• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4643608)   Today's Articles (629)   Subscriber (50555)
For: Barnard AS, Opletal G. Predicting structure/property relationships in multi-dimensional nanoparticle data using t-distributed stochastic neighbour embedding and machine learning. Nanoscale 2019;11:23165-23172. [PMID: 31777891 DOI: 10.1039/c9nr03940f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Number Cited by Other Article(s)
1
He S, Segura Abarrategi J, Bediaga H, Arrasate S, González-Díaz H. On the additive artificial intelligence-based discovery of nanoparticle neurodegenerative disease drug delivery systems. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024;15:535-555. [PMID: 38774585 PMCID: PMC11106676 DOI: 10.3762/bjnano.15.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/23/2024] [Indexed: 05/24/2024]
2
Lu S, Jayaraman A. Pair-Variational Autoencoders for Linking and Cross-Reconstruction of Characterization Data from Complementary Structural Characterization Techniques. JACS AU 2023;3:2510-2521. [PMID: 37772182 PMCID: PMC10523369 DOI: 10.1021/jacsau.3c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 09/30/2023]
3
Kirschbaum T, von Seggern B, Dzubiella J, Bande A, Noé F. Machine Learning Frontier Orbital Energies of Nanodiamonds. J Chem Theory Comput 2023;19:4461-4473. [PMID: 37053438 DOI: 10.1021/acs.jctc.2c01275] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
4
Wang Z, Sun Z, Yin H, Liu X, Wang J, Zhao H, Pang CH, Wu T, Li S, Yin Z, Yu XF. Data-Driven Materials Innovation and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022;34:e2104113. [PMID: 35451528 DOI: 10.1002/adma.202104113] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 03/19/2022] [Indexed: 05/07/2023]
5
Ting JYC, Li S, Barnard AS. Causal Paths Allowing Simultaneous Control of Multiple Nanoparticle Properties Using Multi‐Target Bayesian Inference. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
6
Machine learning assisted optimization of blending process of polyphenylene sulfide with elastomer using high speed twin screw extruder. Sci Rep 2021;11:24079. [PMID: 34911974 PMCID: PMC8674312 DOI: 10.1038/s41598-021-03513-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 12/06/2021] [Indexed: 11/08/2022]  Open
7
Li S, Barnard AS. Inverse Design of Nanoparticles Using Multi‐Target Machine Learning. ADVANCED THEORY AND SIMULATIONS 2021. [DOI: 10.1002/adts.202100414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
8
Diéguez-Santana K, González-Díaz H. Towards machine learning discovery of dual antibacterial drug-nanoparticle systems. NANOSCALE 2021;13:17854-17870. [PMID: 34671801 DOI: 10.1039/d1nr04178a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
9
Rincón-López J, Almanza-Arjona YC, Riascos AP, Rojas-Aguirre Y. When Cyclodextrins Met Data Science: Unveiling Their Pharmaceutical Applications through Network Science and Text-Mining. Pharmaceutics 2021;13:1297. [PMID: 34452258 PMCID: PMC8399453 DOI: 10.3390/pharmaceutics13081297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/21/2022]  Open
10
Zhang H, Barnard AS. Impact of atomistic or crystallographic descriptors for classification of gold nanoparticles. NANOSCALE 2021;13:11887-11898. [PMID: 34190263 DOI: 10.1039/d1nr02258j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
11
Ortega-Tenezaca B, González-Díaz H. IFPTML mapping of nanoparticle antibacterial activity vs. pathogen metabolic networks. NANOSCALE 2021;13:1318-1330. [PMID: 33410431 DOI: 10.1039/d0nr07588d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
12
Parker AJ, Barnard AS. Machine learning reveals multiple classes of diamond nanoparticles. NANOSCALE HORIZONS 2020;5:1394-1399. [PMID: 32840548 DOI: 10.1039/d0nh00382d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA