1
|
Ayaz S, Uluçay S, Üzer A, Dilgin Y, Apak R. A novel acetylcholinesterase inhibition based colorimetric biosensor for the detection of paraoxon ethyl using CUPRAC reagent as chromogenic oxidant. Talanta 2024; 266:124962. [PMID: 37499364 DOI: 10.1016/j.talanta.2023.124962] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023]
Abstract
A novel colorimetric biosensor for the sensitive and selective detection of an organophosphate pesticide, paraoxon ethyl (POE), was developed based on its inhibitory effect on the acetylcholine esterase (AChE) enzyme. The bis-neocuproine copper (II) complex ([Cu(Nc)2]2+) known as the CUPRAC reagent, was used as a chromogenic oxidant in the AChE inhibition-based biosensors for the first time. To initiate the biosensor, an enzymatic reaction takes place between AChE and its substrate acetylthiocholine (ATCh). Then, enzymatically produced thiocholine (TCh) reacts with the light blue [Cu(Nc)2]2+ complex, resulting in the oxidation of TCh to its disulfide form. On the other hand, [Cu(Nc)2]2+ reduces to a yellow-orange cuprous complex ([Cu(Nc)2]+) which gives maximum absorbance at 450 nm. However, the absorbance of [Cu(Nc)2]+ proportionally decreased with the addition of POE because the inhibition of AChE by the organophosphate pesticide reduced the amount of TCh that would give a colorimetric reaction with the CUPRAC reagent. Based on this strategy, the linear response range of a colorimetric biosensor was found to be between 0.15 and 1.25 μM with a detection limit of 0.045 μM. The fabricated biosensor enabled the selective determination of POE in the presence of some other pesticides and metal ions. The recovery results between 92% and 104% were obtained from water and soil samples spiked with POE, indicating that the determination of POE in real water and soil samples can be performed with this simple, accurate, sensitive, and low-cost colorimetric biosensor.
Collapse
Affiliation(s)
- Selen Ayaz
- Çanakkale Onsekiz Mart University, Faculty of Science, Department of Chemistry, Canakkale, Turkey
| | - Sude Uluçay
- Çanakkale Onsekiz Mart University, Faculty of Engineering, Department of Chemistry Engineering, Canakkale, Turkey
| | - Ayşem Üzer
- İstanbul University -Cerrahpaşa, Faculty of Engineering, Department of Chemistry, İstanbul-Avcılar, Turkey
| | - Yusuf Dilgin
- Çanakkale Onsekiz Mart University, Faculty of Science, Department of Chemistry, Canakkale, Turkey.
| | - Reşat Apak
- İstanbul University -Cerrahpaşa, Faculty of Engineering, Department of Chemistry, İstanbul-Avcılar, Turkey.
| |
Collapse
|
2
|
Mahmoudi N, Fatemi F, Rahmandoust M, Mirzajani F, Ranaei Siadat SO. Development of a carbon quantum dot-based sensor for the detection of acetylcholinesterase and the organophosphate pesticide. Heliyon 2023; 9:e19551. [PMID: 37809678 PMCID: PMC10558800 DOI: 10.1016/j.heliyon.2023.e19551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/04/2023] [Accepted: 08/25/2023] [Indexed: 10/10/2023] Open
Abstract
In this study, a proper and reliable fluorometric method is introduced for screening acetylcholinesterase (AChE) and its inhibitors, using carbon quantum dots (CQDs) as the signal reporter. Pure, S-doped, and P-doped CQDs, were synthesized and their recoverable fluorescence quenching properties were observed, when exposed to Hg2+, Cu2+, and Fe3+ quenching ions, respectively. The study on the recovery of their emission showed that after the introduction of another guest substance with a stronger affinity to the quenching ions, their fluorescence is restored. The Design Expert software was employed to compare the performance of the three CQDs, as fluorescent probes, based on their quenching efficiency and the percentage of their emission recovery in the presence of AChE and acetylthiocholine (ATCh). Based on the statistical analysis, among the studied CQDs, S-doped CQD was the most suitable candidate for sensor designing. The detection mechanism for the proposed S-doped CQD-based sensor is as follows: The strong binding of Cu2+ ions to carboxyl groups of S-doped CQD quenches the fluorescence signal. Then, hydrolysis of ATCh into thiocholine (TCh) in the presence of AChE causes fluorescence recovery, due to the stronger affinity of Cu2+ to the TCh, rather than the CQD. Finally, in the presence of malathion and chlorpyrifos inhibitors, AChE loses its ability to hydrolyze ATCh to TCh, so the fluorescence emission remains quenched. Based on the proposed detection technique, the designed sensor showed detection limits of 1.70 ppb and 1.50 ppb for malathion and chlorpyrifos, respectively.
