1
|
Duraisamy DK, Chellani S, Saveri P, Deshpande AP, Shanmugam G. Boosting Supramolecular Gelation Efficiency and Properties: Ionic Strength as a Key to Superior Hydrogels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:26114-26124. [PMID: 39620358 DOI: 10.1021/acs.langmuir.4c03594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Controlling the minimum gelation concentration (MGC) of low molecular weight (LMW) hydrogelators is a key for modulating gel properties, such as mechanical strength, viscoelasticity, and stability, which are crucial for applications ranging from drug delivery to tissue engineering. However, tweaking the MGC under specific conditions, such as pH and/or temperature, poses a considerable challenge. Herein, we varied the ionic strength of buffer solutions using NaCl for several LMW hydrogelators, including Fmoc-Phe, Fmoc-Tyr, Fmoc-Trp, Fmoc-Met, and Fmoc-Cha, and assessed their gelation efficiency at pH 7.4 and ambient temperature. Interestingly, Fmoc-Phe demonstrated a ∼67% (3-fold) MGC reduction, from 0.24 to 0.08 wt %, at 500 mM NaCl, transforming it a "super hydrogelator" (MGC < 0.1 wt %), while Fmoc-Trp showed 60% MGC reduction. Higher ionic strength effectively shields the electrostatic repulsion between negatively charged (-COO-) groups on the Fmoc-Phe, promoting closer aggregation and more efficient self-assembly and allowing for gelation at lower concentrations. In contrast, Fmoc-Met, Fmoc-Cha, and Fmoc-Tyr precipitated in the presence of NaCl, suggesting that NaCl specifically modulates the MGC of Fmoc-amino acid gelators containing unsubstituted aromatic side chains. Furthermore, these results indicate that cation-π interactions likely play a role, alongside carboxylic acid neutralization. While Fmoc-Phe forms gels in the presence of other monovalent cations, it does not form a hydrogel in the presence of divalent (CaCl2) and trivalent (AlCl3), indicating that enhancement of hydrogelation is specific to monovalent cations. Although the fibrillar structure of Fmoc-Phe hydrogels remained consistent, addition of NaCl increased fibril stickiness, creating densely packed networks that modulate the mechanical strength. Unlike typical cases where increased ionic strength leads to precipitation, Fmoc-Phe gelation at high NaCl concentrations (150-500 mM) is significant, yielding a robust supramolecular hydrogel that remains stable in high ionic-strength environments. This outcome suggests that ionic strength could be a valuable factor to enhance the efficient gelation of LMW hydrogelators.
Collapse
Affiliation(s)
- Dinesh Kumar Duraisamy
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sneh Chellani
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai 600020, India
| | - Puchalapalli Saveri
- Department of Chemical Engineering, Indian Institute of Technology Madras, Adyar, Chennai 600036, India
| | - Abhijit P Deshpande
- Department of Chemical Engineering, Indian Institute of Technology Madras, Adyar, Chennai 600036, India
| | - Ganesh Shanmugam
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Unnikrishnan AC, Das BK, Saveri P, Mani E, Deshpande AP, Shanmugam G. Efficiency Enhancement in Peptide Hydrogelators: The Crucial Role of Side Chain Hydrogen Bonding Over Aromatic π-π Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24405-24418. [PMID: 39446343 DOI: 10.1021/acs.langmuir.4c02972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Short peptide assemblies that form supramolecular hydrogels are stabilized by both intermolecular noncovalent interactions among amino acid side chains and hydrogen bonding between peptide backbone amides. Previous research has emphasized the inclusion of aromatic amino acids in short peptide sequences, positing that aromatic π-π interactions contribute significantly to inducing efficient hydrogelation i.e., at low minimum gelation concentrations (MGCs). However, herein, we demonstrate that additional hydrogen bonding interactions from amino acid side chains play a more pivotal role in the efficiency of peptide hydrogelation compared to aromatic π-π interactions. We investigated two sets of Fluorenylmethoxycarbonyl (Fmoc)-functionalized α-synuclein and human islet amyloid peptide fragments [Fmoc-NVGGAVVT (Syn-N) and Fmoc-NFGAIL (IAP-N)], substituting asparagine (N) with phenylalanine (Syn-F/IAP-F), alanine (Syn-A/IAP-A), and glutamine (Syn-Q/IAP-Q). This allowed us to explore the effects of aromatic (π-system), aliphatic (hydrophobic), and hydrogen bonding effects with varying chain lengths on hydrogel formation. Our results reveal that Syn-N and Syn-Q exhibit MGC of 0.03 