1
|
Mittal A, Aarti, Vats S, Zabihi F, Achazi K, Rancan F, Vogt A, Haag R, Sharma SK. Synthesis of C3-symmetric star shaped amphiphiles for drug delivery applications. SOFT MATTER 2024; 20:1282-1292. [PMID: 38240025 DOI: 10.1039/d3sm01388j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
C 3-symmetric star-shaped aromatic compounds are known to possess unique characteristics which facilitate their industrial and biomedical applications. Herein, we report the design, synthesis, self-assembly and drug/dye delivery capabilities of C3-symmetric, hexa-substituted benzene-based amphiphiles. The synthesis of the hexa-substituted C3-symmetric core involves C-acetylation of phloroglucinol to yield the corresponding tri-acetyl derivative. This was further subjected to O-propargylation, followed by the carbonyl reduction of acetyl groups to yield the central core. Various hydrophilic (mPEG) and lipophilic units were then incorporated into this core via click and esterification reactions, respectively, to produce a new type of star shaped amphiphiles. So the obtained amphiphilic architectures have a tendency to aggregate in an aqueous medium forming nanosized assemblies with an inner hydrophobic core, allowing the substituents to control the tension-active properties. The critical aggregation concentration of the amphiphiles was evaluated by fluorescence measurement using the dye Nile red as a fluorescent probe. The hydrodynamic diameter of self-assembled aggregates in aqueous solution was studied by dynamic light scattering, while the actual size and morphology were determined by cryo-transmission electron microscopy (cryo-TEM) analysis. The physicochemical properties of the amphiphiles suggested their suitability for exploring their drug delivery applications. In this endeavor, the amphiphiles were utilized for the encapsulation of model hydrophobic entities and studying their subsequent release from their hydrophobic core in a controlled manner. The transport potential of the synthesised amphiphiles was explored for transdermal drug delivery. Furthermore, cytotoxicity studies were conducted using MCF7 and HeLa cells, which indicated that the nanocarriers had no toxic effect on the cells.
Collapse
Affiliation(s)
- Ayushi Mittal
- Department of Chemistry, University of Delhi, Delhi 110 007, India.
| | - Aarti
- Department of Chemistry, University of Delhi, Delhi 110 007, India.
| | - Sudhanshu Vats
- Department of Chemistry, University of Delhi, Delhi 110 007, India.
| | - Fatemeh Zabihi
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Katharina Achazi
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Fiorenza Rancan
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Anika Vogt
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Sunil K Sharma
- Department of Chemistry, University of Delhi, Delhi 110 007, India.
| |
Collapse
|
2
|
Li L, Chen G. Precise Assembly of Proteins and Carbohydrates for Next-Generation Biomaterials. J Am Chem Soc 2022; 144:16232-16251. [PMID: 36044681 DOI: 10.1021/jacs.2c04418] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The complexity and diversity of biomacromolecules make them a unique class of building blocks for generating precise assemblies. They are particularly available to a new generation of biomaterials integrated with living systems due to their intrinsic properties such as accurate recognition, self-organization, and adaptability. Therefore, many excellent approaches have been developed, leading to a variety of quite practical outcomes. Here, we review recent advances in the fabrication and application of artificially precise assemblies by employing proteins and carbohydrates as building blocks, followed by our perspectives on some of new challenges, goals, and opportunities for the future research directions in this field.
Collapse
Affiliation(s)
- Long Li
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, People's Republic of China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, People's Republic of China.,Multiscale Research Institute for Complex Systems, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
3
|
Enzymatic synthesis of glycerol, azido-glycerol and azido-triglycerol based amphiphilic copolymers and their relevance as nanocarriers: A review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Krishna, Parshad B, Achazi K, Böttcher C, Haag R, Sharma SK. Newer Non-ionic A 2 B 2 -Type Enzyme-Responsive Amphiphiles for Drug Delivery. ChemMedChem 2021; 16:1457-1466. [PMID: 33559331 DOI: 10.1002/cmdc.202100031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/05/2021] [Indexed: 12/29/2022]
Abstract
A new series of nonionic gemini amphiphiles have been synthesized in a multi-step chemoenzymatic approach by using a novel A2 B2 -type central core consisting of conjugating glycerol and propargyl bromide on 5-hydroxy isophthalic acid. A pair of hydrophilic monomethoxy poly(ethylene glycol) (mPEG) and hydrophobic linear alkyl chains (C12 /C15 ) were then added to the core to obtain amphiphilic architectures. The aggregation tendency in aqueous media was studied by dynamic light scattering, fluorescence spectroscopy and cryogenic transmission electron microscopy. The nanotransport potential of the amphiphiles was studied for model hydrophobic guests, that is, the dye Nile Red and the drug Nimodipine by using UV/Vis and fluorescence spectroscopy. Evaluation of the viability of amphiphile-treated A549 cells showed them to be well tolerated up to the concentrations studied. Being ester based, these amphiphiles exhibit stimuli-responsive sensitivity towards esterases, and a rupture of amphiphilic architecture was observed in the presence of immobilized Candida antarctica lipase (Novozym 435), thus facilitating release of the encapsulated guest from the aggregate.
