1
|
Hagarová I, Andruch V. Enhancing Analytical Potential for Ultratrace Analysis of Inorganic Oxyanions Using Extraction Procedures with Layered Double Hydroxides. TOXICS 2024; 12:780. [PMID: 39590960 PMCID: PMC11598274 DOI: 10.3390/toxics12110780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024]
Abstract
This article provides an overview of the use of layered double hydroxides (LDHs) as effective sorbents in various extraction methods, including column-based solid-phase extraction (SPE), dispersive solid-phase extraction (DSPE), and magnetic solid-phase extraction (MSPE), for the separation and preconcentration of inorganic oxyanions of chromium, arsenic, and selenium. The primary focus is on enhancing the analytical performance of spectrometric detection techniques, particularly in terms of sensitivity and selectivity when analyzing low concentrations of target analytes in complex matrices. LDHs, which can be readily prepared and structurally modified with various substances, offer promising potential for the development of novel analytical methods. When used in analytical extraction procedures and following careful optimization of experimental conditions, the developed methods have yielded satisfactory results, as documented by studies reviewed in this paper. This review is intended to assist analytical chemists in scientific laboratories involved in developing new extraction procedures.
Collapse
Affiliation(s)
- Ingrid Hagarová
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Vasil Andruch
- Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia;
| |
Collapse
|
2
|
Hagarová I, Nemček L. Analytical Application of Layered Double Hydroxides as High-Capacity Sorbents in Dispersive Solid Phase Extraction for the Separation and Preconcentration of (Ultra)Trace Heavy Metals. Crit Rev Anal Chem 2023; 54:3114-3127. [PMID: 37350631 DOI: 10.1080/10408347.2023.2227906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Separation/preconcentration procedures are of great importance in the elemental analysis. In this context, layered double hydroxides (LDH) have emerged as promising sorbents in dispersive solid phase extraction (DSPE) procedures. By optimizing the DSPE procedure, lower limits of detection (LOD) can be achieved, making less sensitive detection methods viable for accurate quantification of the (ultra)trace analytes. This is of significant importance from a financial standpoint, as it enables the utilization of cost-effective and readily available detection methods. The extraction procedures using LDH typically require only a few minutes to complete, with some procedures taking as little as 1.5 min. Many studies have reported techniques that eliminate the need for centrifugation, which results in time savings and reduced sample handling. This is particularly important for ultratrace analysis. However, it has been observed that the use of certified reference materials (CRM) to validate the reliability of the developed extraction procedures is often overlooked. The literature also demonstrates inconsistencies in the terminology and abbreviations employed for extraction procedures, which may cause confusion. LDH, extensively studied for various purposes, offer a wide range of modifications and can form composites with other materials, enhancing their surface characteristics and adsorption performance. The development of novel and effective nanocomposites will undoubtedly be a research objective in this field of analytical chemistry, aiming to advance the reliability of extraction procedures. Moreover, integrating of LDH-based DSPE procedures with appropriate detection methods can enable potential automation and pave the way for online applications.
Collapse
Affiliation(s)
- Ingrid Hagarová
- Faculty of Natural Sciences, Institute of Laboratory Research on Geomaterials, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Lucia Nemček
- Faculty of Natural Sciences, Institute of Laboratory Research on Geomaterials, Comenius University in Bratislava, Bratislava, Slovak Republic
| |
Collapse
|
3
|
Grover A, Mohiuddin I, Lee J, Brown RJC, Malik AK, Aulakh JS, Kim KH. Progress in pre-treatment and extraction of organic and inorganic pollutants by layered double hydroxide for trace-level analysis. ENVIRONMENTAL RESEARCH 2022; 214:114166. [PMID: 36027961 DOI: 10.1016/j.envres.2022.114166] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Continuous release of pollutants into the environment poses serious threats to environmental sustainability and human health. For trace-level analysis of pollutants, layered double hydroxide (LDH) is an attractive option to impart enhanced sorption capability and sensitivity toward pollutants because of its unique layered structure, tunable interior architecture, high anion-exchange capacities, and high porosity (e.g., Zn/Cr LDH/DABCO-IL, Ni/Al LDH, CS-Ni/Fe LDH, SDS-Fe3O4@SiO2@Mg-Al LDH, Boeh/Mg/Al LDH/pC, and Fe@NiAl LDH). In concert with the well-defined analytical methodologies (e.g., HPLC and GC), the LDH materials can be employed to detect trace-level targets (e.g., as low as ∼ 20 fg/L for phenols) in aqueous environments. This review highlights LDH as a promising material for pre-treatment of a variety of organic and inorganic target pollutants in complex real matrices. Challenges and future requirements for research into LDH-based analytical methods are also discussed.
