1
|
Gu Z, Ma W, Feng J, Liu Z, Xu B, Tian W. Enhancement of Circularly Polarized Luminescence from Pulsating Nanotubules. Macromol Rapid Commun 2023; 44:e2300428. [PMID: 37675646 DOI: 10.1002/marc.202300428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/02/2023] [Indexed: 09/08/2023]
Abstract
Enhancing the dissymmetry factor (glum ) is a crucial issue in developing circularly polarized luminescence (CPL) materials. Herein, based on supramolecular self-assembly of diethyl l-glutamate-cyanodiarylethene (L-GC) in mixed solution of EtOH-H2 O with different water fraction, enhanced circularly polarized emission from pulsating nanotubules is realized. In the mixture of ethanol and water (30/70, v/v), L-GC self-assembles into roll-up-type dense nanotubes and shows l-CPL. Remarkably, by increasing the water fraction to 80% and 90%, the diameter of the roll-up nanotubes increases and the dissymmetry factor of the nanotubes is significantly enhanced from 6.9 × 10-3 (dense nanotubes) to 3.7 × 10-2 (loose nanotubes) because of the enhanced intermolecular interactions and more ordered supramolecular stacking when increasing the water fraction. An efficient way is provided here to realize the increase of the dissymmetry factor by only changing the composition of solvents.
Collapse
Affiliation(s)
- Zijian Gu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Wenyue Ma
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Jun Feng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zhaoyang Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Bin Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Wenjing Tian
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
2
|
Yang S, Zhang S, Hu F, Han J, Li F. Circularly polarized luminescence polymers: From design to applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
3
|
Kameta N. Stimuli-Responsive Transformable Supramolecular Nanotubes. CHEM REC 2022; 22:e202200025. [PMID: 35244334 DOI: 10.1002/tcr.202200025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 12/11/2022]
Abstract
Supramolecular nanotubes produced by self-assembly of organic molecules can have unique structural features such as a one-dimensional morphology with no branching, distinguishable inner and outer surfaces and membrane walls, or a structure that is hollow and has a high aspect ratio. Incorporation of functional groups that respond to external chemical or physical stimuli into the constituent organic molecules of supramolecular nanotubes allows us to drastically change the structure of the nanotubes by applying such stimuli. This ability affords an array of controllable approaches for the encapsulation, storage, and release of guest compounds, which is expected to be useful in the fields of physics, chemistry, biology, and medicine. In this article, I review the supramolecular nanotubes developed by our group that exhibit morphological transformations in response to pH, chemical reaction, light, temperature, or moisture.
Collapse
Affiliation(s)
- Naohiro Kameta
- Nanomaterials Research Institute, Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| |
Collapse
|
4
|
Kameta N, Kikkawa Y, Norikane Y. Photo-responsive hole formation in the monolayer membrane wall of a supramolecular nanotube for quick recovery of encapsulated protein. NANOSCALE ADVANCES 2022; 4:1979-1987. [PMID: 36133410 PMCID: PMC9419338 DOI: 10.1039/d2na00035k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/28/2022] [Indexed: 06/16/2023]
Abstract
Nanotubes with a single monolayer membrane wall comprised of a synthetic glycolipid and one of two synthetic azobenzene derivatives were assembled. X-ray diffraction, infrared, UV-visible, and circular dichroism spectroscopy clarified the embedding style of the azobenzene derivatives in the membrane wall, revealing that, depending on their different intermolecular hydrogen bond strengths, one azobenzene derivative was individually dispersed whereas the other formed a J-type aggregate. The non-aggregated derivative was insensitive to UV irradiation due to tight fixation by the surrounding glycolipid. In contrast, the aggregated derivative was sensitive to UV irradiation, which induced trans-to-cis isomerization of the derivative and disassembly of the J-type aggregate. Subsequent dissociation of the derivative into the bulk solution resulted in the formation of many nanometer-scale holes in the membrane wall. Although a model protein encapsulated within the nanotubes was slowly released over time from the two open ends of the nanotubes without UV irradiation, exposure to UV irradiation resulted in faster, preferential release of the protein through the holes in the membrane wall. The present findings are expected to facilitate the development not only of efficient means of recovering guest compounds stored within nanotubes but also the development of novel stimuli-responsive capsules in biological and medical fields.
