1
|
Wei A, OuYang J, Guo Y, Jiang S, Chen F, Huang J, Xiao Q, Wu Z. Controlled synthesis of monodisperse gold nanorods with a small diameter of around 10 nm and largest plasmon wavelength of 1200 nm. Phys Chem Chem Phys 2023; 25:20843-20853. [PMID: 37503681 DOI: 10.1039/d3cp02203j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Gold nanorods have been widely used in various fields due to their tunable anisotropic localized surface plasmon resonance (SPR) property. The facile preparation of gold nanorods with a tunable SPR wavelength extending to a near-infrared window, and at the same time, a relatively small particle size for facilitating applications especially in the biomedical field is of great value yet highly challenging. In this work, a new reducing agent, 1,6-dihydroxynaphthalene, is proposed for the synthesis of gold nanorods. The results indicate that gold nanorods with good monodispersity, high shape yield, maximum SPR wavelength of 1200 nm, and especially small diameter of around 10 nm can be acquired simultaneously. In terms of spectral and size controls, by respectively varying the experimental parameters including the amount of silver ions, reducing agents, and gold seeds not only can a good linear correlation be acquired corresponding to a SPR wavelength ranging from around 600 nm to 1200 nm, but a regular change in the particle diameter from 10.5 nm to 7.5 nm could also be observed. The structural and morphological evolutions of the particle for each changed parameter were carefully studied, and insights were gained into the growth mechanism based on the detailed analysis of particle evolution at a specific stage of the growth process.
Collapse
Affiliation(s)
- Anhua Wei
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| | - Jingfang OuYang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| | - Yuyang Guo
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| | - Suju Jiang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| | - Feifei Chen
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| | - Jun Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| | - Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| | - Zihua Wu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| |
Collapse
|
2
|
Jiang S, Chen F, Wen X, Huang C, Xuan Y, Yao H, Wu Z, Huang G, Meng L. Synthesis of high quality gold nanorod using m-phenylenediamine as the reducing agent. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
3
|
Guo Y, Liu Q, Wei A, Jiang S, Chen F, Huang J, He Y, Huang G, Wu Z. Spectrum and size controllable synthesis of high-quality gold nanorods using 1,7-dihydroxynaphthalene as a reducing agent. Dalton Trans 2023; 52:1052-1061. [PMID: 36602082 DOI: 10.1039/d2dt03646k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The spectrum and size controllable synthesis of gold nanorods is of great value for their widely applicable aspect ratio dependence of anisotropic surface plasmon resonance. Herein, 1,7-dihydroxynaphthalene with a relatively strong reducibility is proposed as a reducing agent for the controllable synthesis of gold nanorods. The result indicated that gold nanorods with high monodispersity, high shape yield, relatively small diameters, and maximum plasmon resonance wavelength of above 1000 nm can be acquired. More importantly, by virtue of the reducing agent used, fine and precise controls over the plasmon wavelength and diameter of the rod can be achieved via changes in experimental conditions. In particular, increases in the concentration of both silver ions and cetyltrimethylammonium bromide (CTAB) can increase the plasmon wavelength from around 600 nm to 1000 nm but respectively show a decreased diameter with the smallest value of around 14.3 nm and a mildly increased diameter from around 9.0 nm to 14.3 nm; moreover, increasing the concentration of reducing agents and gold seeds can simultaneously cause decreases in the plasmon wavelength from around 1000 nm to 800 nm and the diameters from around 14.3 nm to 9.0 and 7.3 nm, respectively. This powerful and efficient method of controllable synthesis of AuNRs could be valuable and attractive for the application of the as-obtained particles.
