1
|
Miranti R, Komatsu R, Enomoto K, Inoue D, Pu YJ. Symmetry-Broken Electronic State of CsPbBr 3 Cubic Perovskite Nanocrystals. J Phys Chem Lett 2024; 15:10009-10017. [PMID: 39319585 DOI: 10.1021/acs.jpclett.4c02160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The development of densely packed, self-assembled perovskite nanocrystals (PeNCs) with a favorable transition dipole moment (TDM) orientation is crucial for their application in solution-processable electronic devices. In this study, we fabricated anisotropic CsPbBr3 PeNCs with a symmetry-broken electronic state on quartz substrates modified by 3-aminopropyltrimethoxysilane (APS). Densely packed and self-assembled monolayers of cubic PeNCs were formed on the substrates by using a dip coating technique. The angle-dependent absorption and photoluminescence (PL) spectra confirmed that the PeNC monolayer on the APS-treated substrate exhibited anisotropic electronic states in the in-plane and out-of-plane directions of the substrate. In contrast, when the quartz substrate was modified with the long alkyl silane coupling agent, octadecyltrimethoxysilane, the absorption and PL spectra exhibited no angular dependence, indicating the absence of anisotropy. Experimental and simulated results confirmed the presence of vertical TDMs in the densely packed PeNCs on the APS-treated substrate, which could be attributed to the effect of the amino groups of the APS on the facet of the cubic PeNCs facing the quartz substrate. Hence, surface chemical modifications of the substrate can aid in the precise control of the symmetry of the electronic states and TDM orientation in cubic PeNCs. These findings can promote the development of densely packed, high-coverage PeNC films with a controllable TDM orientation for applications in electronic devices such as solar cells, sensors, and light-emitting diodes.
Collapse
Affiliation(s)
- Retno Miranti
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), South Tangerang, Banten 15314, Indonesia
| | - Ryutaro Komatsu
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kazushi Enomoto
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Daishi Inoue
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yong-Jin Pu
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
2
|
Ely F, Vieira KO, Reyes-Banda MG, Quevedo-Lopez M. Broadband photodetectors from silane-passivated CsPbBr 3 nanocrystals by ultrasound-mediated synthesis. NANOSCALE 2024; 16:10833-10840. [PMID: 38769851 DOI: 10.1039/d3nr06564b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Perovskite nanocrystals have excellent optical properties but suffer from environmental instability and production up-scaling which limit their commercial application. Here, we report the gram-scale ultrasound-mediated synthesis of silane passivated CsPbBr3 nanocrystals using (3-aminopropyl) triethoxysilane (APTS) as the primary surface ligand surface. The surface engineering endowed the CsPbBr3@SiOR NCs with extended environmental stability, a narrow emission bandwidth and a high photoluminescence quantum yield (PLQY > 75%). Thanks to these excellent optical properties, high-efficiency lateral and vertical photodetectors were fabricated. In particular, the layered vertical photodiode composed of ITO/Ga2O3/CsPbBr3/Au exhibited a broadband photoresponse from 350-700 nm with a responsivity peaking at 44.5.1 A W-1 and specific detectivity above 1013 Jones when illuminated at 470 nm wavelength and biased at +5 V. These results correspond to the best-in-class performance perovskite nanocrystal PD and confirm the extraordinary potential of CsPbBr3@SiOR for the development of efficient optoelectronic devices.
Collapse
Affiliation(s)
- Fernando Ely
- Renato Archer Information Technology Center - CTI, Campinas, SP, 13069-901, Brazil.
