1
|
Diroll BT. Optical stark effect on CdSe nanoplatelets with mid-infrared excitation for large amplitude ultrafast modulation. NANOTECHNOLOGY 2023; 34:245706. [PMID: 36917849 DOI: 10.1088/1361-6528/acc40c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
The optical Stark effect is a universal response of the electronic structure to incident light. In semiconductors, particularly nanomaterials, the optical Stark effect achieved with sub-band gap photons can drive large, narrowband, and potentially ultrafast changes in the absorption or reflection at the band gap through excitation of virtual excitons. Rapid optical modulation using the optical Stark effect is ultimately constrained, however, by the generation of long-lived excitons through multiphoton absorption. This work compares the modulation achievable using the optical Stark effect on CdSe nanoplatelets with several different pump photon energies, from the visible to mid-infrared. Despite expected lower efficiencies for spectrally-remote pump energies, infrared pump pulses can ultimately drive larger sub-picosecond optical Stark shifts of virtual excitons without creation of real excitons. The CdSe nanoplatelets show subpicosecond shifts of the lowest excitonic resonance of up to 22 meV, resulting in change in absorption as large as 0.32 OD (49% increase in transmission), with a long-lived offset from real excitons less than 1% of the peak signal.
Collapse
Affiliation(s)
- Benjamin T Diroll
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439, United States of America
| |
Collapse
|
2
|
Diroll BT, Brumberg A, Schaller RD. Gain roll-off in cadmium selenide colloidal quantum wells under intense optical excitation. Sci Rep 2022; 12:8016. [PMID: 35577869 PMCID: PMC9110332 DOI: 10.1038/s41598-022-11882-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/24/2022] [Indexed: 12/04/2022] Open
Abstract
Colloidal quantum wells, or nanoplatelets, show among the lowest thresholds for amplified spontaneous emission and lasing among solution-cast materials and among the highest modal gains of any known materials. Using solution measurements of colloidal quantum wells, this work shows that under photoexcitation, optical gain increases with pump fluence before rolling off due to broad photoinduced absorption at energies lower than the band gap. Despite the common occurrence of gain induced by an electron–hole plasma found in bulk materials and epitaxial quantum wells, under no measurement conditions was the excitonic absorption of the colloidal quantum wells extinguished and gain arising from a plasma observed. Instead, like gain, excitonic absorption reaches a minimum intensity near a photoinduced carrier sheet density of 2 × 1013 cm−2 above which the absorption peak begins to recover. To understand the origins of these saturation and reversal effects, measurements were performed with different excitation energies, which deposit differing amounts of excess energy above the band gap. Across many samples, it was consistently observed that less energetic excitation results in stronger excitonic bleaching and gain for a given carrier density. Transient and static optical measurements at elevated temperatures, as well as transient X-ray diffraction of the samples, suggest that the origin of gain saturation and reversal is a heating and disordering of the colloidal quantum wells which produces sub-gap photoinduced absorption.
Collapse
|
3
|
Cannelli O, Colonna N, Puppin M, Rossi TC, Kinschel D, Leroy LMD, Löffler J, Budarz JM, March AM, Doumy G, Al Haddad A, Tu MF, Kumagai Y, Walko D, Smolentsev G, Krieg F, Boehme SC, Kovalenko MV, Chergui M, Mancini GF. Quantifying Photoinduced Polaronic Distortions in Inorganic Lead Halide Perovskite Nanocrystals. J Am Chem Soc 2021; 143:9048-9059. [PMID: 34075753 PMCID: PMC8227469 DOI: 10.1021/jacs.1c02403] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 12/17/2022]
Abstract
The development of next-generation perovskite-based optoelectronic devices relies critically on the understanding of the interaction between charge carriers and the polar lattice in out-of-equilibrium conditions. While it has become increasingly evident for CsPbBr3 perovskites that the Pb-Br framework flexibility plays a key role in their light-activated functionality, the corresponding local structural rearrangement has not yet been unambiguously identified. In this work, we demonstrate that the photoinduced lattice changes in the system are due to a specific polaronic distortion, associated with the activation of a longitudinal optical phonon mode at 18 meV by electron-phonon coupling, and we quantify the associated structural changes with atomic-level precision. Key to this achievement is the combination of time-resolved and temperature-dependent studies at Br K and Pb L3 X-ray absorption edges with refined ab initio simulations, which fully account for the screened core-hole final state effects on the X-ray absorption spectra. From the temporal kinetics, we show that carrier recombination reversibly unlocks the structural deformation at both Br and Pb sites. The comparison with the temperature-dependent XAS results rules out thermal effects as the primary source of distortion of the Pb-Br bonding motif during photoexcitation. Our work provides a comprehensive description of the CsPbBr3 perovskites' photophysics, offering novel insights on the light-induced response of the system and its exceptional optoelectronic properties.
