1
|
Teixeira FC, Teixeira APS, Rangel CM. New triazinephosphonate dopants for Nafion proton exchange membranes (PEM). Beilstein J Org Chem 2024; 20:1623-1634. [PMID: 39076286 PMCID: PMC11285047 DOI: 10.3762/bjoc.20.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/05/2024] [Indexed: 07/31/2024] Open
Abstract
A new paradigm for energy is underway demanding decarbonized energy systems. Some of them rely on emerging electrochemical devices, crucial in hydrogen technologies, including fuel cells, CO2 and water electrolysers, whose applications and performances depend on key components such as their separators/ion-exchange membranes. The most studied and already commercialized Nafion membrane shows great chemical stability, but its water content limits its high proton conduction to a limited range of operating temperatures. Here, we report the synthesis of a new series of triazinephosphonate derivatives and their use as dopants in the preparation of new modified Nafion membranes. The triazinephosphonate derivatives were prepared by substitution of chlorine atoms in cyanuric chloride. Diverse conditions were used to obtain the trisubstituted (4-hydroxyphenyl)triazinephosphonate derivatives and the (4-aminophenyl)triazinephosphonate derivatives, but with these amino counterparts, only the disubstituted compounds were obtained. The new modified Nafion membranes were prepared by casting incorporation of the synthesized 1,3,5-triazinephosphonate (TPs) derivatives. The evaluation of the proton conduction properties of the new membranes and relative humidity (RH) conditions and at 60 °C, showed that they present higher proton conductivities than the prepared Nafion membrane and similar or better proton conductivities than commercial Nafion N115, in the same experimental conditions. The Nafion-doped membrane with compound TP2 with a 1.0 wt % loading showed the highest proton conductivity with 84 mS·cm-1.
Collapse
Affiliation(s)
- Fátima C Teixeira
- Laboratório Nacional de Energia e Geologia, I.P., Estrada do Paço do Lumiar, 22, 1649-038 Lisboa, Portugal,
| | - António P S Teixeira
- Departamento de Ciências Médicas e da Saúde, Escola de Saúde e Desenvolvimento Humano & LAQV- REQUIMTE, IIFA, Universidade de Évora, R. Romão Ramalho, 59, 7000-671 Évora, Portugal
| | - C M Rangel
- Laboratório Nacional de Energia e Geologia, I.P., Estrada do Paço do Lumiar, 22, 1649-038 Lisboa, Portugal,
| |
Collapse
|
2
|
Belhaj I, Faria M, Šljukić B, Geraldes V, Santos DMF. Bipolar Membranes for Direct Borohydride Fuel Cells-A Review. MEMBRANES 2023; 13:730. [PMID: 37623791 PMCID: PMC10456332 DOI: 10.3390/membranes13080730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023]
Abstract
Direct liquid fuel cells (DLFCs) operate directly on liquid fuel instead of hydrogen, as in proton-exchange membrane fuel cells. DLFCs have the advantages of higher energy densities and fewer issues with the transportation and storage of their fuels compared with compressed hydrogen and are adapted to mobile applications. Among DLFCs, the direct borohydride-hydrogen peroxide fuel cell (DBPFC) is one of the most promising liquid fuel cell technologies. DBPFCs are fed sodium borohydride (NaBH4) as the fuel and hydrogen peroxide (H2O2) as the oxidant. Introducing H2O2 as the oxidant brings further advantages to DBPFC regarding higher theoretical cell voltage (3.01 V) than typical direct borohydride fuel cells operating on oxygen (1.64 V). The present review examines different membrane types for use in borohydride fuel cells, particularly emphasizing the importance of using bipolar membranes (BPMs). The combination of a cation-exchange membrane (CEM) and anion-exchange membrane (AEM) in the structure of BPMs makes them ideal for DBPFCs. BPMs maintain the required pH gradient between the alkaline NaBH4 anolyte and the acidic H2O2 catholyte, efficiently preventing the crossover of the involved species. This review highlights the vast potential application of BPMs and the need for ongoing research and development in DBPFCs. This will allow for fully realizing the significance of BPMs and their potential application, as there is still not enough published research in the field.