Collapse
Affiliation(s)
| | - Fataneh Fatemi
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | | | - Fateme Mirzajani
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | | |
Collapse
|
3
|
Bacterial cellulose production from wastewater and the influence of its porosity on the fluorescence intensity of prepared carbon dots. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Guo Y, Wang H, Chen Z, Jing X, Wang X. Determination of methomyl in grain using deep eutectic solvent-based extraction combined with fluorescence-based enzyme inhibition assays. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 266:120412. [PMID: 34597870 DOI: 10.1016/j.saa.2021.120412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
A deep eutectic solvent (DES)-based extraction method is established to facilitate the determination of methomyl in grain via enzyme inhibition fluorescence. The environmentally-friendly DES was synthesized from proline and ethylene glycol and used as a green replacement for traditional extraction solvents that are generally toxic. The DES was added to grain samples and vortex extraction of methomyl, the supernatant was then collected for fluorescence detection. Biomass carbon quantum dots (CQDs) synthesized from millet were used as fluorescent probes. Acetylcholinesterase catalyzes the hydrolysis of acetylthiocholine iodide to thiocholine. The positively-charged thiocholine interacts electrostatically with the negatively-charged quantum dots resulting in the quenching of their fluorescent emission. The pesticide extract solution blocks the enzyme activity and thus recovers the fluorescent from the quantum dots. The fluorescence response was correlated with the amount of methomyl residue in the grain over the range 0.01 to 5 mg kg-1. The limit of detection was found to be 0.003 mg kg-1, and the limit of quantification 0.01 mg kg-1. Recoveries of 86.5% to 107.8% were obtained using real samples, including millet, rice, wheat, and barley, with a relative standard deviation of less than 3.8%. The method is efficient and convenient and has good application prospects for extracting and detecting pesticides in grain samples.
Collapse
Affiliation(s)
- Yan Guo
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Huihui Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Zhenjia Chen
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xu Jing
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xiaowen Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| |
Collapse
|
5
|
Zhang X, Liao X, Hou Y, Jia B, Fu L, Jia M, Zhou L, Lu J, Kong W. Recent advances in synthesis and modification of carbon dots for optical sensing of pesticides. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126881. [PMID: 34449329 DOI: 10.1016/j.jhazmat.2021.126881] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/26/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Serious threat from pesticide residues to the ecosystem and human health has become a global concern. Developing reliable methods for monitoring pesticides is a world-wide research hotspot. Carbon dots (CDs) with excellent photostability, low toxicity, and good biocompatibility have been regarded as the potential substitutes in fabricating various optical sensors for pesticide detection. Based on the relevant high-quality publications, this paper first summarizes the current state-of-the-art of the synthetic and modification approaches of CDs. Then, a comprehensive overview is given on the recent advances of CDs-based optical sensors for pesticides over the past five years, with a particular focus on photoluminescent, electrochemiluminescent and colorimetric sensors regarding the sensing mechanisms and design principles by integrating with various recognition elements including antibodies, aptamers, enzymes, molecularly imprinted polymers, and some nanoparticles. Novel functions and extended applications of CDs as signal indicators, catalyst, co-reactants, and electrode surface modifiers, in constructing optical sensors are specially highlighted. Beyond an assessment of the performances of the real-world application of these proposed optical sensors, the existing inadequacies and current challenges, as well as future perspectives for pesticide monitoring are discussed in detail. It is hoped to provide powerful insights for the development of novel CDs-based sensing strategies with their wide application in different fields for pesticide supervision.