Collapse
Affiliation(s)
- Aman Grover
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India
| | - Irshad Mohiuddin
- Department of Chemistry, Panjab University, Sector-14, Chandigarh, 160014, India
| | - Jechan Lee
- Department of Global Smart City & School of Civil, Architectural Engineering, and Landscape Architecture, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Richard J C Brown
- Atmospheric Environmental Science Department, National Physical Laboratory, Teddington, TW11 0LW, United Kingdom
| | - Ashok Kumar Malik
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India.
| | | | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seoul, 04763, Republic of Korea.
| |
Collapse
|
4
|
Synthesis, characterization, and application of polyacrylamide/carmine polymer nanomaterial as an effective solid-phase material for ultrasonic-assisted solid-phase microextraction of aluminum and chromium in vegetable samples. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01960-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
5
|
Abdolmohammad-Zadeh H, Ayazi Z, Veladi M. Nickel oxide/nickel ferrite/layered double hydroxide nanocomposite as a novel magnetic adsorbent for chromium speciation. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Magnetism-assisted in-tube solid phase microextraction for the on-line chromium speciation in environmental water and soil samples. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Wu J, Lu G, Huang X. Fabrication of monolith-based solid-phase microextraction for effective extraction of total chromium in milk and tea samples prior to HPLC/DAD analysis. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105549] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Mirzaee MT, Seidi S, Razeghi Y, Manouchehri M, Shanehsaz M. In-tube stir bar sorptive extraction based on 3-aminopropyl triethoxysilane surface-modified Ce-doped ZnAl layered double hydroxide thin film for determination of nonsteroidal anti-inflammatory drugs in saliva samples. Mikrochim Acta 2020; 187:528. [PMID: 32860534 DOI: 10.1007/s00604-020-04489-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/17/2020] [Indexed: 10/23/2022]
Abstract
A thin-film based on 3-aminopropyl triethoxysilane surface-modified Ce-doped zinc-aluminum layered double hydroxide was synthesized on the inner surface of an aluminum tube. It has been applied to in-tube stir bar sorptive extraction of nonsteroidal anti-inflammatory drugs in saliva samples followed by high-performance liquid chromatography. The sorbent was characterized by scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, and elemental mapping. The extraction parameters including sample pH (4.2), extraction time (10 min), stirring speed (800 rpm), type of eluent (acidified tetrahydrofuran), eluent volume (100 μL), and desorption time (6 min) were thoroughly optimized. Under the optimum conditions, limits of detection were found to be less than 5.0 ng mL-1. Calibration plots were linear within the range 10-1000 ng mL-1 (R2 > 0.9982). Absolute recoveries were calculated in the range 63.5 to 72.4%. The repeatability (intra- and inter-day precision) and reproducibility (tube-to-tube precision) at concentrations of 50, 250, and 500 ng mL-1 were less than 7.6% and 9.4%, respectively. The method accuracy based on the relative error was calculated at these concentrations and ranged from - 4.9 to - 9.3% for intra-day relative error (%) and - 6.8 to - 11% for inter-day relative error (%). Finally, the method applicability was examined for the determination of nonsteroidal anti-inflammatory drugs in saliva samples, and good relative recoveries were obtained within the range 86.5 to 95.2%. As a result, the introduced method can be applied as a suitable alternative to measuring nonsteroidal anti-inflammatory drugs in biological fluids. Graphical abstract A surface-modified Ce-doped ZnAl LDH thin film was synthesized on the inner surface of an Al tube and applied for in-tube stir bar sorptive extraction of NSAIDs in saliva.
Collapse
Affiliation(s)
- Mahsa Torabi Mirzaee
- Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran
| | - Shahram Seidi
- Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran.
| | - Yasaman Razeghi
- Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran
| | - Mahshid Manouchehri
- Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran
| | - Maryam Shanehsaz
- Analytical Chemistry Research Laboratory, Mobin Shimi Azma Company, Tehran, Iran
| |
Collapse
|