- Department of Materials Science & Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Kayo O Vieira
- Renato Archer Information Technology Center - CTI, Campinas, SP, 13069-901, Brazil.
| | - Martin G Reyes-Banda
- Department of Materials Science & Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Manuel Quevedo-Lopez
- Department of Materials Science & Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| |
Collapse
|
3
|
Jiang L, Qiu Y, Xiang L, Tang J. APTES and CTAB Synergistic Induce a Heterozygous CsPbBr 3/Cs 4PbBr 6 Perovskite Composite and its Application on the Sensitive Fluorescent Detection of Iodide ions. J Fluoresc 2024:10.1007/s10895-024-03623-x. [PMID: 38396149 DOI: 10.1007/s10895-024-03623-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
Recently, all-inorganic halide perovskite quantum dots (IPQD) as a new fluorescent material with excellent fluorescence properties have attracted wide attention. However, their instability in polar solvents is the main factor hindering their application in analysis. Herein, a heterozygous perovskite (CsPbBr3/Cs4PbBr6) was simultaneously prepared and stabilized by a silylanization strategy using (3-aminopropyl)-triethoxysilane (APTES) and cetyltrimethyl ammonium bromide (CTAB) assisted precipitation encapsulation method. The synthesized CsPbBr3/Cs4PbBr6 emitted an independent fluorescence at 520 nm. The obtained CsPbBr3/Cs4PbBr6 exhibited good stability in ethanol/water mixtures. It was used as a fluorescent probe for sensitively detecting iodide ions (I-) by fluorescence quenching mechanism in the concentration range of 1 ~ 70.0 µM with the detection limit (LOD) of 0.83 µM (relative standard deviation (RSD) = 1.33%, n = 20). The simplicity and high selectivity of the proposed fluorescent analysis method were the prominent features. This work could be extended to the other target ion detection by a perovskite fluorescent quenching.
Collapse
Affiliation(s)
- Lingyu Jiang
- Department of Environmental and Energy Engineering, Anhui Jianzhu University, Ziyun Road 292, Hefei, 230601, China
| | - Yunyun Qiu
- Department of Environmental and Energy Engineering, Anhui Jianzhu University, Ziyun Road 292, Hefei, 230601, China
| | - Li Xiang
- Department of Environmental and Energy Engineering, Anhui Jianzhu University, Ziyun Road 292, Hefei, 230601, China
| | - Jianshe Tang
- Department of Environmental and Energy Engineering, Anhui Jianzhu University, Ziyun Road 292, Hefei, 230601, China.
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Hefei, 230601, China.
| |
Collapse
|
4
|
Getachew G, Wibrianto A, Rasal AS, Batu Dirersa W, Chang JY. Metal halide perovskite nanocrystals for biomedical engineering: Recent advances, challenges, and future perspectives. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
5
|
Cheng S, Li F, Fang Z, Rao X, Yan C, Yin J, Zhang W, Zhao F, Huang Y. Investigation on the stability improvement of hybrid halide all-inorganic perovskite quantum dots. NANOTECHNOLOGY 2022; 34:015603. [PMID: 36162342 DOI: 10.1088/1361-6528/ac94d9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Perovskite quantum dots (QDs) with stable luminous properties are crucial to for the construction of corresponding light-emitting diodes (LEDs). Hybrid halide perovskite QDs, especially those contain iodine element emitting red light, usually demonstrate poor emission stability owing to the halide segregation. Moreover, red component is indispensable for the construction of white LEDs (WLEDs). Hence, it is essential to improve the luminous stability of hybrid halide perovskite QDs containing iodine element. Here, magnesium dopant and silica matrix were employed to improve the stability of hybrid halide CsPb(IBr)3QDs. Red, green and blue are three primary colors for constructing WLEDs. Therefore, silica-coated CsPbBr3QDs emitting green light were also synthesized. The fabricated silica-coated Mn:CsPb(IBr)3/PMMA film delivered good emission stability during a 42 d observation period, exhibiting the improved stability compared with the corresponding Mn:CsPb(IBr)3QDs in solution. WLEDs were fabricated by integrating the mixture of silica-coated Mn:CsPb(IBr)3QDs, silica-coated CsPbBr3QDs and silicon sealant with a blue-emission LED chip. The as fabricated device exhibited a longer lifetime to be lit than that of those reported previously. During the 36 d observation period for the as fabricated device, the red emission from the silica-coated Mn:CsPb(IBr)3QDs experienced a peak-emission shift of 34 nm, which is much less than that in Mn:CsPb(IBr)3QDs solution. Their overall intensity downtrend combined the peak-emission shift are responsible for the spectrum shape change, so as to the fluctuation of color correlated temperature and color rendering index. Our study provides a good starting point for the further improvement of the stability of the hybrid halide perovskites QDs and the corresponding light-emitting devices. With deep studies on the synthesis method and luminous mechanism for hybrid halide CsPb(IBr)3QDs, red-emission perovskite QDs with satisfied properties are expected to be obtained.
