1
|
Gilhooly-Finn PA, Westwood MM, Schroeder BC. Will it blend? Exploring the viscoelastic characteristics of P3HT-polyborosiloxane blends towards flexible electronic materials. RSC APPLIED POLYMERS 2024:d4lp00163j. [PMID: 39464175 PMCID: PMC11498086 DOI: 10.1039/d4lp00163j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024]
Abstract
Blending organic semiconducting polymers with elastomeric materials has been shown to be a successful method for improving the flexibility of wearable electronics. One such elastomer that has not been readily explored in combination with an organic semiconducting polymer is polyborosiloxane (PBS). PBS shows remarkable viscoelastomeric properties, due to the borate ester groups that crosslink the siloxane backbones, demonstrating a dynamic covalent crosslinking mechanism. The detailed study presented here showcases the properties of two different PBS elastomers and the effect of blending a well-known organic semiconducting polymer, poly(3-hexylthiophene) (P3HT). Compatibility studies showed that one elastomer blends more favourably than the other due to differences in the crosslinking density leading to the formation of P3HT crystallites within the blend. The viscoelastic properties of the PBS : P3HT blends are studied through detailed rheological experiments and the relaxation processes are discussed.
Collapse
Affiliation(s)
- Peter A Gilhooly-Finn
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK of Great Britain and Northern Ireland
| | - Megan M Westwood
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK of Great Britain and Northern Ireland
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology 41296 Göteborg Sweden
| | - Bob C Schroeder
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK of Great Britain and Northern Ireland
| |
Collapse
|
2
|
Afzal T, Iqbal MJ, Almutairi BS, Zohaib M, Nadeem M, Raza MA, Naseem S. Tuning phase separation in DPPDTT/PMMA blend to achieve molecular self-assembly in the conducting polymer for organic field effect transistors. J Chem Phys 2024; 160:034902. [PMID: 38230950 DOI: 10.1063/5.0184290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/25/2023] [Indexed: 01/18/2024] Open
Abstract
The semiconductor/insulator blends for organic field-effect transistors are a potential solution to improve the charge transport in the active layer by inducing phase separation in the blends. However, the technique is less investigated for long-chain conducting polymers such as Poly[2,5-(2-octyldodecyl)-3,6-diketopyrrolopyrrole-alt-5,5-(2,5-di(thien-2-yl)thieno [3,2-b]thiophene)] (DPPDTT), and lateral phase separation is generally reported due to the instability during solvent evaporation, which results in degraded device performance. Herein, we report how to tailor the dominant mechanism of phase separation in such blends and the molecular assembly of the polymer. For DPPDTT/PMMA blends, we found that for higher DPPDTT concentrations (more than 75%) where the vertical phase separation mechanism is dominant, PMMA assisted in the self-assembly of DPPDTT to form nanowires and micro-transport channels on top of PMMA. The formation of nanowires yielded 13 times higher mobility as compared to pristine devices. For blend ratios with DPPDTT ≤ 50%, both the competing mechanisms, vertical and lateral phase separation, are taking place. It resulted in somewhat lower charge carrier mobilities. Hence, our results show that by systematic tuning of the blend ratio, PMMA can act as an excellent binding material in long-chain polymers such as DPPDTT and produce vertically stratified and aligned structures to ensure high mobility devices.
Collapse
Affiliation(s)
- Tahmina Afzal
- Centre of Excellence in Solid State Physics, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - M Javaid Iqbal
- Centre of Excellence in Solid State Physics, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Badriah S Almutairi
- Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Muhammad Zohaib
- Centre of Excellence in Solid State Physics, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Muhammad Nadeem
- Centre of Excellence in Solid State Physics, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Mohsin Ali Raza
- Department of Metallurgy and Materials Engineering, University of the Punjab, Lahore 54590, Pakistan
| | - Shahzad Naseem
- Centre of Excellence in Solid State Physics, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| |
Collapse
|
3
|
Ghamari P, Niazi MR, Perepichka DF. Improving Environmental and Operational Stability of Polymer Field-Effect Transistors by Doping with Tetranitrofluorenone. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19290-19299. [PMID: 36944187 DOI: 10.1021/acsami.3c01034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Operational instability of organic field-effect transistors (OFETs) is one of the key limitations for applications of printed electronics. Environmental species, especially oxygen and water, unintentionally introduced in the OFET channel, can act as either dopants or traps for charge carriers, affecting the electrical characteristics and stability of devices. Here, we report that intentional doping of the benchmark p-type semiconducting polymer (DPP-DTT) with 2,4,5,7-tetranitrofluorenone (TeNF) markedly improves the operational and environmental stability of OFETs. Electrical interrogation of DPP-DTT OFETs in various environments and at variable temperatures shows suppression of electron-induced traps and increase of hole mobility in oxygen-rich environment, while the water molecules act as traps for positive charge carrier, reducing the hole mobility and significantly shifting the threshold voltage. Doping of DPP-DTT with TeNF suppresses both effects, resulting in environmentally independent performance and superior long-term stability of unencapsulated devices for up to 4 months in ambient air. Furthermore, the doped OFETs exhibit dramatically reduced hysteresis and bias-stressed current drop. Such improvement of the environmental and operational stabilities is ascribed to the mitigation of traps induced by the injected minority carrier (electrons) and the reduction of the majority carrier (hole) traps in doped polymer films due to enhanced microstructural order.