Collapse
Affiliation(s)
- Oliviero Cannelli
- Laboratory
of Ultrafast Spectroscopy (LSU) and Lausanne Centre for Ultrafast
Science (LACUS), École Polytechnique
Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Nicola Colonna
- Laboratory
for Neutron Scattering and Imaging, Paul
Scherrer Institute, CH-5232 Villigen-PSI, Switzerland
- National
Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale
de Lausanne, CH-1015 Lausanne, Switzerland
| | - Michele Puppin
- Laboratory
of Ultrafast Spectroscopy (LSU) and Lausanne Centre for Ultrafast
Science (LACUS), École Polytechnique
Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Thomas C. Rossi
- Laboratory
of Ultrafast Spectroscopy (LSU) and Lausanne Centre for Ultrafast
Science (LACUS), École Polytechnique
Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Dominik Kinschel
- Laboratory
of Ultrafast Spectroscopy (LSU) and Lausanne Centre for Ultrafast
Science (LACUS), École Polytechnique
Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Ludmila M. D. Leroy
- Laboratory
of Ultrafast Spectroscopy (LSU) and Lausanne Centre for Ultrafast
Science (LACUS), École Polytechnique
Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- LabCri, Universidade Federal de Minas Gerais, 31270-901 Belo
Horizonte, Brazil
| | - Janina Löffler
- Laboratory
of Ultrafast Spectroscopy (LSU) and Lausanne Centre for Ultrafast
Science (LACUS), École Polytechnique
Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - James M. Budarz
- Laboratory
of Ultrafast Spectroscopy (LSU) and Lausanne Centre for Ultrafast
Science (LACUS), École Polytechnique
Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Anne Marie March
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United
States
| | - Gilles Doumy
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United
States
| | - Andre Al Haddad
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United
States
| | - Ming-Feng Tu
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United
States
| | - Yoshiaki Kumagai
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United
States
| | - Donald Walko
- Advanced
Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | | | - Franziska Krieg
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa-Swiss
Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Simon C. Boehme
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa-Swiss
Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Maksym V. Kovalenko
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa-Swiss
Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Majed Chergui
- Laboratory
of Ultrafast Spectroscopy (LSU) and Lausanne Centre for Ultrafast
Science (LACUS), École Polytechnique
Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Giulia F. Mancini
- Laboratory
of Ultrafast Spectroscopy (LSU) and Lausanne Centre for Ultrafast
Science (LACUS), École Polytechnique
Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
4
|
Diroll BT, Kamysbayev V, Coropceanu I, Talapin DV, Schaller RD. Heat-driven acoustic phonons in lamellar nanoplatelet assemblies. NANOSCALE 2020; 12:9661-9668. [PMID: 32319509 DOI: 10.1039/d0nr00695e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Colloidal CdSe nanoplatelets, with the electronic structure of quantum wells, self-assemble into lamellar stacks due to large co-facial van der Waals attractions. These lamellar stacks are shown to display coherent acoustic phonons that are detected from oscillatory changes in the absorption spectrum observed in infrared pump, electronic probe measurements. Rather than direct electronic excitation of the nanocrystals using a femtosecond laser, impulsive transfer of heat from the organic ligand shell, excited at C-H stretching vibrational resonances, to the inorganic core of individual nanoplatelets occurs on a time-scale of <100 ps. This heat transfer drives in-phase longitudinal acoustic phonons of the nanoplatelet lamellae, which are accompanied by subtle deformations along the nanoplatelet short axes. The frequencies of the oscillations vary from 0.7 to 2 GHz (3-8 μeV and 0.5-1 ns oscillation period) depending on the thickness of the nanoplatelets-but not their lateral areas-and the temperature of the sample. Temperature-dependence of the acoustic phonon frequency conveys a substantial stiffening of the organic ligand bonds between nanoplatelets with reduced temperature. These results demonstrate a potential for acoustic modulation of the excitonic structure of nanocrystal assemblies in self-assembled anisotropic semiconductor systems at temperatures at or above 300 K.