Collapse
Affiliation(s)
- Yuyang Guo
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| | - Qiuyue Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| | - Anhua Wei
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| | - Suju Jiang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| | - Feifei Chen
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| | - Jun Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| | - Yimiao He
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| | - Guobao Huang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, China
| | - Zihua Wu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.
| |
Collapse
|
4
|
Ni Y, Kan C, Xu J. Optimized plasmonic performances and derivate applications of Au nanobipyramids. Phys Chem Chem Phys 2022; 24:21522-21537. [PMID: 36082804 DOI: 10.1039/d2cp02811e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gold nanobipyramids (AuBPs) with narrow size distribution and high monodispersity have driven intensive attention because they display more advantageous plasmonic properties than gold nanorods (AuNRs). Applications of AuBPs based on tunable plasmonic properties and enhanced electromagnetic fields are being widely investigated in recent years. In this article, we focused on the preparation of well-defined AuBPs using the seed-mediated method, the plasmonic properties, and the exploration of AuBP-supported derivatives. The synergetic contributions of penta-twinned and appropriate growth environment could produce high-purity AuBPs. Systematic comparisons of plasmonic properties between AuBPs and AuNRs are illustrated. In addition, the well-defined AuBPs can be used as a template to synthesize multi-metallic nanostructures. The development of the epitaxial growth based on the AuBPs and corresponding applications are introduced. This study will provide a guide for the fabrication of composite nanostructures and advance their plasmonic applications.
Collapse
Affiliation(s)
- Yuan Ni
- College of Science, Jinling Institute of Technology, Nanjing 210016, China.
| | - Caixia Kan
- College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Juan Xu
- College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| |
Collapse
|
5
|
Parkhomenko RG, Knez M. Facile Fabrication of Gold Nanorods@Polystyrenesulfonate Yolk-Shell Nanoparticles for Spaser Applications. ACS APPLIED NANO MATERIALS 2022; 5:4629-4633. [PMID: 35492437 PMCID: PMC9039960 DOI: 10.1021/acsanm.2c00967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
We present a method for producing gold nanorods surrounded by a hollow polymeric shell of polystyrenesulfonate and show that the cavities of such particles can be filled with various organic dyes. The approach consists of covering gold nanorods with silica, followed by its slow hydrolysis in an aqueous medium in the presence of the polymer thin layer permeable for dye molecules. The proposed method enables the yolk-shell nanoparticles to be obtained and loaded with organic dyes without a need to use thermal treatment and/or chemical etching, which makes it suitable for use in the creation of spasers.
Collapse
Affiliation(s)
| | - Mato Knez
- CIC
NanoGUNE, Tolosa Hiribidea 76, E-20018 San Sebastian, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, E-48009 Bilbao, Spain
| |
Collapse
|
6
|
Zheng J, Cheng X, Zhang H, Bai X, Ai R, Shao L, Wang J. Gold Nanorods: The Most Versatile Plasmonic Nanoparticles. Chem Rev 2021; 121:13342-13453. [PMID: 34569789 DOI: 10.1021/acs.chemrev.1c00422] [Citation(s) in RCA: 189] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gold nanorods (NRs), pseudo-one-dimensional rod-shaped nanoparticles (NPs), have become one of the burgeoning materials in the recent years due to their anisotropic shape and adjustable plasmonic properties. With the continuous improvement in synthetic methods, a variety of materials have been attached around Au NRs to achieve unexpected or improved plasmonic properties and explore state-of-the-art technologies. In this review, we comprehensively summarize the latest progress on Au NRs, the most versatile anisotropic plasmonic NPs. We present a representative overview of the advances in the synthetic strategies and outline an extensive catalogue of Au-NR-based heterostructures with tailored architectures and special functionalities. The bottom-up assembly of Au NRs into preprogrammed metastructures is then discussed, as well as the design principles. We also provide a systematic elucidation of the different plasmonic properties associated with the Au-NR-based structures, followed by a discussion of the promising applications of Au NRs in various fields. We finally discuss the future research directions and challenges of Au NRs.