Collapse
Affiliation(s)
- Pegah Ghamari
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
- Department of Electrical Engineering, McGill University, 3480 University Street, Montreal, Quebec H3A 0E9, Canada
| | - Muhammad Rizwan Niazi
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Dmytro F Perepichka
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
4
|
Jeong G, Shin SY, Kyokunzire P, Cheon HJ, Wi E, Woo M, Chang M. High-Performance Nitric Oxide Gas Sensors Based on an Ultrathin Nanoporous Poly(3-hexylthiophene) Film. BIOSENSORS 2023; 13:132. [PMID: 36671967 PMCID: PMC9856169 DOI: 10.3390/bios13010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Conjugated polymer (CP)-based organic field-effect transistors (OFETs) have been considered a potential sensor platform for detecting gas molecules because they can amplify sensing signals by controlling the gate voltage. However, these sensors exhibit significantly poorer oxidizing gas sensing performance than their inorganic counterparts. This paper presents a high-performance nitric oxide (NO) OFET sensor consisting of a poly(3-hexylthiophene) (P3HT) film with an ultrathin nanoporous structure. The ultrathin nonporous structure of the P3HT film was created via deposition through the shear-coating-assisted phase separation of polymer blends and selective solvent etching. The ultrathin nonporous structure of the P3HT film enhanced NO gas diffusion, adsorption, and desorption, resulting in the ultrathin nanoporous P3HT-film-based OFET gas sensor exhibiting significantly better sensing performance than pristine P3HT-film-based OFET sensors. Additionally, upon exposure to 10 ppm NO at room temperature, the nanoporous P3HT-film-based OFET gas sensor exhibited significantly better sensing performance (i.e., responsivity ≈ 42%, sensitivity ≈ 4.7% ppm-1, limit of detection ≈ 0.5 ppm, and response/recovery times ≈ 6.6/8.0 min) than the pristine P3HT-film-based OFET sensors.
Collapse
Affiliation(s)
- Ganghoon Jeong
- Graduate School, Department of Polymer Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seo Young Shin
- Graduate School, Department of Polymer Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Proscovia Kyokunzire
- Graduate School, Department of Polymer Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyeong Jun Cheon
- Graduate School, Department of Polymer Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Eunsol Wi
- Graduate School, Department of Polymer Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Minhong Woo
- Graduate School, Department of Polymer Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Mincheol Chang
- Graduate School, Department of Polymer Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
5
|
Enhanced Nitric Oxide Sensing Performance of Conjugated Polymer Films through Incorporation of Graphitic Carbon Nitride. Int J Mol Sci 2023; 24:ijms24021158. [PMID: 36674668 PMCID: PMC9864893 DOI: 10.3390/ijms24021158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Organic field-effect transistor (OFET) gas sensors based on conjugated polymer films have recently attracted considerable attention for use in environmental monitoring applications. However, the existing devices are limited by their poor sensing performance for gas analytes. This drawback is attributed to the low charge transport in and the limited charge-analyte interaction of the conjugated polymers. Herein, we demonstrate that the incorporation of graphitic carbon nitride (g-C₃N₄) into the conjugated polymer matrix can improve the sensing performance of OFET gas sensors. Moreover, the effect of graphitic carbon nitride (g-C₃N₄) on the gas sensing properties of OFET sensors based on poly(3-hexylthiophene) (P3HT), a conjugated polymer, was systematically investigated by changing the concentration of the g-C₃N₄ in the P3HT/g-C₃N₄ composite films. The obtained films were applied in OFET to detect NO gas at room temperature. In terms of the results, first, the P3HT/g-C₃N₄ composite films containing 10 wt.% g-C₃N₄ exhibited a maximum charge carrier mobility of ~1.1 × 10-1 cm2 V-1 S-1, which was approximately five times higher than that of pristine P3HT films. The fabricated P3HT/g-C₃N₄ composite film based OFET sensors presented significantly enhanced NO gas sensing characteristics compared to those of the bare P3HT sensor. In particular, the sensors based on the P3HT/g-C₃N₄ (90/10) composite films exhibited the best sensing performance relative to that of the bare P3HT sensor when exposed to 10 ppm NO gas: responsivity = 40.6 vs. 18.1%, response time = 129 vs. 142 s, and recovery time = 148 vs. 162 s. These results demonstrate the enormous promise of g-C₃N₄ as a gas sensing material that can be hybridized with conjugated polymers to efficiently detect gas analytes.