Collapse
Affiliation(s)
- N Kameta
- Nanomaterials Research Institute, Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan +81-29-861-4545 +81-29-861-4478
| | - Y Kikkawa
- Research Institute for Advanced Electronics and Photonics, Department of Electronics and Manufacturing, AIST Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Y Norikane
- Research Institute for Advanced Electronics and Photonics, Department of Electronics and Manufacturing, AIST Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| |
Collapse
|
5
|
Wang X, Zhao L, Wang C, Feng X, Ma Q, Yang G, Wang T, Yan X, Jiang J. Phthalocyanine-Triggered Helical Dipeptide Nanotubes with Intense Circularly Polarized Luminescence. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104438. [PMID: 34816581 DOI: 10.1002/smll.202104438] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Nanotubes with circularly polarized luminescence (CPL) are attracting much attention due to many potential applications, such as chiroptical materials, displays, and sensing. However, it remains a challenge to change the assemblies of ordinarily molecular building blocks into CPL supramolecular nanotubes. Herein, the regulation of quite common dipeptide (Fmoc-FF) assemblies into unprecedented helical nanotubes exhibiting intense CPL is reported by simply doping a few phthalocyanine (octakis(carboxyl)phthalocyaninato zinc complex (Pc)) molecules. Interestingly, altering the Fmoc-FF/Pc molar ratios over a wide range cannot change the nanotubes structures according to transmission electron microscopy (TEM) and atomic force microscope (AFM) measurements. Although molecular dynamics simulations suggest that the noncovalent interactions between Fmoc-FF and Pc are quite weak, few Pc molecules can still change the secondary structures of a large number of Fmoc-FF assemblies, which hierarchically form helical supramolecular nanotubes with long-range ordered molecular packing, leading to intense CPL signals with large luminescence dissymmetry factor (glum = 0.04). Consequently, the chiral reorganization of Fmoc-FF assemblies is dependent on the coassembly between Pc molecule and Fmoc-FF supramolecular architectures. These results open the possibility for the fine-tuning of helix and supramolecular nanotubes with CPL properties by using a small number of cofactors.
Collapse
Affiliation(s)
- Xiqian Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Luyang Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chiming Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xuenan Feng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qing Ma
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Gengxiang Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Tianyu Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
6
|
Gong ZL, Zhu X, Zhou Z, Zhang SW, Yang D, Zhao B, Zhang YP, Deng J, Cheng Y, Zheng YX, Zang SQ, Kuang H, Duan P, Yuan M, Chen CF, Zhao YS, Zhong YW, Tang BZ, Liu M. Frontiers in circularly polarized luminescence: molecular design, self-assembly, nanomaterials, and applications. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1146-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Dini D, Salatelli E, Decker F. EQCM Analysis of the Insertion Phenomena in a n-Doped Poly-Alkyl-Terthiophene With Regioregular Pattern of Substitution. Front Chem 2021; 9:711426. [PMID: 34490205 PMCID: PMC8417062 DOI: 10.3389/fchem.2021.711426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
In the present work, we have undertaken the study of the n-doping process in poly-3,3″-didodecyl-2,2':5',2″-terthiophene (poly-33″-DDTT) employing the electrochemical quartz crystal microbalance (EQCM). The present study aims at understanding how cathodic charge in n-doped poly-33″-DDTT is compensated. For this purpose, the in situ analysis of the variations of the polymeric mass has been considered. Poly-33″-DDTT was obtained as a thin coating onto a metallic substrate via the anodic coupling of the corresponding monomer 3,3″-didodecyl-2,2':5',2″-terthiophene (33″-DDTT). When subjected to electrochemical n-doping in the polarization interval -2.5 ≤ E appl ≤ 0 V vs. Ag/Ag+, the films of poly-33″-DDTT varied their mass according to a mechanism of cations insertion during n-doping and cations extraction during polymer neutralization. In fact, the electrochemical doping of polythiophenes requires the accompanying exchange of charged species to maintain the electroneutrality within the structure of the polymer in all states of polarization. At the end of a full electrochemical cycle (consisting of the n-doping and the successive neutralization of poly-33″-DDTT), the polymer retains a fraction of the mass acquired during n-doping, thus manifesting the phenomena of mass trapping. The combined analysis of electrochemical and microgravimetric data suggests that poly-33″-DDTT in the n-doped state undergoes (or electrocatalyzes) uncontrolled electrochemical reactions that are not accompanied by mass variations.