Collapse
Affiliation(s)
- Xin Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Pharmacy College, Jinzhou Medical University, Jinzhou 121001, China
| | - Xiaofang Liao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Yujiao Hou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Xinjiang Agricultural Vocational Technical College, Changji 831100, China
| | - Boyu Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Lizhu Fu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mingxuan Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Pharmacy College, Jinzhou Medical University, Jinzhou 121001, China
| | - Lidong Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Jinghua Lu
- Pharmacy College, Jinzhou Medical University, Jinzhou 121001, China
| | - Weijun Kong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
6
|
Synthesis of fluorescent carbon quantum dots from Jatropha fruits and their application in fluorometric sensor for the detection of chlorpyrifos. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106953] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
7
|
Gong C, Fan Y, Zhao H. Recent advances and perspectives of enzyme-based optical biosensing for organophosphorus pesticides detection. Talanta 2021; 240:123145. [PMID: 34968808 DOI: 10.1016/j.talanta.2021.123145] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 11/24/2021] [Accepted: 12/11/2021] [Indexed: 02/01/2023]
Abstract
The overuse or abuse of organophosphorus pesticides (OPs) can bring about severe contamination problems in foodstuff and the environment, which will seriously threaten human health and the ecosystem's cycle. Hence, it is in high demand to establish sensitive, portable, specific, and cost-effective methods for monitoring OPs to control food safety, protect the ecosystem, and prevent disease. The optical biosensor with enzyme as bio-recognition elements has been an effective alternative for OPs detection. Herein, we firstly introduce various enzymes, sensing mechanisms, advantages and disadvantages used as bio-recognition elements in optical sensing for OPs detection. Then, we review various optical biosensing strategies based on enzymes as recognition elements that were ingeniously designed and successfully utilized for OPs detection, with a particular emphasis on photoluminescence (PL), chemiluminescence (CL), electrochemiluminescence (ECL), and colorimetric (CM) biosensing strategies. We not only highlight the state-of-art developments and the construction strategies of the enzyme-based optical biosensing method but also summarize the existing deficiencies, current challenges, and the future perspectives of OPs detection.
Collapse
Affiliation(s)
- Changbao Gong
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), China; School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yaofang Fan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), China; School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Huimin Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), China; School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
8
|
Singh Tanwar LK, Sharma S, Ghosh KK. Spectroscopic detection of Hg2+ in water samples using fluorescent carbon quantum dots as sensing probe. MAIN GROUP CHEMISTRY 2021. [DOI: 10.3233/mgc-183967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mercury (Hg2+) is remarked as toxic and hazardous element to global environment. Here, carbon quantum dots (CQDs) were synthesized by simple microwave assisted technique for Hg2+ detection in water samples via. fluorescence quenching and FT-IR spectroscopic approach. The morphology and chemical structure of synthesized CQDs was investigated by TEM, FT-IR, 13C-NMR, fluorescence and UV-vis spectroscopic technique. The resultant CQDs bears spherical morphology with an average size of 2–4 nm. The binding parameters, as Stern-Volmer quenching constant (Ksv) and binding constant for CQDs-Hg system was investigated by fluorescence method, whereas UV-vis techniques was employed for determination of thermodynamic parameters, as Gibb’s free energy (ΔG), enthalpy (ΔH) and entropy (ΔS) at three different temperature (295, 298 and 305 K). Moreover, selectivity assay for Hg2+ detection has been studied in presence of other metal ions by FT-IR as well as fluorescence spectroscopy. Analytical assay was also successfully applied for Hg2+ in spiked water samples collected from different areas of Chhattisgarh, with 98–99 recovery %. The detection of Hg2+ has been demonstrated in the range of 0 to 5.0μM with 3.25 nM detection limit. The present method is found to be simple, highly sensitive and selective for sensing of Hg2+ in aquatic environmental samples using CQDs as sensing probe.
Collapse
Affiliation(s)
| | - Srishti Sharma
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur (C.G.), India
| | - Kallol K. Ghosh
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur (C.G.), India
| |
Collapse
|
9
|
Review of recent developments (2018–2020) on acetylcholinesterase inhibition based biosensors for organophosphorus pesticides detection. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105779] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
10
|
Su D, Li H, Yan X, Lin Y, Lu G. Biosensors based on fluorescence carbon nanomaterials for detection of pesticides. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116126] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Griesche C, Baeumner AJ. Biosensors to support sustainable agriculture and food safety. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115906] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|