and 0.05 wt %, respectively, classifying them as super hydrogelators (MGC < 0.1 wt %). These values are 4.0-6.6-fold lower than Syn-F and Syn-A, with Syn-N demonstrating greater efficiency than Syn-Q. Similarly, IAP-N exhibited a substantial decrease in MGC by 8.75, 3.75, and 2.5 folds compared to IAP-A, IAP-F, and IAP-Q, respectively. Experimental evidence and molecular dynamic simulation suggest that -CO-NH2 of asparagine side chains effectively engaged in hydrogen bonding, thereby immobilizing water molecules at low gelator concentrations. Although glutamine shares similar -CO-NH2 functionality, its hydrogelation efficiency is less pronounced compared to asparagine, likely due to its longer alkyl chain, which may hinder the formation of a hydrogen bonding network in the self-assembled structure compared to asparagine-containing peptides. These findings offer valuable insights for designing efficient peptide hydrogelators or lowering MGCs by substituting amino acids with asparagine/glutamine in peptide sequences. Additionally, modifying peptide properties through asparagine/glutamine substitution could optimize hydrogel properties for specific applications.
Collapse
Affiliation(s)
- Anagha C Unnikrishnan
- Organic and Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Bratin Kumar Das
- Department of Chemical Engineering, Indian Institute of Technology Madras, Adyar, Chennai-600036, India
| | - Puchalapalli Saveri
- Department of Chemical Engineering, Indian Institute of Technology Madras, Adyar, Chennai-600036, India
| | - Ethayaraja Mani
- Department of Chemical Engineering, Indian Institute of Technology Madras, Adyar, Chennai-600036, India
| | - Abhijit P Deshpande
- Department of Chemical Engineering, Indian Institute of Technology Madras, Adyar, Chennai-600036, India
| | - Ganesh Shanmugam
- Organic and Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
3
|
Zhao C, Wang Y, Li M, Wang L, Lou S, Shi B, Rao Y, Yan W, Yang H. A co-assembly process for high strength and injectable dual network gels with sustained doxorubicin release performance. SOFT MATTER 2024; 20:5788-5799. [PMID: 38984641 DOI: 10.1039/d3sm01763j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Adopting a non-covalent co-assembly strategy shows great potential in loading drugs efficiently and safely in drug delivery systems. However, finding an efficient method for developing high strength gels with thixotropic characteristics is still challenging. In this work, by hybridizing the low molecular weight gelator fluorenylmethyloxycarbonyl-phenylalanine (Fmoc-F) (first single network, 1st SN) and alginate (second single network, 2nd SN) into a dual network (DN) gel, gels with high strength as well as thixotropy were prepared efficiently. The DN gels showed high strength (103 Pa in SN gels and 105 Pa in DN gels) and thixotropic characteristics (yield strain <25%; recovery ratio >85% within 100 seconds). The application performance was verified by loading doxorubicin (DOX), showing better encapsulation capacity (77.06% in 1st SN, 59.11% in 2nd SN and 96.71% in DN) and sustained release performance (lasting one week under physiological conditions) than single network gels. Experimental and DFT results allowed the elaboration of the specific non-covalent co-assembly mechanism for DN gel formation and DOX loading. The DN gels were formed by co-assembly driven by H-bond and π-π stacking interactions and then strengthened by Ca2+-coupling. Most DOX molecules co-assembled with Fmoc-F and alginate through π-π stacking and H-bond interactions (DOX-I), with a few free DOX molecules (DOX-II) left. Proven by the release dynamics test, DOX was released through a diffusion-erosion process, in an order of DOX-I first and then DOX-II. This work suggests that non-covalent co-assembly is a useful technique for effective material strengthening and drug delivery.
Collapse
Affiliation(s)
- Chengcheng Zhao
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China.
- Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, School of Biomedical Engineering, Air Force Medical University, Xi'an 710032, P. R. China
| | - Yanyao Wang
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Mingtao Li
- State Key Laboratory of Multiphase Flow in Power Engineering, Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lin Wang
- First Affiliate Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shuwen Lou
- Hangzhou Entel Foreign Language School, Hangzhou 311122, China
| | - Bofang Shi
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Yongfang Rao
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China.
