1
|
Monsalve Y, Cruz-Pacheco AF, Orozco J. Red and near-infrared light-activated photoelectrochemical nanobiosensors for biomedical target detection. Mikrochim Acta 2024; 191:535. [PMID: 39141139 PMCID: PMC11324696 DOI: 10.1007/s00604-024-06592-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/28/2024] [Indexed: 08/15/2024]
Abstract
Photoelectrochemical (PEC) nanobiosensors integrate molecular (bio)recognition elements with semiconductor/plasmonic photoactive nanomaterials to produce measurable signals after light-induced reactions. Recent advancements in PEC nanobiosensors, using light-matter interactions, have significantly improved sensitivity, specificity, and signal-to-noise ratio in detecting (bio)analytes. Tunable nanomaterials activated by a wide spectral radiation window coupled to electrochemical transduction platforms have further improved detection by stabilizing and amplifying electrical signals. This work reviews PEC biosensors based on nanomaterials like metal oxides, carbon nitrides, quantum dots, and transition metal chalcogenides (TMCs), showing their superior optoelectronic properties and analytical performance for the detection of clinically relevant biomarkers. Furthermore, it highlights the innovative role of red light and NIR-activated PEC nanobiosensors in enhancing charge transfer processes, protecting them from biomolecule photodamage in vitro and in vivo applications. Overall, advances in PEC detection systems have the potential to revolutionize rapid and accurate measurements in clinical diagnostic applications. Their integration into miniaturized devices also supports the development of portable, easy-to-use diagnostic tools, facilitating point-of-care (POC) testing solutions and real-time monitoring.
Collapse
Affiliation(s)
- Yeison Monsalve
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, 050010, Medellín, Colombia
| | - Andrés F Cruz-Pacheco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, 050010, Medellín, Colombia
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, 050010, Medellín, Colombia.
| |
Collapse
|
2
|
Sahu K, Kurrey R, Pillai AK. Green synthesis of silver nanoparticles from Manilkara zapota leaf extract for the detection of aminoglycoside antibiotics and other applications. RSC Adv 2024; 14:23240-23256. [PMID: 39045403 PMCID: PMC11265568 DOI: 10.1039/d4ra01906g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/02/2024] [Indexed: 07/25/2024] Open
Abstract
Antibiotics of aminoglycoside (AMG) class, such as streptomycin (STR), have been widely used to treat infectious diseases caused by Gram-negative bacteria in livestock and humans. In this study, a selective and sensitive colorimetric probe for the determination of STR was proposed based on eco-friendly green synthesized AgNPs from the leaf extract of Manilkara zapota. The mechanism for the detection of STR is based on the electrostatic interaction of opposite charges between negatively charged silver nanoparticle-Manilkara zapota leaf (AgNP-MZL) and STR, causing an aggregation-induced characteristic shift of the SPR band (from 390 nm to 570 nm wavelength) of AgNP-MZL. The morphology, size distribution and optical properties of AgNP-MZL were characterized using UV/visible absorption spectroscopy, FTIR spectroscopy, XRD, DLS, zeta-potential measurements and TEM. The selective determination of STR was experimentally confirmed by performing controlled testing with other classes of antibiotics. To test the sensitivity level of this method, the ratio of these two A 390/A 570 absorbance wavelengths was selected to provide a linear concentration plot between 5 and 100 ng mL-1 STR. The LOD and LOQ were calculated to be 3.5 ng mL-1 and 26.8 ng mL-1, respectively. Good precision was evaluated with a standard deviation of 0.45 ng mL-1 and a relative standard deviation of 2.0% (intraday) and 2.42% (interday) at 10 ng mL-1 for 3 replicate measurements. Advantages of the green synthesis of AgNP-MZL include its eco-friendly nature and it is easy, efficient, cost effective and selective for the detection of the AMG class of antibiotics, i.e. STR, in agricultural and environmental samples.
