nano-/Microstructures as High-Performance Biosensors: A Review. NANO-MICRO LETTERS 2020; 12:122. [PMID: 34138118 PMCID: PMC7770908 DOI: 10.1007/s40820-020-00462-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/28/2020] [Indexed: 05/13/2023]
Abstract
Non-enzymatic biosensors based on mixed transition metal oxides are deemed as the most promising devices due to their high sensitivity, selectivity, wide concentration range, low detection limits, and excellent recyclability. Spinel NiCo2O4 mixed oxides have drawn considerable attention recently due to their outstanding advantages including large specific surface area, high permeability, short electron, and ion diffusion pathways. Because of the rapid development of non-enzyme biosensors, the current state of methods for synthesis of pure and composite/hybrid NiCo2O4 materials and their subsequent electrochemical biosensing applications are systematically and comprehensively reviewed herein. Comparative analysis reveals better electrochemical sensing of bioanalytes by one-dimensional and two-dimensional NiCo2O4 nano-/microstructures than other morphologies. Better biosensing efficiency of NiCo2O4 as compared to corresponding individual metal oxides, viz. NiO and Co3O4, is attributed to the close intrinsic-state redox couples of Ni3+/Ni2+ (0.58 V/0.49 V) and Co3+/Co2+ (0.53 V/0.51 V). Biosensing performance of NiCo2O4 is also significantly improved by making the composites of NiCo2O4 with conducting carbonaceous materials like graphene, reduced graphene oxide, carbon nanotubes (single and multi-walled), carbon nanofibers; conducting polymers like polypyrrole (PPy), polyaniline (PANI); metal oxides NiO, Co3O4, SnO2, MnO2; and metals like Au, Pd, etc. Various factors affecting the morphologies and biosensing parameters of the nano-/micro-structured NiCo2O4 are also highlighted. Finally, some drawbacks and future perspectives related to this promising field are outlined.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Chemistry, Jagdish Chandra DAV College, Dasuya, Distt. Hoshiarpur, 144205, Punjab, India.
| |
Collapse
|
17
|
Shankar A, Elakkiya R, Maduraiveeran G. Self-supported fabrication and electrochemical water splitting study of transition-metal sulphide nanostructured electrodes. NEW J CHEM 2020. [DOI: 10.1039/d0nj00192a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metal sulphide (TMS) nanostructures exhibit the electrocatalytic OER activity following the order: FeS > CoS > NiS > CuS.
Collapse
Affiliation(s)
- Ayyavu Shankar
- Materials Electrochemistry Laboratory
- Department of Chemistry
- SRM Institute of Science and Technology
- Kattankulathur
- India
| | - Rajasekaran Elakkiya
- Materials Electrochemistry Laboratory
- Department of Chemistry
- SRM Institute of Science and Technology
- Kattankulathur
- India
| | - Govindhan Maduraiveeran
- Materials Electrochemistry Laboratory
- Department of Chemistry
- SRM Institute of Science and Technology
- Kattankulathur
- India
| |
Collapse
|