- State Key Laboratory of Multiphase Flow in Power Engineering, Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wei Yan
- State Key Laboratory of Multiphase Flow in Power Engineering, Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Honghui Yang
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
4
|
Dixit A, Mahajan A, Saxena R, Chakraborty S, Katti DS. Engineering sulfated polysaccharides and silk fibroin based injectable IPN hydrogels with stiffening and growth factor presentation abilities for cartilage tissue engineering. Biomater Sci 2024; 12:2067-2085. [PMID: 38470831 DOI: 10.1039/d3bm01466e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The extracellular matrix (ECM) presents a framework for various biological cues and regulates homeostasis during both developing and mature stages of tissues. During development of cartilage, the ECM plays a critical role in endowing both biophysical and biochemical cues to the progenitor cells. Hence, designing microenvironments that recapitulate these biological cues as provided by the ECM during development may facilitate the engineering of cartilage tissue. In the present study, we fabricated an injectable interpenetrating hydrogel (IPN) system which serves as an artificial ECM and provides chondro-inductive niches for the differentiation of stem cells to chondrocytes. The hydrogel was designed to replicate the gradual stiffening (as a biophysical cue) and the presentation of growth factors (as a biochemical cue) as provided by the natural ECM of the tissue, thus exemplifying a biomimetic approach. This dynamic stiffening was achieved by incorporating silk fibroin, while the growth factor presentation was accomplished using sulfated-carboxymethyl cellulose. Silk fibroin and sulfated-carboxymethyl cellulose (s-CMC) were combined with tyraminated-carboxymethyl cellulose (t-CMC) and crosslinked using HRP/H2O2 to fabricate s-CMC/t-CMC/silk IPN hydrogels. Initially, the fabricated hydrogel imparted a soft microenvironment to promote chondrogenic differentiation, and with time it gradually stiffened to offer mechanical support to the joint. Additionally, the presence of s-CMC conferred the hydrogel with the property of sequestering cationic growth factors such as TGF-β and allowing their prolonged presentation to the cells. More importantly, TGF-β loaded in the developed hydrogel system remained active and induced chondrogenic differentiation of stem cells, resulting in the deposition of cartilage ECM components which was comparable to the hydrogels that were treated with TGF-β provided through media. Overall, the developed hydrogel system acts as a reservoir of the necessary biological cues for cartilage regeneration and simultaneously provides mechanical support for load-bearing tissues such as cartilage.
Collapse
Affiliation(s)
- Akansha Dixit
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology-Kanpur, Kanpur-208016, Uttar Pradesh, India.
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology-Kanpur, Kanpur-208016, Uttar Pradesh, India
| | - Aman Mahajan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology-Kanpur, Kanpur-208016, Uttar Pradesh, India.
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology-Kanpur, Kanpur-208016, Uttar Pradesh, India
| | - Rakshita Saxena
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology-Kanpur, Kanpur-208016, Uttar Pradesh, India.
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology-Kanpur, Kanpur-208016, Uttar Pradesh, India
| | - Saptomee Chakraborty
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology-Kanpur, Kanpur-208016, Uttar Pradesh, India.
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology-Kanpur, Kanpur-208016, Uttar Pradesh, India
| | - Dhirendra S Katti
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology-Kanpur, Kanpur-208016, Uttar Pradesh, India.
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology-Kanpur, Kanpur-208016, Uttar Pradesh, India
| |
Collapse
|
5
|
Mukherjee S, Reddy SMM, Shanmugam G. A bio-inspired silkworm 3D cocoon-like hierarchical self-assembled structure from π-conjugated natural aromatic amino acids. SOFT MATTER 2024; 20:1834-1845. [PMID: 38314911 DOI: 10.1039/d3sm01746j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The formation of spontaneous 3D self-assembled hierarchical structures from 1D nanofibers is a significant breakthrough in materials science. Overcoming the major challenges associated with developing these 3D structures, such as uncontrolled self-assembly, complex procedures, and machinery, has been a formidable task. However, the current discovery reveals that simple π-system (fluorenyl)-functionalized natural aromatic amino acids, phenylalanine (Fmoc-F) and tyrosine (Fmoc-Y), can form bio-inspired 3D cocoon-like structures. These structures are composed of entangled 1D nanofibers created through supramolecular self-assembly using a straightforward one-step process of solvent casting. The self-assembly process relies on π-π stacking of the fluorenyl (π-system) moieties and intermolecular hydrogen bonding between urethane amide groups. The cocoon-like structures are versatile and independent of concentration, temperature, and humidity, making them suitable for various applications. This discovery has profound implications for materials science and the developed advanced biomaterials, such as Fmoc-F and Fmoc-Y, can serve as flexible foundational components for constructing 3D fiber-based structures.