Collapse
Affiliation(s)
- Jiapeng Zheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xizhe Cheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Han Zhang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xiaopeng Bai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Ruoqi Ai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Lei Shao
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| |
Collapse
|
7
|
Staniszewska T, Szkulmowski M, Morawiec S. Computational Optimization of the Size of Gold Nanorods for Single-Molecule Plasmonic Biosensors Operating in Scattering and Absorption Modes. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:14765-14777. [PMID: 34484550 PMCID: PMC8411831 DOI: 10.1021/acs.jpcc.1c02510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/17/2021] [Indexed: 06/13/2023]
Abstract
We present a comprehensive computational study on the optimization of the size of gold nanorods for single-molecule plasmonic sensing in terms of optical refractive index sensitivity. We construct an experimentally relevant model of single-molecule-single-nanoparticle sensor based on spherically capped gold nanorods, tip-specific functionalization and passivation layers, and biotin-streptavidin affinity system. We introduce a universal figure of merit for the sensitivity, termed contrast-to-noise ratio (CNR), which relates the change of measurable signal caused by the discrete molecule binding events to the inherent measurement noise. We investigate three distinct sensing modalities relying on direct spectral measurements, monitoring of scattering intensity at fixed wavelength and photothermal effect. By considering a shot-noise-limited performance of an experimental setup, we demonstrate the existence of an optimum nanorod size providing the highest sensitivity for each sensing technique. The optimization at constant illumination intensity (i.e., low-power applications) yields similar values of approximately 20 × 80 nm2 for each considered sensing technique. Second, we investigate the impact of geometrical and material parameters of the molecule and the functionalization layer on the sensitivity. Finally, we discuss the variable illumination intensity for each nanorod size with the steady-state temperature increase as its limiting factor (i.e., high-power applications).
Collapse
|
8
|
Liao S, Yue W, Cai S, Tang Q, Lu W, Huang L, Qi T, Liao J. Improvement of Gold Nanorods in Photothermal Therapy: Recent Progress and Perspective. Front Pharmacol 2021; 12:664123. [PMID: 33967809 PMCID: PMC8100678 DOI: 10.3389/fphar.2021.664123] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/24/2021] [Indexed: 02/05/2023] Open
Abstract
Cancer is a life-threatening disease, and there is a significant need for novel technologies to treat cancer with an effective outcome and low toxicity. Photothermal therapy (PTT) is a noninvasive therapeutic tool that transports nanomaterials into tumors, absorbing light energy and converting it into heat, thus killing tumor cells. Gold nanorods (GNRs) have attracted widespread attention in recent years due to their unique optical and electronic properties and potential applications in biological imaging, molecular detection, and drug delivery, especially in the PTT of cancer and other diseases. This review summarizes the recent progress in the synthesis methods and surface functionalization of GNRs for PTT. The current major synthetic methods of GNRs and recently improved measures to reduce toxicity, increase yield, and control particle size and shape are first introduced, followed by various surface functionalization approaches to construct a controlled drug release system, increase cell uptake, and improve pharmacokinetics and tumor-targeting effect, thus enhancing the photothermal effect of killing the tumor. Finally, a brief outlook for the future development of GNRs modification and functionalization in PTT is proposed.
Collapse
Affiliation(s)
- Shengnan Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wang Yue
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuning Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weitong Lu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lingxiao Huang
- Department of Radiation Biology, Radiation Oncology Key Laboratory of Sichuan Province, Department of Clinical Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Tingting Qi
- Department of Radiation Biology, Radiation Oncology Key Laboratory of Sichuan Province, Department of Clinical Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Chapagain P, Guisbiers G, Kusper M, Geoffrion LD, Benamara M, Golden A, Bachri A, Hewavitharana L. Tuning the Surface Plasmon Resonance of Gold Dumbbell Nanorods. ACS OMEGA 2021; 6:6871-6880. [PMID: 33748601 PMCID: PMC7970564 DOI: 10.1021/acsomega.0c06062] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Gold has always fascinated humans, occupying an important functional and symbolic role in civilization. In earlier times, gold was predominantly used in jewelry; today, this noble metal's surface properties are taken advantage of in catalysis and plasmonics. In this article, the plasmon resonance of gold dumbbell nanorods is investigated. This unusual morphology was obtained by a seed-mediated growth method. The concentration of chemical precursors such as cetyltrimethylammonium bromide and silver nitrate plays a significant role in controlling the shape of the nanorods. Indeed, the aspect ratio of dumbbell nanostructures was varied from 2.6 to 4. UV-visible absorption spectra revealed a shift of the longitudinal surface plasmon resonance peak from 669 to 789 nm. Having the plasmon resonance in the near infrared region helps to use those nanostructures as photothermal agents.