Collapse
Affiliation(s)
| | | | | | | | - Diogo M. F. Santos
- Center of Physics and Engineering of Advanced Materials, Laboratory for Physics of Materials and Emerging Technologies, Chemical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (I.B.); (M.F.); (B.Š.); (V.G.)
| |
Collapse
|
3
|
Tomé LC, Santos DMF, Velizarov S, Coelhoso IM, Mendes A, Crespo JG, de Pinho MN. Overview of Membrane Science and Technology in Portugal. MEMBRANES 2022; 12:197. [PMID: 35207118 PMCID: PMC8877918 DOI: 10.3390/membranes12020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/10/2022]
Abstract
Membrane research in Portugal is aligned with global concerns and expectations for sustainable social development, thus progressively focusing on the use of natural resources and renewable energy. This review begins by addressing the pioneer work on membrane science and technology in Portugal by the research groups of Instituto Superior Técnico-Universidade de Lisboa (IST), NOVA School of Science and Technology-Universidade Nova de Lisboa (FCT NOVA) and Faculdade de Engenharia-Universidade do Porto (FEUP) aiming to provide an historical perspective on the topic. Then, an overview of the trends and challenges in membrane processes and materials, mostly in the last five years, involving Portuguese researchers, is presented as a contribution to a more sustainable water-energy-material-food nexus.
Collapse
Affiliation(s)
- Liliana C. Tomé
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (L.C.T.); (S.V.); (J.G.C.)
| | - Diogo M. F. Santos
- Center of Physics and Engineering of Advanced Materials (CeFEMA), Laboratory for Physics of Materials and Emerging Technologies (LaPMET), Chemical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (D.M.F.S.); (M.N.d.P.)
| | - Svetlozar Velizarov
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (L.C.T.); (S.V.); (J.G.C.)
| | - Isabel M. Coelhoso
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (L.C.T.); (S.V.); (J.G.C.)
| | - Adélio Mendes
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
| | - João G. Crespo
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (L.C.T.); (S.V.); (J.G.C.)
| | - Maria Norberta de Pinho
- Center of Physics and Engineering of Advanced Materials (CeFEMA), Laboratory for Physics of Materials and Emerging Technologies (LaPMET), Chemical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (D.M.F.S.); (M.N.d.P.)
| |
Collapse
|
4
|
Chakraborty D, Ghorai A, Bhanja P, Banerjee S, Bhaumik A. High proton conductivity in a charge carrier-induced Ni(ii) metal–organic framework. NEW J CHEM 2022. [DOI: 10.1039/d1nj04685c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A new tetradentate phosphonate ligand-based Ni-MOF has been synthesized and employed as an efficient proton-conducting material upon doping with sulphuric acid.
Collapse
Affiliation(s)
- Debabrata Chakraborty
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Arijit Ghorai
- Materials Science Centre, Indian Institute of Technology, Kharagpur, Kharagpur, 721302, India
| | - Piyali Bhanja
- Materials Chemistry Division, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar, Odisha, 751013, India
| | - Susanta Banerjee
- Materials Science Centre, Indian Institute of Technology, Kharagpur, Kharagpur, 721302, India
| | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
5
|
The electric field effect on the nanostructure, transport, mechanical, and thermal properties of polymer electrolyte membrane. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02563-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Teixeira FC, Lucas C, Curto MJM, André V, Duarte MT, Teixeira APS. Synthesis of novel pyrazolo[3,4-b]quinolinebisphosphonic acids and an unexpected intramolecular cyclization and phosphonylation reaction. Org Biomol Chem 2021; 19:2533-2545. [PMID: 33666215 DOI: 10.1039/d1ob00025j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel pyrazolo[3,4-b]quinoline α-ketophosphonic and hydroxymethylenebisphosphonic acid compounds were synthesized using different methodologies, starting from 2-chloro-3-formylquinoline 1. New phosphonic acid compounds were obtained as N-1 derivatives with a side chain with 1 or 3 (n = 1 or 3) methylene groups. All phosphonic acid compounds and their corresponding ester and carboxylic acid precursors were fully characterized, and their structures elucidated by spectroscopic data, using NMR techniques and infrared and high-resolution mass spectroscopy. During the process to obtain the N-1 substituted derivative with two methylene groups (n = 2) in the side chain, an unexpected addition-cyclization cascade reaction was observed, involving the phosphonylation of an aromatic ring and the formation of a new six-member lactam ring to afford a tetracyclic ring system. This was an unexpected result since other pyrazolo[3,4-b]quinoline derivatives and all corresponding pyrazolo[3,4-b]pyridine derivatives already prepared, under similar experimental conditions, did not undergo this reaction. This domino reaction occurs with different phosphite reagents but only affords the six-member ring. The spectroscopic data allowed the identification of the new synthesized tetracyclic compounds and the X-ray diffraction data of compound 11 enabled the confirmation of the proposed structures.
Collapse
Affiliation(s)
- Fátima C Teixeira
- Laboratório Nacional de Energia e Geologia, I.P., Estrada do Paço do Lumiar, 22, 1649-038 Lisboa, Portugal.
| | | | | | | | | | | |
Collapse
|