Collapse
Affiliation(s)
- Smriti Mukherjee
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR), Central Leather Research Institute (CLRI) (CSIR-CLRI), Adyar, Chennai, 600020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Samala Murali Mohan Reddy
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR), Central Leather Research Institute (CLRI) (CSIR-CLRI), Adyar, Chennai, 600020, India.
| | - Ganesh Shanmugam
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR), Central Leather Research Institute (CLRI) (CSIR-CLRI), Adyar, Chennai, 600020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
6
|
Mukherjee S, Sundarapandian A, Ayyadurai N, Shanmugam G. Collagen Mimicry with a Short Collagen Model Peptide. Macromol Rapid Commun 2024; 45:e2300573. [PMID: 37924252 DOI: 10.1002/marc.202300573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/01/2023] [Indexed: 11/06/2023]
Abstract
Mimicking triple helix and fibrillar network of collagen through collagen model peptide(CMP) with short GPO tripeptide repeats is a great challenge. Herein, a minimalistic CMP comprising only five GPO repeats [(GPO)5 ] is presented. This novel approach involves the fusion of ultrashort peptide with the synergetic power of π-system and β-sheet formation to short CMP (GPO)5 . Accordingly, a hydrogel-forming, fluorenylmethoxycarbonyl (Fmoc)-functionalized ultrashort peptide (NFGAIL) is fused at the N-terminus and phenylalanine at the C-terminus of (GPO)5 (Fmoc-NFGAIL-(GPO)5 -F-COOH, FmP-5GPO). At room temperature, it forms a robust triple helix in aqueous buffer solution and has a relatively high melting point of 35 °C. The fluorenyl motif stabilizes the triple helix by aromatic π-π interactions as in its absence, triple helix is not formed. NFGAIL, which forms a β-sheet, also aids in triple helix stabilization via intermolecular hydrogen bonding and hydrophobic interactions. FmP-5GPO forms highly entangled nanofibrils with a micrometer length, which have excellent cell viability. The achievement of stable triple helix and fibrils in such a short CMP(FmP-5GPO) sequence is a challenging feat, and its significance in CMP-based biomaterials is undeniable. The present strategy highlights the potential for developing new CMP sequences through intelligent tuning of fusion peptides and GPO repeats.
Collapse
Affiliation(s)
- Smriti Mukherjee
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai, Tamil Nadu, 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Ashokraj Sundarapandian
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
- Biochemistry & Biotechnology Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai, Tamil Nadu, 600020, India
| | - Niraikulam Ayyadurai
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
- Biochemistry & Biotechnology Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai, Tamil Nadu, 600020, India
| | - Ganesh Shanmugam
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai, Tamil Nadu, 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
7
|
Mukherjee S, Shanmugam G. A Novel Surfactant with Short Hydrophobic Head and Long Hydrophilic Tail Generates Vesicles with Unique Structural Feature. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206906. [PMID: 36799147 DOI: 10.1002/smll.202206906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/20/2023] [Indexed: 05/11/2023]
Abstract
Surfactant molecules typically have a long hydrophobic tail and a short hydrophilic head group. It remains unexplored if surfactants can have a short hydrophobic head group and a long hydrophilic tail. Designing such surfactants is a challenge as a lengthy hydrophilic tail would completely solubilize the molecules. In this context, herein, the Fmoc-functionalized Gly-Pro-Hyp (GPO) tripeptide repeat-based molecule (Fm-GPO) with fluorenyl moiety as a short hydrophobic head and peptide as a long hydrophilic tail is demonstrated as a reverse surfactant at physiological pH, for the first time. π-π stacking of the fluorenyl moieties and intermolecular hydrogen bonding between the peptide chains with extended polyproline-II structure promoted the self-assembly into spherical vesicles with a unique feature of a large hydrophilic area in the interior and exterior of the bilayer. The current Fm-GPO system offers a new class of surfactants with unique features that can aid in the design of drug-loaded vehicles, which can be target-specific as the peptide chain can be manipulated with different functional ultra-short peptide sequences.