Collapse
Affiliation(s)
- Khushboo Sahu
- Govt. V. Y. T. Post Graduate Autonomous College Durg-491 001 Chhattisgarh India +917882 393644
| | - Ramsingh Kurrey
- National Center for Natural Resources, Pt. Ravishankar Shukla University Raipur-492 010 Chhattisgarh India
| | - Ajai Kumar Pillai
- Govt. V. Y. T. Post Graduate Autonomous College Durg-491 001 Chhattisgarh India +917882 393644
| |
Collapse
|
3
|
Deng F, Pan J, Chen M, Liu Z, Chen J, Liu C. Integrating CRISPR-Cas12a with catalytic hairpin assembly as a logic gate biosensing platform for the detection of polychlorinated biphenyls in water samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163465. [PMID: 37068691 DOI: 10.1016/j.scitotenv.2023.163465] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/23/2023] [Accepted: 04/08/2023] [Indexed: 06/01/2023]
Abstract
Polychlorinated biphenyls (PCBs) are ubiquitous persistent organic pollutants that cause harmful effects on environmental safety and human health. There is an urgent need to develop an intelligent method for PCBs sensing. In this work, we proposed a logic gate biosensing platform for simultaneous detection of multiple PCBs. 2,3',5,5'-tetrachlorobiphenyl (PCB72) and 3,3',4,4'-tetrachlorobiphenyl (PCB77) were used as the two inputs to construct biocomputing logic gates. We used 0 and 1 to encode the inputs and outputs. The aptamer was used to recognize the inputs and release the trigger DNA. A catalytic hairpin assembly (CHA) module is designed to convert and amplify each trigger DNA into multiple programmable DNA duplexes, which initiate the trans-cleavage activity of CRISPR/Cas12a for the signal output. The activated Cas12 cleaves the BHQ-Cy5 modified single-stranded DNA (ssDNA) to yield the fluorescence reporting signals. In the YES logic gate, PCB72 was used as the only input to carry out the logic operation. In the OR, AND, and INHIBIT logic gates, PCB72 and PCB77 were used as the two inputs. The output signals can be visualized by the naked eye under UV light transilluminators or quantified by a microplate reader. Our constructed biosensing platform possesses the merits of multiple combinations of inputs, intuitive digital output, and high flexibility and scalability, which holds great promise for the intelligent detection of different PCBs.
Collapse
Affiliation(s)
- Fang Deng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Jiafeng Pan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Manjia Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zhi Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - Junhua Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Chengshuai Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
4
|
Xu X, Ding Z, Zhang X, Zha R, Li W, Xu L, Sun D, Cai X, Liang T, Wang Y, Li C. A near-infrared photoelectrochemical aptasensing system based on Bi 2O 2S nanoflowers and gold nanoparticles for high-performance determination of MCF-7 cells. Anal Chim Acta 2023; 1251:340982. [PMID: 36925306 DOI: 10.1016/j.aca.2023.340982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/30/2022] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Circulating tumor cells (CTCs) are commonly considered as the major cause of tumor metastasis and can eventually lead to death. Therefore, developing a high-performance method for the determination of CTCs is very significant for promoting the cancer survival rate. Photoelectrochemical biosensing systems have been extensively investigated and applied for bioassays. Herein, Bi2O2S nanoflowers were successfully prepared through a simple one-step hydrothermal method. After being integrated with gold nanoparticles with a diameter of ∼45 nm, AuNPs/Bi2O2S nanocomposites were coated onto an ITO electrode surface to build a photoelectrochemical sensing platform which can be excited with near-infrared light to produce photocurrent response. Subsequently, mercapto-group functionalized aptamer (SH-Apt) was fixed onto the AuNPs/Bi2O2S/ITO surface. Due to the overexpress of MUC1 protein in the cell membrane, MCF-7 cells were specifically trapped on the SH-Apt/AuNPs/Bi2O2S/ITO surface. The introduce of MCF-7 cells lead to an obvious decrease on the photocurrent response. The photocurrent variation shows a satisfied linear relationship to the logarithm of MCF-7 cells concentration ranged from 50 to 6 × 105 cell mL-1. The detection limit obtained is 17 cell mL-1. The PEC biosensor shows excellent sensitivity, selectivity and stability for sensing MCF-7 cells, even for determining MCF-7 cells in clinical serum samples.
Collapse
Affiliation(s)
- Xingxing Xu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central Minzu University, Wuhan, 430074, China
| | - Zihan Ding
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central Minzu University, Wuhan, 430074, China
| | - Xue Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central Minzu University, Wuhan, 430074, China
| | - Ruyan Zha
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central Minzu University, Wuhan, 430074, China
| | - Wei Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Lian Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Dong Sun
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiaojun Cai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Tao Liang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central Minzu University, Wuhan, 430074, China
| | - Yanying Wang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central Minzu University, Wuhan, 430074, China.
| | - Chunya Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central Minzu University, Wuhan, 430074, China.