Collapse
|
6
|
Tran VV, Jeong G, Kim KS, Kim J, Jung HR, Park B, Park JJ, Chang M. Facile Strategy for Modulating the Nanoporous Structure of Ultrathin π-Conjugated Polymer Films for High-Performance Gas Sensors. ACS Sens 2022; 7:175-185. [PMID: 34967614 DOI: 10.1021/acssensors.1c01942] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Conventional conjugated polymer (CP) films based on organic field-effect transistors (OFETs) tend to limit the performance of gas sensors owing to restricted analyte diffusion and limited interactions with the charge carriers that accumulate in the first few monolayers of the CP film in contact with the dielectric layer. Herein, a facile strategy is presented for modulating the morphology and charge-transport properties of nanoporous CP films using shearing-assisted phase separation of polymer blends for fabricating OFET-based chemical sensors. This approach enables the formation of nanoporous films with pore size and thickness in the ranges of 90-550 and 7-27 nm, respectively, which can be controlled simply by varying the shear rate. The resulting OFET sensors exhibit excellent sensing performance when exposed to NH3 gas, demonstrating a high responsivity (≈70.7%) at 10 ppm and good selectivity toward NH3 over various organic solvent vapors. After a comprehensive analysis of the morphology and electrical properties of the CP films, it is concluded that morphological features, such as film thickness and surface area, affect the sensing performance of nanoporous-film-based OFET sensors more significantly compared to the charge-transport characteristics of the films.
Collapse
Affiliation(s)
- Vinh Van Tran
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, South Korea
| | - Gwanghoon Jeong
- Department of Polymer Engineering, Chonnam National University, Gwangju 61186, South Korea
| | - Keun Seong Kim
- Department of Polymer Engineering, Chonnam National University, Gwangju 61186, South Korea
| | - Jeongho Kim
- Institute of Research and Development, CNB Inc., Gwangju 61008, South Korea
| | - Hong-Ryun Jung
- Industry-University Cooperation Foundation, Chonnam National University, Gwangju 61186, South Korea
| | - Byoungnam Park
- Department of Materials Science and Engineering, Hongik University, Seoul 121-791, South Korea
| | - Jong-Jin Park
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, South Korea
- Department of Polymer Engineering, Chonnam National University, Gwangju 61186, South Korea
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, South Korea
| | - Mincheol Chang
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, South Korea
- Department of Polymer Engineering, Chonnam National University, Gwangju 61186, South Korea
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, South Korea
| |
Collapse
|
7
|
Wang W, Wen J, Shevchenko E, Ma X. Spontaneous formation of anisotropic microrods from paraffin wax in an aqueous environment. SOFT MATTER 2021; 18:156-161. [PMID: 34849514 DOI: 10.1039/d1sm01515j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The construction of functional nano-/micro-architectures through self-assembly and self-organization of organic molecules and polymeric materials plays an important role in the development of many technologies. In this study, we report the spontaneous formation of uniform polymer microrods with lengths of up to a few tens of micrometers from paraffin wax. Through a solvent attrition approach, colloidal structures of paraffin wax are introduced into water. After the initial growth stage, the microrods undergo morphological transformation and end-to-end aggregation, processes likely driven by thermodynamics to create equilibrium structures with minimal interfacial energies. The polymer microrods can effectively absorb hydrophobic nanoparticles, indicating their potential to serve as host materials for functional components. The formation of polymer microrods from paraffin wax and their spontaneous growth mechanism discovered in this study may provide new insights to the self-assembly of microstructures.