Collapse
Affiliation(s)
- Smriti Mukherjee
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai, 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ganesh Shanmugam
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai, 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
8
|
Schirmer J, Chevigny R, Emelianov A, Hulkko E, Johansson A, Myllyperkiö P, Sitsanidis ED, Nissinen M, Pettersson M. Diversity at the nanoscale: laser-oxidation of single-layer graphene affects Fmoc-phenylalanine surface-mediated self-assembly. Phys Chem Chem Phys 2023; 25:8725-8733. [PMID: 36896827 DOI: 10.1039/d3cp00117b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
We report the effects of a laser-oxidized single layer graphene (SLG) surface on the self-assembly of amphiphilic gelator N-fluorenylmethoxycarbonyl-L-phenylalanine (Fmoc-Phe) towards an gel-SLG interface. Laser oxidation modulates the levels of hydrophobicity/hydrophilicity on the SLG surface. Atomic force, scanning electron, helium ion and scattering scanning nearfield optical microscopies (AFM, SEM, HIM, s-SNOM) were employed to assess the effects of surface properties on the secondary and tertiary organization of the formed Fmoc-Phe fibres at the SLG-gel interface. S-SNOM shows sheet-like secondary structures on both hydrophobic/hydrophilic areas of SLG and helical or disordered structures mainly on the hydrophilic oxidized surface. The gel network heterogeneity on pristine graphene was observed at the scale of single fibres by s-SNOM, demonstrating its power as a unique tool to study supramolecular assemblies and interfaces at nanoscale. Our findings underline the sensitivity of assembled structures to surface properties, while our characterization approach is a step forward in assessing surface-gel interfaces for the development of bionic devices.
Collapse
Affiliation(s)
- Johanna Schirmer
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P. O. Box 35, FI-40014 JYU, Finland.
| | - Romain Chevigny
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P. O. Box 35, FI-40014 JYU, Finland.
| | - Aleksei Emelianov
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P. O. Box 35, FI-40014 JYU, Finland.
| | - Eero Hulkko
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P. O. Box 35, FI-40014 JYU, Finland.
- Department of Biological and Environmental Sciences, Nanoscience Center, University of Jyväskylä, P. O. Box 35, FI-40014 JYU, Finland
| | - Andreas Johansson
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P. O. Box 35, FI-40014 JYU, Finland.
- Department of Physics, Nanoscience Center, University of Jyväskylä, P. O. Box 35, FI-40014 JYU, Finland
| | - Pasi Myllyperkiö
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P. O. Box 35, FI-40014 JYU, Finland.
| | - Efstratios D Sitsanidis
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P. O. Box 35, FI-40014 JYU, Finland.
| | - Maija Nissinen
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P. O. Box 35, FI-40014 JYU, Finland.
| | - Mika Pettersson
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P. O. Box 35, FI-40014 JYU, Finland.
| |
Collapse
|
9
|
Unnikrishnan AC, Sushana Thennarasu A, Saveri P, Pandurangan S, Deshpande AP, Ayyadurai N, Shanmugam G. π-System Functionalization Transforms Amyloidogenic Peptide Fragment of Human Islet Amyloid Polypeptide into a Super Hydrogelator. Chem Asian J 2023; 18:e202201235. [PMID: 36567257 DOI: 10.1002/asia.202201235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022]
Abstract
While a considerable number of ultra-short/short amyloid peptides have been reported to form 3D supramolecular hydrogels, they all possess high minimum gelation concentration (MGC) (≥1 wt%), which preclude their applications. In this context, we demonstrate that functionalisation of a well-known amyloidogenic ultra-short peptide fragment NFGAIL (IAPf) of human Islet amyloid polypeptide with a π-system (Fluorenyl, Fm) at the N-terminus of the peptide (Fm-IAPf) yield not only highly thermostable hydrogel at physiological pH but also exhibited super gelator nature as the MGC (0.08 wt%) falls below 0.1 wt%. Various experimental results confirmed that aromatic π-π interactions from fluorenyl moieties and hydrogen bonding interactions between the IAPf drive the self-assembly/fibril formation. Fm-IAPf is the first super hydrogelator derived from amyloid-based ultra-short peptides, to the best of our knowledge. We strongly believe that this report, i. e., functionalization of an amyloid peptide with π-system, provides a lead to develop super hydrogelators from other amyloid-forming peptide fragments for their potential applications.
