1
|
Gayathri V, Lobo NP, Vikash VL, Kamini NR, Samanta D. Functionalization of Bacterial Cellulose and Related Surfaces Using a Facile Coupling Reaction by Thermoresponsive Catalyst. ACS Biomater Sci Eng 2023; 9:625-641. [PMID: 36632811 DOI: 10.1021/acsbiomaterials.2c01338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Recently, bacterial cellulose and related materials attracted significant attention for applications such as leather-like materials, wound healing materials, etc., due to their abundance in pure form and excellent biocompatibility. Chemical modification of bacterial cellulose further helps to improve specific properties for practical utility and economic viability. However, in most cases, chemical modification of cellulose materials involves harsh experimental conditions such as higher temperatures or organic solvents, which may destroy the 3-dimensional network of bacterial cellulose, thereby altering its characteristic properties. Hence, in this work, we have adopted the Suzuki coupling methodology, which is relatively unexplored for chemically modifying cellulose materials. As the Suzuki coupling reaction is tolerable against air and water, modification can be done under mild conditions so that the covalently modified cellulose materials remain intact without destroying their 3-dimensional form. We performed Suzuki coupling reactions on cellulose surfaces using a recently developed thermoresponsive catalyst consisting of poly(N-isopropylacrylamide) (PNIPAM)-tagged N-heterocyclic carbene (NHC)-based palladium(II) complex. The thermoresponsive nature of the catalyst particularly helped to perform reactions in a water medium under mild conditions considering the biological nature of the substrates, where separation of the catalyst can be easily achieved by tuning temperature. The boronic acid derivatives have been chosen to alter the wettability behavior of bacterial cellulose. Bacterial cellulose (BC) obtained from fermentation on a lab scale using a cellulose-producing bacterium called Gluconacetobacter kombuchae (MTCC 6913) under Hestrin-Schramm (HS) medium, or kombucha-derived bacterial cellulose (KBC) obtained from kombucha available in the market or cotton-cellulose (CC) was chosen for the surface functionalization to find the methodology's diversity. Movie files in the Supporting Information and figures in the manuscript demonstrated the utility of the methodology for fluorescent labeling of bacterial cellulose and related materials. Finally, contact angle analysis of the surfaces showed the hydrophobic natures of some functionalized BC-based materials, which are important for the practical use of biomaterials in wet climatic conditions.
Collapse
Affiliation(s)
- Varnakumar Gayathri
- Polymer Science & Technology division, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Adyar, Chennai600020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Nitin P Lobo
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India.,Centre For Analysis, Testing, Evaluation & Reporting Services (CATERS), Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Adyar, Chennai600 020, India
| | - Vijan Lal Vikash
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India.,Biochemistry & Biotechnology Department, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Adyar, Chennai600020, India
| | - Numbi Ramudu Kamini
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India.,Biochemistry & Biotechnology Department, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Adyar, Chennai600020, India
| | - Debasis Samanta
- Polymer Science & Technology division, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Adyar, Chennai600020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| |
Collapse
|
2
|
Navya PV, Gayathri V, Samanta D, Sampath S. Bacterial cellulose: A promising biopolymer with interesting properties and applications. Int J Biol Macromol 2022; 220:435-461. [PMID: 35963354 DOI: 10.1016/j.ijbiomac.2022.08.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/24/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022]
Abstract
The ever-increasing demands for materials with desirable properties led to the development of materials that impose unfavorable influences on the environment and the ecosystem. Developing a low-cost, durable, and eco-friendly functional material with biological origins has become necessary to avoid these consequences. Bacterial cellulose generated by bacteria dispenses excellent structural and functional properties and satisfies these requirements. BC and BC-derived materials are essential in developing pure and environmentally safe functional materials. This review offers a detailed understanding of the biosynthesis of BC, properties, various functionalization methods, and applicability in biomedical, water treatment, food storage, energy conversion, and energy storage applications.
Collapse
Affiliation(s)
- P V Navya
- Department of Materials Science, School of Technology, Central University of Tamil Nadu, Thiruvarur 610101, India.
| | - Varnakumar Gayathri
- Polymer Science and Technology Department, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Debasis Samanta
- Polymer Science and Technology Department, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Srinivasan Sampath
- Department of Materials Science, School of Technology, Central University of Tamil Nadu, Thiruvarur 610101, India.
| |
Collapse
|
3
|
Increasing solketal production from the solventless ketalization of glycerol catalyzed by nanodispersed phosphotungstic acid in poly(N-methyl-4-vinylpyridinium) grafted on silica nanoparticles. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
4
|
Incorporations of gold, silver and carbon nanomaterials to kombucha-derived bacterial cellulose: Development of antibacterial leather-like materials. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2021.100278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Dhar P, Sugimura K, Yoshioka M, Yoshinaga A, Kamitakahara H. Synthesis-property-performance relationships of multifunctional bacterial cellulose composites fermented in situ alkali lignin medium. Carbohydr Polym 2021; 252:117114. [PMID: 33183586 DOI: 10.1016/j.carbpol.2020.117114] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/23/2020] [Accepted: 09/04/2020] [Indexed: 11/15/2022]
Abstract
This work demonstrates a unique approach of utilizing alkali lignin (AL), as smart additive to in situ BC fermentation in which it concurrently acts as promoter to microbial growth as well as reinforcing filler for fabrication of multifunctional composites. Traditionally, BC fermentation is accompanied by inhibitor formation with sudden drop in pH leading to low yield and biomass growth. AL due to its antioxidant nature prevents formation of gluconic acid as byproduct, at ∼0.25 wt.% AL based on inhibitory byproduct kinetics. Interestingly, AL self-assembles to form primary and secondary structures in BC pores, resulting in simultaneous improvement in thermal stability as well as toughness. The BC/AL films show strong UV-blocking capacity with prolonged radical scavenging activity and preventing browning of freshly cut apples making it suitable as food packaging. Therefore, present work opens up new avenues for fabrication of high-performance BC-based composites through selection of smart materials which can simultaneously improve BC bioprocessing.
Collapse
Affiliation(s)
- Prodyut Dhar
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Kazuki Sugimura
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Mariko Yoshioka
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Arata Yoshinaga
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Kamitakahara
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|