Collapse
Affiliation(s)
- Puskar Chapagain
- Department
of Engineering and Physics, Southern Arkansas
University, 100 E. University, Magnolia, Arkansas 71753, United
States
| | - Grégory Guisbiers
- Department
of Physics and Astronomy, University of
Arkansas at Little Rock, 2801 South University Avenue, Little Rock, Arkansas 72204, United States
| | - Matthew Kusper
- Department
of Physics and Astronomy, University of
Arkansas at Little Rock, 2801 South University Avenue, Little Rock, Arkansas 72204, United States
| | - Luke D. Geoffrion
- Department
of Physics and Astronomy, University of
Arkansas at Little Rock, 2801 South University Avenue, Little Rock, Arkansas 72204, United States
| | - Mourad Benamara
- Department
of Microelectronics and Photonics, University
of Arkansas, 731 W. Dickson
Street, Fayetteville, Arkansas 72701, United States
| | - Alexander Golden
- Department
of Engineering and Physics, Southern Arkansas
University, 100 E. University, Magnolia, Arkansas 71753, United
States
- Department
of Microelectronics and Photonics, University
of Arkansas, 731 W. Dickson
Street, Fayetteville, Arkansas 72701, United States
| | - Abdel Bachri
- Department
of Engineering and Physics, Southern Arkansas
University, 100 E. University, Magnolia, Arkansas 71753, United
States
| | - Lionel Hewavitharana
- Department
of Engineering and Physics, Southern Arkansas
University, 100 E. University, Magnolia, Arkansas 71753, United
States
| |
Collapse
|
10
|
Marelli M, Bossola F, Spinetti G, Sangalli E, Santo VD, Psaro R, Polito L. Microfluidic Synthesis of Hybrid TiO 2-Anisotropic Gold Nanoparticles with Visible and Near-Infrared Activity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38522-38529. [PMID: 32805968 DOI: 10.1021/acsami.0c08241] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Anisotropic gold nanoparticles (AuNPs), with their unique physical and optical properties, are emerging as smart and key nanomaterials and are being exploited in many crucial fields. To further improve their range of action, anisotropic AuNPs have been coupled with semiconductors, mainly TiO2 (titania), receiving great interest as powerful platforms both in biomedicine and in catalytic applications. Such hybrid nanoparticles show new properties that arise from the synergic action of the components and rely on NP size, morphology, and arrangement. Therefore, continuous advances in design and fabrication of new hybrid titania@gold NPs (TiO2@AuNPs) are urgent and highly desirable. Here, we propose an effective protocol to produce multibranched AuNPs covered by a controlled TiO2 thin layer, exploiting a one-pot microfluidic process. The proposed method allows the in-flow and reliable synthesis of titania-functionalized-anisotropic gold nanoparticles by avoiding the use of toxic surfactants and controlling the titania shell formation. TiO2@AuNPs have been fully characterized in terms of morphology, stability, and biocompatibility, and their activity in photocatalysis has been tested and verified.
Collapse
Affiliation(s)
- Marcello Marelli
- National Research Council, CNR-SCITEC, Via G. Fantoli 16/15, Milan 20138, Italy
| | - Filippo Bossola
- National Research Council, CNR-SCITEC, Via C. Golgi 19, Milan 20133, Italy
| | - Gaia Spinetti
- IRCCS MultiMedica, Via G. Fantoli 16/15, Milan 20138, Italy
| | - Elena Sangalli
- IRCCS MultiMedica, Via G. Fantoli 16/15, Milan 20138, Italy
| | | | - Rinaldo Psaro
- National Research Council, CNR-SCITEC, Via C. Golgi 19, Milan 20133, Italy
| | - Laura Polito
- National Research Council, CNR-SCITEC, Via G. Fantoli 16/15, Milan 20138, Italy
| |
Collapse
|