Collapse
Affiliation(s)
- Anagha C Unnikrishnan
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) -, Central Leather Research Institute (CLRI), Adyar, 600020, Chennai, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Abinaya Sushana Thennarasu
- Biological Materials Laboratory, Council of Scientific and Industrial Research (CSIR) -, Central Leather Research Institute (CLRI), Adyar, 600020, Chennai, India
| | - Puchalapalli Saveri
- Department of Chemical Engineering, Indian Institute of Technology Madras, Adyar, 600036, Chennai, India
| | - Suryalakshmi Pandurangan
- Biochemistry & Biotechnology Laboratory, Council of Scientific and Industrial Research (CSIR) -, Central Leather Research Institute (CLRI), Adyar, 600020, Chennai, India
| | - Abhijit P Deshpande
- Department of Chemical Engineering, Indian Institute of Technology Madras, Adyar, 600036, Chennai, India
| | - Niraikulam Ayyadurai
- Biochemistry & Biotechnology Laboratory, Council of Scientific and Industrial Research (CSIR) -, Central Leather Research Institute (CLRI), Adyar, 600020, Chennai, India
| | - Ganesh Shanmugam
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) -, Central Leather Research Institute (CLRI), Adyar, 600020, Chennai, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
10
|
Gosecka M, Jaworska-Krych D, Gosecki M, Wielgus E, Marcinkowska M, Janaszewska A, Klajnert-Maculewicz B. Self-Healable, Injectable Hydrogel with Enhanced Clotrimazole Solubilization as a Potential Therapeutic Platform for Gynecology. Biomacromolecules 2022; 23:4203-4219. [PMID: 36073031 PMCID: PMC9554913 DOI: 10.1021/acs.biomac.2c00691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Injectable, self-healing hydrogels with enhanced solubilization
of hydrophobic drugs are urgently needed for antimicrobial intravaginal
therapies. Here, we report the first hydrogel systems constructed
of dynamic boronic esters cross-linking unimolecular micelles, which
are a reservoir of antifungal hydrophobic drug molecules. The selective
hydrophobization of hyperbranched polyglycidol with phenyl units in
the core via ester or urethane bonds enabled the solubilization of
clotrimazole, a water-insoluble drug of broad antifungal properties.
The encapsulation efficiency of clotrimazole increases with the degree
of the HbPGL core modification; however, the encapsulation is more
favorable in the case of urethane derivatives. In addition, the rate
of clotrimazole release was lower from HbPGL hydrophobized via urethane
bonds than with ester linkages. In this work, we also revealed that
the hydrophobization degree of HbPGL significantly influences the
rheological properties of its hydrogels with poly(acrylamide-ran-2-acrylamidephenylboronic acid). The elastic strength
of networks (GN) and the thermal stability
of hydrogels increased along with the degree of HbPGL core hydrophobization.
The degradation of the hydrogel constructed of the neat HbPGL was
observed at approx. 40 °C, whereas the hydrogels constructed
on HbPGL, where the monohydroxyl units were modified above 30 mol
%, were stable above 50 °C. Moreover, the flow and self-healing
ability of hydrogels were gradually decreased due to the reduced dynamics
of macromolecules in the network as an effect of increased hydrophobicity.
The changes in the rheological properties of hydrogels resulted from
the engagement of phenyl units into the intermolecular hydrophobic
interactions, which besides boronic esters constituted additional
cross-links. This study demonstrates that the HbPGL core hydrophobized
with phenyl units at 30 mol % degrees via urethane linkages is optimal
in respect of the drug encapsulation efficiency and rheological properties
including both self-healable and injectable behavior. This work is
important because of a proper selection of a building component for
the construction of a therapeutic hydrogel platform dedicated to the
intravaginal delivery of hydrophobic drugs.