Collapse
Affiliation(s)
- Wei Wang
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Jianguo Wen
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Elena Shevchenko
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Xuedan Ma
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, USA
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois 60637, USA.
| |
Collapse
|
8
|
Ditte K, Nguyen Le TA, Ditzer O, Sandoval Bojorquez DI, Chae S, Bachmann M, Baraban L, Lissel F. Rapid Detection of SARS-CoV-2 Antigens and Antibodies Using OFET Biosensors Based on a Soft and Stretchable Semiconducting Polymer. ACS Biomater Sci Eng 2021; 9:2140-2147. [PMID: 34519484 DOI: 10.1021/acsbiomaterials.1c00727] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the midst of the COVID-19 pandemic, adaptive solutions are needed to allow us to make fast decisions and take effective sanitation measures, e.g., the fast screening of large groups (employees, passengers, pupils, etc.). Although being reliable, most of the existing SARS-CoV-2 detection methods cannot be integrated into garments to be used on demand. Here, we report an organic field-effect transistor (OFET)-based biosensing device detecting of both SARS-CoV-2 antigens and anti-SARS-CoV-2 antibodies in less than 20 min. The biosensor was produced by functionalizing an intrinsically stretchable and semiconducting triblock copolymer (TBC) film either with the anti-S1 protein antibodies (S1 Abs) or receptor-binding domain (RBD) of the S1 protein, targeting CoV-2-specific RBDs and anti-S1 Abs, respectively. The obtained sensing platform is easy to realize due to the straightforward fabrication of the TBC film and the utilization of the reliable physical adsorption technique for the molecular immobilization. The device demonstrates a high sensitivity of about 19%/dec and a limit of detection (LOD) of 0.36 fg/mL for anti-SARS-Cov-2 antibodies and, at the same time, a sensitivity of 32%/dec and a LOD of 76.61 pg/mL for the virus antigen detection. The TBC used as active layer is soft, has a low modulus of 24 MPa, and can be stretched up to 90% with no crack formation of the film. The TBC is compatible with roll-to-roll printing, potentially enabling the fabrication of low-cost wearable or on-skin diagnostic platforms aiming at point-of-care concepts.
Collapse
Affiliation(s)
- Kristina Ditte
- Leibniz Institute of Polymer Research Dresden e.V., Hohe Straße 6, Dresden 01069, Germany.,Faculty of Chemistry and Food Chemistry, Dresden Technical University, Dresden 01062, Germany
| | - Trang Anh Nguyen Le
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, Dresden 01328, Germany.,Faculty of Medicine Carl Gustav Carus, Dresden Technical University, Dresden 01307, Germany
| | - Oliver Ditzer
- Leibniz Institute of Polymer Research Dresden e.V., Hohe Straße 6, Dresden 01069, Germany.,Faculty of Chemistry and Food Chemistry, Dresden Technical University, Dresden 01062, Germany
| | - Diana Isabel Sandoval Bojorquez
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, Dresden 01328, Germany
| | - Soosang Chae
- Leibniz Institute of Polymer Research Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Michael Bachmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, Dresden 01328, Germany.,Faculty of Medicine Carl Gustav Carus, Dresden Technical University, Dresden 01307, Germany
| | - Larysa Baraban
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, Dresden 01328, Germany
| | - Franziska Lissel
- Leibniz Institute of Polymer Research Dresden e.V., Hohe Straße 6, Dresden 01069, Germany.,Faculty of Chemistry and Food Chemistry, Dresden Technical University, Dresden 01062, Germany.,Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstr. 10, Jena 07743, Germany
| |
Collapse
|
9
|
Charge Carrier Mobility Improvement in Diketopyrrolopyrrole Block-Copolymers by Shear Coating. Polymers (Basel) 2021; 13:polym13091435. [PMID: 33946975 PMCID: PMC8125458 DOI: 10.3390/polym13091435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 12/20/2022] Open
Abstract
Shear coating is a promising deposition method for upscaling device fabrication and enabling high throughput, and is furthermore suitable for translating to roll-to-roll processing. Although common polymer semiconductors (PSCs) are solution processible, they are still prone to mechanical failure upon stretching, limiting applications in e.g., electronic skin and health monitoring. Progress made towards mechanically compliant PSCs, e.g., the incorporation of soft segments into the polymer backbone, could not only allow such applications, but also benefit advanced fabrication methods, like roll-to-roll printing on flexible substrates, to produce the targeted devices. Tri-block copolymers (TBCs), consisting of an inner rigid semiconducting poly-diketo-pyrrolopyrrole-thienothiophene (PDPP-TT) block flanked by two soft elastomeric poly(dimethylsiloxane) (PDMS) chains, maintain good charge transport properties, while being mechanically soft and flexible. Potentially aiming at the fabrication of TBC-based wearable electronics by means of cost-efficient and scalable deposition methods (e.g., blade-coating), a tolerance of the electrical performance of the TBCs to the shear speed was investigated. Herein, we demonstrate that such TBCs can be deposited at high shear speeds (film formation up to a speed of 10 mm s−1). While such high speeds result in increased film thickness, no degradation of the electrical performance was observed, as was frequently reported for polymer−based OFETs. Instead, high shear speeds even led to a small improvement in the electrical performance: mobility increased from 0.06 cm2 V−1 s−1 at 0.5 mm s−1 to 0.16 cm2 V−1 s−1 at 7 mm s−1 for the TBC with 24 wt% PDMS, and for the TBC containing 37 wt% PDMS from 0.05 cm2 V−1 s−1 at 0.5 mm s−1 to 0.13 cm2 V−1 s−1 at 7 mm s−1. Interestingly, the improvement of mobility is not accompanied by any significant changes in morphology.