| |
Collapse
|
5
|
Azzouz A, Kumar V, Hejji L, Kim KH. Advancements in nanomaterial-based aptasensors for the detection of emerging organic pollutants in environmental and biological samples. Biotechnol Adv 2023; 66:108156. [PMID: 37084799 DOI: 10.1016/j.biotechadv.2023.108156] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/16/2023] [Accepted: 04/15/2023] [Indexed: 04/23/2023]
Abstract
The combination of nanomaterials (NMs) and aptamers into aptasensors enables highly specific and sensitive detection of diverse pollutants. The great potential of aptasensors is recognized for the detection of diverse emerging organic pollutants (EOPs) in different environmental and biological matrices. In addition to high sensitivity and selectivity, NM-based aptasensors have many other advantages such as portability, miniaturization, facile use, and affordability. This work showcases the recent advances achieved in the design and fabrication of NM-based aptasensors for monitoring EOPs (e.g., hormones, phenolic contaminants, pesticides, and pharmaceuticals). On the basis of their sensing mechanisms, the covered aptasensing systems are classified as electrochemical, colorimetric, PEC, fluorescence, SERS, and ECL. Special attention has been paid to the fabrication processes, analytical achievements, and sensing mechanisms of NM-based aptasensors. Further, the practical utility of aptasensing approaches has also been assessed based on their basic performance metrics (e.g., detection limits, sensing ranges, and response times).
Collapse
Affiliation(s)
- Abdelmonaim Azzouz
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002 Tetouan, Morocco
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), Sector 81, SAS Nagar, Mohali, Punjab 140306, India
| | - Lamia Hejji
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002 Tetouan, Morocco; Department of Chemical, Environmental, and Materials Engineering, Higher Polytechnic School of Linares, University of Jaén, Campus Científico-Tecnológico, Cinturón Sur s/n, 23700 Linares, Jaén, Spain
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, South Korea.
| |
Collapse
|
6
|
Liao D, Liang G, Liu Y, Yan W, Guo Y, Liang W, Dong C, Fan L. Design an efficient photoelectrochemical aptasensor for PCB72 based on CdTe@CdS core@shell quantum dots-decorated TiO 2 nanotubes. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129901. [PMID: 36084454 DOI: 10.1016/j.jhazmat.2022.129901] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
In this work, an efficient and novel photoelectrochemical (PEC) aptasensor for 2,3',5,5'-tetrachlorobiphenyl (PCB72) was constructed based on CdTe@CdS core@shell quantum dots (CdTe@CdS QDs)-decorated TiO2 nanotubes (TiO2 NTs). CdTe@CdS QDs were prepared by the combination of CdTe and CdS with a proper lattice mismatch. Due to their large band offsets, core@shell QDs can reduce undesirable carrier recombination, significantly improving their charge separation efficiency. Then the synthesized CdTe@CdS QDs were modified on TiO2 NTs (CdTe@CdS QDs/TiO2 NTs) through electrostatic adsorption method. The as-prepared composites exhibit a wide visible light absorption range, good PEC activity and high photoelectric conversion efficiency. Also, the PEC aptasensor prepared via the immobilization of anti-PCB72 aptamer on the composites exhibits outstanding analytical performance with high sensitivity and specificity for PCB72 under visible-light irradiation, achieving a detection limit as low as 0.03 ng/L. It was also applied to detect PCB72 in four different real environmental samples with satisfactory results.
Collapse
Affiliation(s)
- Dongyun Liao
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Guifang Liang
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Yuyao Liu
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Wenjun Yan
- Analytical Instrumentation Center, Institute of Coal Chemistry, CAS, Taiyuan 030001, PR China
| | - Yujing Guo
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Wenting Liang
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Chuan Dong
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Lifang Fan
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| |
Collapse
|
7
|
Zhao Y, Li L, Zuo Y, He G, Chen Q, Meng Q, Chen H. Reduced graphene oxide supported ZnO/CdS heterojunction enhances photocatalytic removal efficiency of hexavalent chromium from aqueous solution. CHEMOSPHERE 2022; 286:131738. [PMID: 34388437 DOI: 10.1016/j.chemosphere.2021.131738] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/12/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
The removal of toxic and harmful heavy metal contaminants from wastewater is of great importance for global environmental health. The development of efficient photocatalysts is attracting increasing interest with a current focus on material design for improved efficiency. Accordingly, this study aims to optimize the conformation of nanocomposite prepared from a CdS/ZnO heterojunction on reduced graphene oxide (RGO) for boosting the photocatalytic removal of heavy metal contaminants of aqueous systems. Under visible light, the candidate nanocomposites exhibited a range of photocatalytic activity in reducing hexavalent chromium [Cr(VI)] to trivalent chromium [Cr(III)] at room temperature. Among these different nanocomposites, the photocatalytic removal rate constant of Cr(VI) ranged as follows: ZnO/CdS6:5/RGO6 (0.106 min-1) > ZnO/CdS6:5 (0.0630 min-1) > CdS (0.0335 min-1) > ZnO (0.00121 min-1). Moreover, after five cycles of use, the photocatalytic reduction rate of ZnO/CdS6:5/RGO6 was 93.2 %, which signifies its strong re-cycling performance. These results reveal the feasibility of using CdS/ZnO6:5/RGO6 to reduce heavy metal ions from wastewater and provide insights for efficiently removing heavy metal ions without additional chemical trapping agents in the photocatalytic process.