Collapse
Affiliation(s)
- Sunhuizi Cheng
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province, Nanchang Hangkong University, Nanchang 330063, People's Republic of China
| | - Feng Li
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province, Nanchang Hangkong University, Nanchang 330063, People's Republic of China
| | - Zixin Fang
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province, Nanchang Hangkong University, Nanchang 330063, People's Republic of China
| | - Xinhao Rao
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province, Nanchang Hangkong University, Nanchang 330063, People's Republic of China
| | - Chao Yan
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province, Nanchang Hangkong University, Nanchang 330063, People's Republic of China
| | - Jianzhuang Yin
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province, Nanchang Hangkong University, Nanchang 330063, People's Republic of China
| | - Weiwei Zhang
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province, Nanchang Hangkong University, Nanchang 330063, People's Republic of China
| | - Feng Zhao
- School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China
| | - Yan Huang
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province, Nanchang Hangkong University, Nanchang 330063, People's Republic of China
| |
Collapse
|
6
|
Sanjayan CG, Jyothi MS, Sakar M, Balakrishna RG. Multidentate ligand approach for conjugation of perovskite quantum dots to biomolecules. J Colloid Interface Sci 2021; 603:758-770. [PMID: 34229118 DOI: 10.1016/j.jcis.2021.06.088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 12/23/2022]
Abstract
Building compatible surface on perovskite quantum dots (PQDs) for applications like sensing analytes in aqueous medium is highly challenging and if achieved by simple means can revolutionize disease diagnostics. The present work reports the surface engineering of CsPbBr3 QDs via "simple ligand exchange process" to achieve water-compatible QDs towards detection of biomolecules. The monodentate oleic acid ligand in CsPbBr3 QDs is exchanged with dicarboxylic acid containing (bidentate) ligands such as folic acid (FA), ethylenediamine tetra-acetic acid (EDTA), succinic acid (SA) and glutamic acid (GA) to develop an efficient water-compatible PQD-ligand system. optical and theoretical studies showed the existence of a stronger binding between the perovskite and succinic acid ligand as compared to oleic acid (OA) and all other ligands. Replacement of OA with SA and retention of crystal structure is validated using spectroscopic and microscopic tools. It is observed that SA ligands facilitate better electronic coupling with PQDs and show significant improvement in fluorescence and stability. Further N-Hydroxy succinimide (NHS), which is a well-known compound to activate carboxyl groups, is used to bind onto SA PQDs as multidentate ligand, to form water stable PQDs. SA PQDs react with NHS (in water) to form multidentate ligand passivated PQDs that show very high photoluminescence (PL) as compared to OA PQDs in toluene. This also results in the formation of an NHS ester that allows bioconjugation with PQDs. This simple probe in water is further utilized for sensing a highly hydrophilic bovine serum albumin (BSA) protein as a model target to demonstrate the potential and effectiveness of this process to create compatible QDs for the successful conjugation of biomolecules. Although the focus of this work is to demonstrate bioconjugation and not achieving higher sensitivity levels, the intrinsic sensing level of these compatible QDs towards BSA shows a detection limit of 51.47 nM, which is above par with other reports in literature.
Collapse
Affiliation(s)
- C G Sanjayan
- Centre for Nano and Material Sciences, Jain University, Bangalore 562112, Karnataka, India
| | - M S Jyothi
- Centre for Nano and Material Sciences, Jain University, Bangalore 562112, Karnataka, India; Department of Chemistry, Dayananda Sagar College of Engineering, Shavige Malleshwara Hills, Kumaraswamy Layout, Bengaluru, 560078, India
| | - M Sakar
- Centre for Nano and Material Sciences, Jain University, Bangalore 562112, Karnataka, India
| | - R Geetha Balakrishna
- Centre for Nano and Material Sciences, Jain University, Bangalore 562112, Karnataka, India.
| |
Collapse
|