Collapse
Affiliation(s)
- Krishna
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Badri Parshad
- Department of Chemistry, University of Delhi, Delhi, 110007, India.,Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Katharina Achazi
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195, Berlin, Germany
| | - Christoph Böttcher
- Forschungszentrum für Elektronenmikroskopie, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 36a, 14195, Berlin, Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195, Berlin, Germany
| | - Sunil K Sharma
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| |
Collapse
|
5
|
Silvestrini Fernandes D, Carmo DR. Silsesquioxane Modified with PAMAM Dendrimer and a Bimetallic Complex for Electrochemical Detection of Ascorbic Acid. ELECTROANAL 2021. [DOI: 10.1002/elan.202060228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Daniela Silvestrini Fernandes
- Department of Physics and Chemistry São Paulo State University “Júlio de Mesquita Filho” – UNESP Av. Brasil, 56, Zip code 15385-000 Ilha Solteira São Paulo Brazil
- Department of Chemistry University of São Paulo - USP Av. Bandeirantes, 3900, Zip code 14040-901 Ribeirão Preto São Paulo Brazil
| | - Devaney Ribeiro Carmo
- Department of Physics and Chemistry São Paulo State University “Júlio de Mesquita Filho” – UNESP Av. Brasil, 56, Zip code 15385-000 Ilha Solteira São Paulo Brazil
| |
Collapse
|
6
|
Mignani S, Shi X, Zablocka M, Majoral JP. Dendritic Macromolecular Architectures: Dendrimer-Based Polyion Complex Micelles. Biomacromolecules 2021; 22:262-274. [PMID: 33426886 DOI: 10.1021/acs.biomac.0c01645] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Polymeric micelles are nanoassemblies that are formed by spontaneous arrangement of amphiphilic block copolymers in aqueous solutions at critical micelle concentration (CMC). They represent an effective system for drug delivery of, for instance, poorly water-soluble anticancer drugs. Then, the development of polyion complexes (PICs) were emphasized. The morphology of these complexes depends on the topology of the polyelectrolytes used and the way they are assembled. For instance, ionic-hydrophilic block copolymers have been used for the preparation of PIC micelles. The main limitation in the use of PIC micelles is their potential instability during the self-assembly/disassembly processes, influenced by several parameters, such as polyelectrolyte concentration, deionization associated with pH, ionic strength due to salt medium effects, mixing ratio, and PIC particle cross-linking. To overcome these issues, the preparation of stable PIC micelles by increasing the rigidity of their dendritic architecture by the introduction of dendrimers and controlling their number within micelle scaffold was highlighted. In this original concise Review, we will describe the preparation, molecular characteristics, and pharmacological profile of these stable nanoassemblies.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Peres, 75006, Paris, France.,CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China
| | - Maria Zablocka
- Center of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza 112, 90001, Lodz, Poland
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France.,Université Toulouse, 118 route de Narbonne, 31077, Toulouse Cedex 4, France
| |
Collapse
|
7
|
Wang F, Li Y, Yu L, Zhu J, Zhang F, Linhardt RJ. Amphiphilic mPEG-Modified Oligo-Phenylalanine Nanoparticles Chemoenzymatically Synthesized via Papain. ACS OMEGA 2020; 5:30336-30347. [PMID: 33251469 PMCID: PMC7689955 DOI: 10.1021/acsomega.0c05076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 10/28/2020] [Indexed: 05/04/2023]
Abstract
Amphiphilic mPEG-modified peptide nanoparticles were developed from oligo-phenylalanine (OPhe) nanoparticles (NPs) synthesized via papain. Tyndall effects indicate that OPhe NPs are amphiphobic. Addition of protein perturbants, sodium dodecyl sulfate (SDS), and urea, in the dispersion solution of OPhe NPs can significantly reduce the R h,m value of NPs, from approximately 749.2 nm to about 200 nm. Therefore, the hydrophobic interaction and hydrogen bonding play major roles in maintaining the aggregation of OPhe NPs. Using the "grafting to" method, the methoxypolyethylene-modified OPhe NPs (mPEG-g-OPhe NPs) were synthesized and characterized by Fourier transform infrared spectroscopy (FTIR), 1H NMR, electrospray ionization mass spectrometry (ESI-MS), and dynamic light scattering (DLS). The attenuated total reflectance (ATR) spectrum of OPhe NPs and mPEG-g-OPhe NPs demonstrate that the secondary structures of these NPs are mainly β-type. mPEG-g-OPhe NPs can self-aggregate into spherical micelles both in water and cyclohexane. Increasing the chain length of the mPEG moiety, the critical micellar concentrations of mPEG-g-OPhe NPs increased in water but decreased in cyclohexane. The light stability, thermal stability, hydrolysis stability, and encapsulation stability of curcumin were significantly promoted by encapsulation in the micelles formed by mPEG-g-OPhe NPs. The protective effects regularly varied with the variations in the mPEG chain length of mPEG-g-OPhe NPs.