Collapse
Affiliation(s)
- Monika Gosecka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Daria Jaworska-Krych
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Mateusz Gosecki
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Ewelina Wielgus
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Monika Marcinkowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
| | - Anna Janaszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
| | - Barbara Klajnert-Maculewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
| |
Collapse
|
11
|
Abraham BL, Mensah SG, Gwinnell BR, Nilsson BL. Side-chain halogen effects on self-assembly and hydrogelation of cationic phenylalanine derivatives. SOFT MATTER 2022; 18:5999-6008. [PMID: 35920399 DOI: 10.1039/d2sm00713d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Low molecular weight (LMW) supramolecular hydrogels have great potential as next-generation biomaterials for drug delivery, tissue engineering, and regenerative medicine. The design of LMW gelators is complicated by the lack of understanding regarding how the chemical structure of the gelator correlates to self-assembly potential and emergent hydrogel material properties. The fluorenylmethyloxycarbonyl-phenylalanine (Fmoc-Phe) motif is a privileged scaffold that is prone to undergo self-assembly into self-supporting hydrogel networks. Cationic Fmoc-Phe-DAP derivatives modified with diaminopropane (DAP) at the C-terminus have been developed that self-assemble into hydrogel networks in aqueous solutions of sufficient ionic strength. We report herein the impact of side-chain halogenation on the self-assembly and hydrogelation properties of Fmoc-Phe-DAP derivatives. A systematic study of the self-assembly and hydrogelation of monohalogenated Fmoc-Phe-DAP derivatives with F, Cl, or Br atoms in the ortho, meta, or para positions of the phenyl side chain reveal significant differences in self-assembly and gelation potential, nanoscale assembly morphology, and hydrogel viscoelastic properties as a function of halogen identity and substitution position. These results demonstrate the profound impact that subtle changes to the chemical scaffold can have on the behavior of LMW supramolecular gelators and illustrate the ongoing difficulty of predicting the emergent self-assembly and hydrogelation behavior of LMW gelators that differ even modestly in chemical structure.
Collapse
Affiliation(s)
- Brittany L Abraham
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA.
| | - Samantha G Mensah
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA.
| | | | - Bradley L Nilsson
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA.
- Materials Science Program, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
12
|
Fmoc-phenylalanine as a building block for hybrid double network hydrogels with enhanced mechanical properties, self-recovery, and shape memory capability. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
13
|
Yilmaz İ. Synthesis, structural characterization, and thermal properties of octahedral diperchlorato complexes of copper(II) with the chelating 2-aminomethylpiperidine and 2-aminomethylpyridine ligands. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2068589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- İsmail Yilmaz
- Department of Chemistry, Faculty of Sciences, Karabük University, Karabuk, Turkey
| |
Collapse
|
14
|
Sonallya T, Sruthi L, Deshpande AP, Shanmugam G. Tweaking of supramolecular hydrogel property of single and two-component gel systems by a bifunctional molecule. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Misra S, Mukherjee S, Ghosh A, Singh P, Mondal S, Ray D, Bhattacharya G, Ganguly D, Ghosh A, Aswal VK, Mahapatra AK, Satpati B, Nanda J. Single Amino-Acid Based Self-Assembled Biomaterials with Potent Antimicrobial Activity. Chemistry 2021; 27:16744-16753. [PMID: 34468048 DOI: 10.1002/chem.202103071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Indexed: 12/18/2022]
Abstract
The design and development of soft biomaterials based on amino acid and short-peptide have gained much attention due to their potent biomedical applications. A slight alteration in the side-chain of single amino acid in a peptide or protein sequence has a huge impact on the structure and function. Phenylalanine is one of the most studied amino acids, which contains an aromatic phenyl group connected through a flexible -CH2 - unit. In this work, we have examined whether flexibility and aromatic functionality of phenylalanine (Phe) are important in gel formation of model gelator Fmoc-Phe-OH or not. To examine this hypothesis, we synthesized Fmoc-derivatives of three analogues unnatural amino acids including cyclohexylalanine, phenylglycine, and homophenylalanine; which are slightly varied from Phe. Interestingly, all these three new analogues formed hydrogels in phosphate buffer at pH 7.0 having different gelation efficacy and kinetics. This study suggests that the presence of aromatic side-chain and flexibility are not mandatory for the gelation of this model gelator. Newly synthesized unnatural amino acid derivatives have also exhibited promising antimicrobial activity towards gram-positive bacteria by inhibiting cellular oxygen consumption. We further determined the biocompatibility of these amino acid derivatives by using a hemolysis assay on human blood cells. Overall studies described the development of single amino acid-based new injectable biomaterials with improved antimicrobial activity by the slight alteration in the side-chain of amino acid.
