1
|
Li S, Chu Y, Guo X, Mao C, Xiao SJ. Circular RNA oligonucleotides: enzymatic synthesis and scaffolding for nanoconstruction. NANOSCALE HORIZONS 2024. [PMID: 39042106 DOI: 10.1039/d4nh00236a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
We report the efficient synthesis of monomeric circular RNAs (circRNAs) in the size range of 16-44 nt with a novel DNA dumbbell splinting plus T4 DNA ligation strategy. Such a DNA dumbbell splinting strategy was developed by one group among ours recently for near-quantitative conversion of short linear DNAs into monomeric circular ones. Furthermore, using the 44 nt circRNA as scaffold strands, we constructed hybrid RNA:DNA and pure RNA:RNA double crossover tiles and their assemblies of nucleic acid nanotubes and flat arrays.
Collapse
Affiliation(s)
- Shijie Li
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Yanxin Chu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Xin Guo
- Bruker (Beijing) Scientific Technology Co. Ltd, China
| | - Chengde Mao
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Shou-Jun Xiao
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, China
| |
Collapse
|
2
|
Sun Z, Ren Y, Zhu W, Xiao Y, Wu H. DNA nanotechnology-based nucleic acid delivery systems for bioimaging and disease treatment. Analyst 2024; 149:599-613. [PMID: 38221846 DOI: 10.1039/d3an01871g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Nucleic acids, including DNA and RNA, have been considered as powerful and functional biomaterials owing to their programmable structure, good biocompatibility, and ease of synthesis. However, traditional nucleic acid-based probes have always suffered from inherent limitations, including restricted cell internalization efficiency and structural instability. In recent years, DNA nanotechnology has shown great promise for the applications of bioimaging and drug delivery. The attractive superiorities of DNA nanostructures, such as precise geometries, spatial addressability, and improved biostability, have enabled them to be a novel category of nucleic acid delivery systems for biomedical applications. In this review, we introduce the development of DNA nanotechnology, and highlight recent advances of DNA nanostructure-based delivery systems for cellular imaging and therapeutic applications. Finally, we propose the challenges as well as opportunities for the future development of DNA nanotechnology in biomedical research.
Collapse
Affiliation(s)
- Zhaorong Sun
- Department of Pharmacy, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, 271000, China
| | - Yingjie Ren
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Wenjun Zhu
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Yuliang Xiao
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Han Wu
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| |
Collapse
|
3
|
Zhang W, Jiang C, Guo X, Muhammad Faran Ashraf Baig M, Ni C, Xiao SJ. 2D DNA lattices assembled from DX-coupled tiles. J Colloid Interface Sci 2022; 616:499-508. [DOI: 10.1016/j.jcis.2022.02.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/27/2022] [Accepted: 02/09/2022] [Indexed: 10/19/2022]
|
4
|
Insua I, Bergueiro J, Méndez-Ardoy A, Lostalé-Seijo I, Montenegro J. Bottom-up supramolecular assembly in two dimensions. Chem Sci 2022; 13:3057-3068. [PMID: 35414883 PMCID: PMC8926289 DOI: 10.1039/d1sc05667k] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/19/2022] [Indexed: 01/17/2023] Open
Abstract
The self-assembly of molecules in two dimensions (2D) is gathering attention from all disciplines across the chemical sciences. Attracted by the interesting properties of two-dimensional inorganic analogues, monomers of different chemical natures are being explored for the assembly of dynamic 2D systems. Although many important discoveries have been already achieved, great challenges are still to be addressed in this field. Hierarchical multicomponent assembly, directional non-covalent growth and internal structural control are a just a few of the examples that will be discussed in this perspective about the exciting present and the bright future of two-dimensional supramolecular assemblies. The self-assembly of molecules in two dimensions (2D) is gathering attention from all disciplines across the chemical sciences. This perspective discusses the main strategies to direct the supramolecular self-assembly of organic monomers in 2D.![]()
Collapse
Affiliation(s)
- Ignacio Insua
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15705 Spain
| | - Julian Bergueiro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15705 Spain
| | - Alejandro Méndez-Ardoy
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15705 Spain
| | - Irene Lostalé-Seijo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15705 Spain
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15705 Spain
| |
Collapse
|
5
|
Fu S, Zhang T, Jiang H, Xu Y, Chen J, Zhang L, Su X. DNA nanotechnology enhanced single-molecule biosensing and imaging. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116267] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Sui Z, An R, Komiyama M, Liang X. Stepwise Strategy for One-Pot Synthesis of Single-Stranded DNA Rings from Multiple Short Fragments. Chembiochem 2020; 22:1005-1011. [PMID: 33124728 DOI: 10.1002/cbic.202000738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Indexed: 12/24/2022]
Abstract
Cyclic rings of single-stranded (ss) DNA have various unique properties, but wider applications have been hampered by their poor availability. This paper reports a convenient one-pot method in which these rings are efficiently synthesized by using T4 DNA ligase through convergent cyclization of easily available short DNA fragments. The key to the present method is to separate all the splint oligonucleotides into several sets, and add each set sequentially at an appropriate interval to the solutions containing all the short DNA fragments. Compared with simple one-pot strategies involving simultaneous addition of all the splints at the beginning of the reaction, both the selectivity and the yields of target ssDNA rings are greatly improved. This convergent method is especially useful for preparing large-sized rings that are otherwise hard to obtain. By starting from six short DNA fragments (71-82 nt), prepared by a DNA synthesizer, a ssDNA ring of 452-nt size was synthesized in 35 mol % yield and in high selectivity. Satisfactorily pure DNA rings were obtainable simply by treating the crude products with exonuclease.