Collapse
Affiliation(s)
- Feng Wang
- Key
Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
- School
of Chemical and Material Engineering, Jiangnan
University, Wuxi 214122, China
| | - Youhua Li
- School
of Chemical and Material Engineering, Jiangnan
University, Wuxi 214122, China
| | - Lu Yu
- School
of Chemical and Material Engineering, Jiangnan
University, Wuxi 214122, China
| | - Jinwen Zhu
- School
of Chemical and Material Engineering, Jiangnan
University, Wuxi 214122, China
| | - Fuming Zhang
- Department
of Chemistry and Chemical Biology, Departments of Chemical and Biological
Engineering, Biology and Biomedical Engineering, Center for Biotechnology
and Interdisciplinary Studies, Rensselaer
Polytechnic Institute, Troy, New York 12180, United States
| | - Robert J. Linhardt
- Department
of Chemistry and Chemical Biology, Departments of Chemical and Biological
Engineering, Biology and Biomedical Engineering, Center for Biotechnology
and Interdisciplinary Studies, Rensselaer
Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
8
|
Parshad B, Prasad S, Bhatia S, Mittal A, Pan Y, Mishra PK, Sharma SK, Fruk L. Non-ionic small amphiphile based nanostructures for biomedical applications. RSC Adv 2020; 10:42098-42115. [PMID: 35516774 PMCID: PMC9058284 DOI: 10.1039/d0ra08092f] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/03/2020] [Indexed: 11/21/2022] Open
Abstract
Self-assembly of non-ionic amphiphilic architectures into nanostructures with defined size, shape and morphology has garnered substantial momentum in the recent years due to their extensive applications in biomedicine. The manifestation of a wide range of morphologies such as micelles, vesicles, fibers, tubes, and toroids is thought to be related to the structure of amphiphilic architectures, in particular, the choice of the hydrophilic and hydrophobic parts. In this review, we look at different types of non-ionic small amphiphilic architectures and the factors that influence their self-assembly into various nanostructures in aqueous medium. In particular, we focus on the explored structural parameters that guide the formation of various nanostructures, and the ways these structures can be used in applications ranging from drug delivery to cell imaging.
Collapse
Affiliation(s)
- Badri Parshad
- Department of Chemical Engineering and Biotechnology, University of Cambridge Cambridge CB3 0AS UK
| | - Suchita Prasad
- Department of Chemistry, University of Delhi Delhi 110 007 India
| | - Sumati Bhatia
- Institut für Chemie und Biochemie, Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| | - Ayushi Mittal
- Department of Chemistry, University of Delhi Delhi 110 007 India
| | - Yuanwei Pan
- Institut für Chemie und Biochemie, Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| | | | - Sunil K Sharma
- Department of Chemistry, University of Delhi Delhi 110 007 India
| | - Ljiljana Fruk
- Department of Chemical Engineering and Biotechnology, University of Cambridge Cambridge CB3 0AS UK
| |
Collapse
|
9
|
Mittal A, Singh AK, Kumar A, Parmanand, Achazi K, Haag R, Sharma SK. Fabrication of oligo‐glycerol based hydrolase responsive amphiphilic nanocarriers. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4851] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ayushi Mittal
- Department of ChemistryUniversity of Delhi Delhi India
| | - Abhishek K. Singh
- Institut für Chemie und BiochemieFreie Universität Berlin Berlin Germany
| | - Anoop Kumar
- Department of ChemistryUniversity of Delhi Delhi India
| | - Parmanand
- Department of ChemistryUniversity of Delhi Delhi India
| | - Katharina Achazi
- Institut für Chemie und BiochemieFreie Universität Berlin Berlin Germany
| | - Rainer Haag
- Institut für Chemie und BiochemieFreie Universität Berlin Berlin Germany
| | | |
Collapse
|
10
|
Parmanand, Mittal A, Singh AK, Aarti, Achazi K, Nie C, Haag R, Sharma SK. Oligo-glycerol based non-ionic amphiphilic nanocarriers for lipase mediated controlled drug release. RSC Adv 2020; 10:37555-37563. [PMID: 35521256 PMCID: PMC9057119 DOI: 10.1039/d0ra07392j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/03/2020] [Indexed: 11/21/2022] Open
Abstract
A new series of oligo-glycerol based amphiphiles have been synthesized for drug delivery.
Collapse
Affiliation(s)
- Parmanand
- Department of Chemistry
- University of Delhi
- Delhi 110 007
- India
| | - Ayushi Mittal
- Department of Chemistry
- University of Delhi
- Delhi 110 007
- India
| | - Abhishek K. Singh
- Department of Chemistry
- University of Delhi
- Delhi 110 007
- India
- Institut für Chemie und Biochemie
| | - Aarti
- Department of Chemistry
- University of Delhi
- Delhi 110 007
- India
| | - Katharina Achazi
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Chuanxiong Nie
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Sunil K. Sharma
- Department of Chemistry
- University of Delhi
- Delhi 110 007
- India
| |
Collapse
|