Collapse
Affiliation(s)
- Souvik Misra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, P.O.- Botanic Garden, Howrah, 711103, India
| | | | - Anamika Ghosh
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, P.O.- Botanic Garden, Howrah, 711103, India
| | - Pijush Singh
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, India
| | - Sanjoy Mondal
- Polymer Science Unit, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Debes Ray
- Solid State Physics Division, Bhabha Atomic Research Centre Trombay, Mumbai, 400085, India
| | | | - Debabani Ganguly
- Centre for Health Science and Technology, JIS Institute of Advanced Studies and Research, Kolkata, 700091, India
| | - Alok Ghosh
- Department of Biochemistry, University of Calcutta, Kolkata, 700019, India
| | - V K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre Trombay, Mumbai, 400085, India
| | - Ajit K Mahapatra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, P.O.- Botanic Garden, Howrah, 711103, India
| | - Biswarup Satpati
- Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Jayanta Nanda
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, PIN-734301, India
| |
Collapse
|
16
|
Panja S, Adams DJ. Stimuli responsive dynamic transformations in supramolecular gels. Chem Soc Rev 2021; 50:5165-5200. [PMID: 33646219 DOI: 10.1039/d0cs01166e] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Supramolecular gels are formed by the self-assembly of small molecules under the influence of various non-covalent interactions. As the interactions are individually weak and reversible, it is possible to perturb the gels easily, which in turn enables fine tuning of their properties. Synthetic supramolecular gels are kinetically trapped and usually do not show time variable changes in material properties after formation. However, such materials potentially become switchable when exposed to external stimuli like temperature, pH, light, enzyme, redox, and chemical analytes resulting in reconfiguration of gel matrix into a different type of network. Such transformations allow gel-to-gel transitions while the changes in the molecular aggregation result in alteration of physical and chemical properties of the gel with time. Here, we discuss various methods that have been used to achieve gel-to-gel transitions by modifying a pre-formed gel material through external perturbation. We also describe methods that allow time-dependent autonomous switching of gels into different networks enabling synthesis of next generation functional materials. Dynamic modification of gels allows construction of an array of supramolecular gels with various properties from a single material which eventually extend the limit of applications of the gels. In some cases, gel-to-gel transitions lead to materials that cannot be accessed directly. Finally, we point out the necessity and possibility of further exploration of the field.
Collapse
Affiliation(s)
- Santanu Panja
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Dave J Adams
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
17
|
Gupta S, Singh I, Sharma AK, Kumar P. Ultrashort Peptide Self-Assembly: Front-Runners to Transport Drug and Gene Cargos. Front Bioeng Biotechnol 2020; 8:504. [PMID: 32548101 PMCID: PMC7273840 DOI: 10.3389/fbioe.2020.00504] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/29/2020] [Indexed: 12/18/2022] Open
Abstract
The translational therapies to promote interaction between cell and signal come with stringent eligibility criteria. The chemically defined, hierarchically organized, and simpler yet blessed with robust intermolecular association, the peptides, are privileged to make the cut-off for sensing the cell-signal for biologics delivery and tissue engineering. The signature service and insoluble network formation of the peptide self-assemblies as hydrogels have drawn a spell of research activity among the scientists all around the globe in the past decades. The therapeutic peptide market players are anticipating promising growth opportunities due to the ample technological advancements in this field. The presence of the other organic moieties, enzyme substrates and well-established protecting groups like Fmoc and Boc etc., bring the best of both worlds. Since the large sequences of peptides severely limit the purification and their isolation, this article reviews the account of last 5 years' efforts on novel approaches for formulation and development of single molecule amino acids, ultra-short peptide self-assemblies (di- and tri- peptides only) and their derivatives as drug/gene carriers and tissue-engineering systems.
Collapse
Affiliation(s)
- Seema Gupta
- Chemistry Department, Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Indu Singh
- Chemistry Department, Acharya Narendra Dev College, University of Delhi, New Delhi, India
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Ashwani K. Sharma
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Pradeep Kumar
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| |
Collapse
|