Collapse
Affiliation(s)
- Benjamin T Diroll
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, USA.
| | | | | | | | | |
Collapse
|
5
|
Diroll BT, Mannodi-Kanakkithodi A, Chan MKY, Schaller RD. Spectroscopic Comparison of Thermal Transport at Organic-Inorganic and Organic-Hybrid Interfaces Using CsPbBr 3 and FAPbBr 3 (FA = Formamidinium) Perovskite Nanocrystals. NANO LETTERS 2019; 19:8155-8160. [PMID: 31603685 DOI: 10.1021/acs.nanolett.9b03502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Thermal transport across interfaces depends on the matching of vibrational structure at the interface. This work examines the transfer of thermal excitation from an organic ligand coating to either all-inorganic cesium lead tribromide (CsPbBr3) nanocrystals or hybrid organic-inorganic formamidinium lead tribromide (FAPbBr3) nanocrystals using selective infrared optical excitation. These two semiconductors are directly compared because they (or similar semiconductors) are currently envisioned as strong candidates in many optoelectronic technologies and they differ due to the presence of an organic or inorganic cation, which introduces substantial differences in the phonon density of states in otherwise quite similar semiconductors. Infrared excitation of C-H vibrations of surface-bound ligands generates a temperature gradient between the organic ligand shell and nanocrystal core, which results in heat flow, measured by probing changes of the semiconductor band gap. Heat transfer to both perovskite compositions of comparable sizes is similar (25-30 ps), due to fast intramolecular vibrational relaxation and similar matching of low-energy phonons with the organic ligand, but FAPbBr3 samples show a slow bleaching kinetic on the order of 1 ns. This slow, heat-induced change in the semiconductor band gap is attributed not to interfacial heat transfer but instead to thermal equilibration between the organic and inorganic sublattices of FAPbBr3. Ab initio molecular dynamics simulations support the hypothesis that low-energy inorganic sublattice phonon modes are populated initially in the heat transfer process, with a slow thermal population of the higher-energy phonon modes associated primarily with the organic cation. Slow thermal equilibration of FAPbBr3 is likely to substantially impact the time-dependent response of optoelectronic devices that heat the semiconductor active layer and provide further evidence that the poor bulk thermal transport of hybrid perovskite materials extends to microscopic thermal processes.
Collapse
Affiliation(s)
- Benjamin T Diroll
- Center for Nanoscale Materials , Argonne National Laboratory , 9700 South Cass Avenue , Lemont , Illinois 60439 , United States
| | - Arun Mannodi-Kanakkithodi
- Center for Nanoscale Materials , Argonne National Laboratory , 9700 South Cass Avenue , Lemont , Illinois 60439 , United States
| | - Maria K Y Chan
- Center for Nanoscale Materials , Argonne National Laboratory , 9700 South Cass Avenue , Lemont , Illinois 60439 , United States
| | - Richard D Schaller
- Center for Nanoscale Materials , Argonne National Laboratory , 9700 South Cass Avenue , Lemont , Illinois 60439 , United States
- Department of Chemistry , Northwestern University , 2145 Sheridan Avenue , Evanston , Illinois 60208 , United States
| |
Collapse
|