Collapse
Affiliation(s)
- Yitao Zhao
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China; Key Laboratory of New Textile Materials, Changzhou Vocational Institute of Textile and Garment, Changzhou, 213164, China
| | - Le Li
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China; Jiangsu Urban and Rural Construction Vocational College, Changzhou, Jiangsu, 213147, China
| | - Yuanjie Zuo
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| | - Guangyu He
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| | - Qun Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China.
| | - Qi Meng
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| | - Haiqun Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
8
|
Chen J, Shi G, Yan C. Visual Test Paper for on-Site Polychlorinated Biphenyls Detection and Its Logic Gate Applications. Anal Chem 2021; 93:15438-15444. [PMID: 34763426 DOI: 10.1021/acs.analchem.1c03309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A visual detection method was proposed for polychlorinated biphenyls (PCBs) detection using lateral flow test paper as the sensing platform. The aptamer sequence was used to recognize the target 3,3',4,4'-tetrachlorobiphenyl (PCB77). The integration of Zn2+-dependent DNAzyme with toehold-mediated strand displacement reaction significantly improved the response signals. Gold nanoparticles were utilized as the signal tracers in the test paper, making the results visible directly by the naked eye. Under optimal conditions, the paper enables the visual detection of PCB77 as low as 10 pM without additional instrumentation. The assay displays a high selectivity for PCB77 against potential interfering molecules. The visual test paper is robust and has been applied to the detection of PCB77 in milk samples with good recovery and satisfactory accuracy. Using two different PCBs (PCB77 and PCB72) as inputs, we further fabricated OR and AND logic gates, which is conducive to the development of an intelligent detection strategy for PCBs monitoring. Given the attractive characteristics of disposability, low cost, logic operation, and intuitive output, the test paper shows great promise for on-site screening of PCBs in resource-limited areas.
Collapse
Affiliation(s)
- Junhua Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Gu Shi
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Chong Yan
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
9
|
Applications of two-dimensional layered nanomaterials in photoelectrochemical sensors: A comprehensive review. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214156] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Chen X, Yang Z, Ai L, Zhou S, Fan H, Ai S. Signal‐off Photoelectrochemical Aptasensor for
S. aureus
Detection Based on Graphite‐like Carbon Nitride Decorated with Nickel Oxide. ELECTROANAL 2021. [DOI: 10.1002/elan.202100289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaoqi Chen
- College of Chemistry and Material Science Shandong Agricultural University Taian 271018 Shandong PR China
| | - Zhiqing Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea Marine College Hainan University Haikou 570228 PR China
| | - Luchen Ai
- College of Chemistry and Material Science Shandong Agricultural University Taian 271018 Shandong PR China
| | - Shuang Zhou
- College of Chemistry and Material Science Shandong Agricultural University Taian 271018 Shandong PR China
| | - Hai Fan
- College of Chemistry and Material Science Shandong Agricultural University Taian 271018 Shandong PR China
| | - Shiyun Ai
- College of Chemistry and Material Science Shandong Agricultural University Taian 271018 Shandong PR China
| |
Collapse
|
11
|
Improved anti-biofouling performance of CdS/g-C3N4/rGO modified membranes based on in situ visible light photocatalysis in anammox membrane bioreactor. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118861] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Chouhan RS, Jerman I, Heath D, Bohm S, Gandhi S, Sadhu V, Baker S, Horvat M. Emerging tri‐s‐triazine‐based graphitic carbon nitride: A potential signal‐transducing nanostructured material for sensor applications. NANO SELECT 2020. [DOI: 10.1002/nano.202000228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
| | - Ivan Jerman
- National Institute of Chemistry Ljubljana Slovenia
| | - David Heath