Collapse
Affiliation(s)
- Zhe Sui
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, P. R. China
| | - Ran An
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, P. R. China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, P. R. China
| | - Makoto Komiyama
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, P. R. China
| | - Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, P. R. China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, P. R. China
| |
Collapse
|
7
|
Wang Y, Ge W, Lu B, Zhu JJ, Xiao SJ. Two-layer stacked multi-arm junction tiles and nanostructures assembled with small circular DNA molecules serving as scaffolds. NANOSCALE 2020; 12:19597-19603. [PMID: 32996986 DOI: 10.1039/d0nr05860b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
One-layer multi-arm junction (mAJ) motifs have been investigated extensively for many kinds of planar 2D (two-dimension) lattices, surface-curved 3D (three-dimension) polyhedra, and complex 3D wireframe and tensegrity structures. Herein, we report the weaving strategy to achieve two-layer stacked multi-arm junction tiles (abbreviated as mAJ2) of 3AJ2 and 4AJ2, and several primary tessellation nanostructures of nanocages and 2D rhombus lattices carrying beautifully embossed 4-point stars. Challenges for perfect tessellation are also raised regarding the increase of motif complexity from 2D to 3D.
Collapse
Affiliation(s)
- Yu Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, China.
| | | | | | | | | |
Collapse
|
8
|
Baig MMFA, Lai WF, Akhtar MF, Saleem A, Mikrani R, Farooq MA, Ahmed SA, Tahir A, Naveed M, Abbas M, Ansari MT. Targeting folate receptors (α1) to internalize the bleomycin loaded DNA-nanotubes into prostate cancer xenograft CWR22R cells. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Dong Y, Yao C, Zhu Y, Yang L, Luo D, Yang D. DNA Functional Materials Assembled from Branched DNA: Design, Synthesis, and Applications. Chem Rev 2020; 120:9420-9481. [DOI: 10.1021/acs.chemrev.0c00294] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yuhang Dong
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Chi Yao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Yi Zhu
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Lu Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Dan Luo
- Department of Biological & Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| |
Collapse
|
10
|
DNA nanotechnology as a tool to develop molecular tension probes for bio-sensing and bio-imaging applications: An up-to-date review. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.nanoso.2020.100523] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
11
|
Baig MMFA, Lai WF, Mikrani R, Jabeen M, Naveed M, Abbas M, Farooq MA, Ahsan A, Kassim SA, Khan GJ, Ansari MT. Synthetic NRG-1 functionalized DNA nanospindels towards HER2/neu targets for in vitro anti-cancer activity assessment against breast cancer MCF-7 cells. J Pharm Biomed Anal 2020; 182:113133. [PMID: 32004770 DOI: 10.1016/j.jpba.2020.113133] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/14/2020] [Accepted: 01/24/2020] [Indexed: 02/08/2023]
Abstract
DNA based nano-carriers synthesized from short circular scaffolds (circular DNA nanotechnology) attains stiffer topology for ligand functionalization (neuregulin-1/NRG-1 ligand) and biological applications (targeted drug delivery). Daunorubicin (DR) is a hydrophobic chemical that requires robust vectors to efficiently encapsulate and avoid its free dispersion in water, biological media and cell culture. Here we design DNA nanospindels (DNA-NS) to efficiently load DR and target the (highly expressed) HER2/neu receptors on the plasma membrane of drug-resistant MCF-7 (breast cancer) cells. DNA-NS were synthesized by polymerizing the DNA-triangles (utilizing 84-nt short circular scaffold strand) into larger DNA nano-ribbons characterized by the native-PAGE testing. AFM results revealed the spinning of DNA nanoribbons on its (own) axis because of the intrinsic curvature of the DNA double helix resulting in the formation of the firm and twisted DNA-NS with the diameter (50-70 nm) and length (0.5-4 μm). DA loading onto DNA-NS was confirmed by the UV shift analysis. The MTT results with the blank DNA-NS evidenced its biocompatibility (remained value of 93%) compared to the decreased viability of the MCF-7 cells after treatment with DNA-NS (DR loaded). These findings were further supported by the analysis of cell proliferation/apoptosis through flow cytometry showing 64% apoptosis after treating with the DR loaded DNA-NS. Hence, through the short circular DNA nanotechnology, we have achieved a stiffer, uniform, and biocompatible DNA-NS for applications in the targeted therapy.
Collapse
Affiliation(s)
- Mirza Muhammad Faran Ashraf Baig
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan.
| | - Wing-Fu Lai
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, PR China; School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, PR China
| | - Reyaj Mikrani
- Department of Pharmaceutics, Basic medicine, and Clinical Pharmacy, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Mehreen Jabeen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Muhammad Naveed
- School of Pharmacy, Nanjing Medical University, Jiangsu Province, Nanjing 211166, PR China
| | - Muhammad Abbas
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Muhammad Asim Farooq
- Department of Pharmaceutics, Basic medicine, and Clinical Pharmacy, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Anam Ahsan
- College of Animal Science & Veterinary Medicine, Shanxi Agricultural University, Taigu, PR China
| | - Said Abasse Kassim
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, PR China
| | - Ghulam Jilany Khan
- Faculty of Pharmacy, University of Central Punjab, Lahore, 54570, Pakistan
| | - Muhammad Tayyab Ansari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| |
Collapse
|