Collapse
Affiliation(s)
- Danilo Dini
- Department of Chemistry, University of Rome "La Sapienza", Rome, Italy
| | - Elisabetta Salatelli
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Bologna, Italy
| | - Franco Decker
- Department of Chemistry, University of Rome "La Sapienza", Rome, Italy
| |
Collapse
|
8
|
Yang C, Chen W, Zhu X, Song X, Liu M. Self-Assembly and Circularly Polarized Luminescence from Achiral Pyrene-Adamantane Conjugates by Selective Inclusion with Cyclodextrins. J Phys Chem Lett 2021; 12:7491-7496. [PMID: 34342451 DOI: 10.1021/acs.jpclett.1c02013] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The interaction between guest chromophores or lumiphores with host chiral cavity and their induced chirality is an important topic in supramolecular chemistry. Kodaka and Harata proposed a rule to explain the induced circular dichroism of the guest chromophores by host cyclodextrins. However, it remains unknown how a circularly polarized luminescence (CPL) signal will change when the lumiphores interacted with cyclodextrins in different modes. Here, we designed an achiral pyrene-adamantane conjugated guest molecule, N-(pyren-1-yl)adamantane-1-carboxamide (ACNP), and investigated its interactions with α/β/γ-cyclodextrins (CDs) and its induced CPL. Depending on the size match of the pyrene, adamantine with different cyclodextrins, distinct performance was observed. While α-CD could not induce a CPL signal of ACNP, β-CD could induce CPL in two modes, through adamantyl or direct pyrenyl induction, which could produce a CPL signal with opposite signs. γ-CD could always induce a negative CPL signal. Therefore, a rule of induced CPL of lumiphores by cyclodextrins can be proposed.
Collapse
Affiliation(s)
- Chenchen Yang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 ZhongGuanCun BeiYiJie, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wenjie Chen
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 ZhongGuanCun BeiYiJie, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 ZhongGuanCun BeiYiJie, 100190, Beijing, P. R. China
| | - Xin Song
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 ZhongGuanCun BeiYiJie, 100190, Beijing, P. R. China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 ZhongGuanCun BeiYiJie, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
9
|
Kameta N. Stimuli-Responsive Supramolecular Nanotube Capsules. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Naohiro Kameta
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology
| |
Collapse
|
10
|
Wang K, Xiao Y. Chirality in polythiophenes: A review. Chirality 2021; 33:424-446. [PMID: 34165198 DOI: 10.1002/chir.23333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/11/2021] [Accepted: 06/06/2021] [Indexed: 11/10/2022]
Abstract
Chiroptical polythiophene (PTh), as one of the most important chiral conductive polymers, is an emerging and hot topic in chiral materials, which shows great application potentials in fields as diverse as chiral sensing and separation, asymmetry catalysis, chiroptoelectronics, and even chiro-spintronics. This review summarizes progress in chiral polythiophenes (PThs) in the past 10 years, including the synthesis, properties and applications. Main focus is placed on the manner in which chirality is implemented and the optical activity of the chiral PThs. We showcase examples in which the chirality of PThs is induced by side chain substituents with point, planar, and axial chirality or arises from external chiral media. Application of chiral PThs is also included. Finally, perspectives for further development are offered.
Collapse
Affiliation(s)
- Kun Wang
- School of Chemical Engineering and Technology, Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin University, Tianjin, China
| | - Yin Xiao
- School of Chemical Engineering and Technology, Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin University, Tianjin, China
| |
Collapse
|
11
|
Jiang P, Li H, Liu W, Li Y, Li B, Yang Y. Silica covering driven intensity enhancement and handedness inversion of the CPL signals of the supramolecular assemblies. NEW J CHEM 2021. [DOI: 10.1039/d1nj01327k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Dipeptide-based hybrid materials with enhanced and inversed circularly polarized luminescence signals were fabricated through a dynamic supramolecular templating approach.
Collapse
Affiliation(s)
- Pan Jiang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Hongkun Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Wei Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Yi Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Baozong Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Yonggang Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| |
Collapse
|