- Department of Environmental Sciences Jožef Stefan Institute Ljubljana Slovenia
| | - Sivasambu Bohm
- Royal Society Industry Fellow Molecular Science Research Hub Imperial College London London UK
| | - Sonu Gandhi
- DBT‐National Institute of Animal Biotechnology (DBT‐NIAB) Hyderabad Telangana India
| | - Veera Sadhu
- School of Physical Sciences Kakatiya Institute of Technology & Science (KITS) Warangal Telangana India
| | - Syed Baker
- Department of Microbiology Prof. V.F. Voino‐Yasenetsky Krasnoyarsk State Medical University Krasnoyarsk Siberia Russian Federation
| | - Milena Horvat
- Department of Environmental Sciences Jožef Stefan Institute Ljubljana Slovenia
| |
Collapse
|
13
|
Dual-functional β-CD@CdS nanorod/WS2 nanosheet heterostructures coupled with strand displacement reaction-mediated photocurrent quenching for an ultrasensitive MicroRNA-21 assay. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135581] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
14
|
Gao J, Chen Y, Ji W, Gao Z, Zhang J. Synthesis of a CdS-decorated Eu-MOF nanocomposite for the construction of a self-powered photoelectrochemical aptasensor. Analyst 2019; 144:6617-6624. [PMID: 31617506 DOI: 10.1039/c9an01606f] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A composite of CdS nanoparticles and a europium metal organic framework (Eu-MOF) (CdS/Eu-MOF) was synthesized. The unique properties of MOFs help to improve the photoelectrochemical (PEC) properties of CdS by reducing charge carrier recombination and utilizing a broader spectrum for light harvesting. Under visible light illumination, the photocurrent of the CdS/Eu-MOF composite modified electrode was about 2.5-fold higher than that of the CdS modified electrode. When an ampicillin (AMP)-binding aptamer was immobilized on the CdS/Eu-MOF modified electrode as a recognition element, a self-powered PEC aptasensor exhibiting a specific photocurrent response to AMP was constructed. Several experimental conditions such as the ratio of CdS to MOF, the coating amount of the CdS/Eu-MOF suspension and the concentration of the aptamer were studied. Under optimum conditions, the photocurrent of the developed sensor was linearly related to the logarithm AMP concentration in the range of 1 × 10-10 to 2 × 10-7 M, with a detection limit (3S/N) of 9.3 × 10-11 M. Moreover, this sensor exhibited excellent selectivity, good repeatability and desirable stability. It was successfully applied to the detection of AMP in lake water and milk samples.
Collapse
Affiliation(s)
- Jie Gao
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Key laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, PR China.
| | | | | | | | | |
Collapse
|
15
|
Dual-mode visible light-induced aptasensing platforms for bleomycin detection based on CdS-In 2S 3 heterojunction. Biosens Bioelectron 2019; 145:111712. [PMID: 31563064 DOI: 10.1016/j.bios.2019.111712] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/06/2019] [Accepted: 09/16/2019] [Indexed: 11/22/2022]
Abstract
CdS-In2S3 heterojunction with enhanced photoelectrochemical (PEC) performance was synthesized to construct dual-mode visible light-induced biosensors for highly sensitive and selective detection of bleomycin (BLM). Due to improved absorption in the visible region and suppressed recombination of electron-hole pairs in the heterojunction, CdS-In2S3 composite exhibited enhanced photocurrent response under visible light illumination. Using CdS-In2S3 as photoactive materials and BLM-binding aptamer as recognition element, a PEC aptasensor displaying a declined photocurrent response to BLM was facilely constructed, which was linear to BLM concentration in the range of 5.0-250 nM. On the other hand, the CdS-In2S3 photoanode was employed to construct a photofuel cell (PFC). In such a PFC, the oxidation of water on CdS-In2S3 photoanode under visible light illumination and the reduction of oxygen on Pt cathode led to the generation of electricity. When BLM-binding aptamer was immobilized on CdS-In2S3 photoanode, the output power of the PFC was inversely proportional to the logarithm of BLM concentration from 10 to 250 nM, offering a visible light-induced self-powered sensing platform for BLM detection. Both of the proposed sensors showed high selectivity, good reproducibility and high stability. They were successfully applied to the determination of BLM in human serum samples.
Collapse
|