Collapse
|
10
|
Gao H, Liu J, Qin Z, Wang T, Gao C, Dong H, Hu W. High-performance amorphous organic semiconductor-based vertical field-effect transistors and light-emitting transistors. NANOSCALE 2020; 12:18371-18378. [PMID: 32870223 DOI: 10.1039/d0nr03569f] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herein, two kinds of vertical organic optoelectronic devices, vertical organic field-effect transistors (VOFETs) and light-emitting transistors (VOLETs), were constructed based on amorphous organic semiconductors of N,N'-di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine (NPB) as hole injecting and transport layers and tris(8-hydroxy-quinolinato) aluminum (Alq3) as the emitting layer. High device performances with a large on/off ratio of ∼6 × 103, current density of ∼40 mA cm-2, and fast response of ∼5 ms at a frequency of 20 Hz and a brightness of 126 cd m-2 were demonstrated for these two vertical devices with good device stability and repeatability. These results suggest the potential applications of amorphous organic semiconductors with good film-forming characteristics and easy device fabrication ability in vertical optoelectronic circuits.
Collapse
Affiliation(s)
- Haikuo Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinyu Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengsheng Qin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianyu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Can Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenping Hu
- Department of Chemistry, School of Science, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
11
|
Kimpel J, Michinobu T. Conjugated polymers for functional applications: lifetime and performance of polymeric organic semiconductors in organic field‐effect transistors. POLYM INT 2020. [DOI: 10.1002/pi.6020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Joost Kimpel
- Department of Materials Science and Engineering Tokyo Institute of Technology Tokyo Japan
| | - Tsuyoshi Michinobu
- Department of Materials Science and Engineering Tokyo Institute of Technology Tokyo Japan
| |
Collapse
|
12
|
Magnanelli TJ, Engmann S, Wahlstrand JK, Stephenson JC, Richter LJ, Heilweil EJ. Polarization Dependence of Charge Conduction in Conjugated Polymer Films Investigated with Time-Resolved Terahertz Spectroscopy. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2020; 124:10.1021/acs.jpcc.9b11870. [PMID: 38680539 PMCID: PMC11047265 DOI: 10.1021/acs.jpcc.9b11870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Room temperature Time-Domain Terahertz (TDS) and Time-Resolved Terahertz (TRTS) spectroscopic methods are employed to measure carrier mobility and charge generation efficiency in thin-film semiconductor polymers. Interrogation of the dependence on excitation and probe polarizations yields insight into the underlying material properties that guide charge transport. We apply THz polarization anisotropy probes to analyze charge conduction in preparations of the copolymer PCDTPT, consisting of alternating cyclopenta-dithiophene (donor) and thiadiazolo-pyridine (acceptor) units. Comparisons are made among films of different ordering and morphology, including aligned films prepared by blade coating, a near isotropic dropcast film, and isotropic liquid dispersion. They are further contrasted with their population dynamics ascertained through transient absorption and the traditional photoconductive polymer poly-3-hexylthiophene (P3HT). Polarization anisotropy is observed as preferential charge conduction along the backbone propagation direction of PCDTPT, with various factors disproportionately influencing directional mobility and charge pair yield. PCDTPT exhibits unexpectedly strong conductivity when isolated in toluene dispersion. Quantitative comparisons yield a better understanding of polaron/free-charge relaxation and transfer mechanisms and illustrate dynamics among photoexcited charge carriers and their motion and diffusion through different material morphologies.
Collapse
Affiliation(s)
- Timothy J. Magnanelli
- Physical, Measurement Laboratories, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899, USA
| | - Sebastian Engmann
- Physical, Measurement Laboratories, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899, USA
- Theiss Research, La Jolla, CA, 92036, USA
| | - Jared K. Wahlstrand
- Physical, Measurement Laboratories, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899, USA
| | - John C. Stephenson
- Physical, Measurement Laboratories, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899, USA
| | - Lee J. Richter
- Material, Measurement Laboratories, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899, USA
| | - Edwin J. Heilweil
- Physical, Measurement Laboratories, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899, USA
| |
Collapse
|