1
|
Kushwaha N, Panjwani D, Patel S, Ahlawat P, Yadav MR, Patel AS. Emerging advances in nano-biomaterial assisted amyloid beta chimeric antigen receptor macrophages (CAR-M) therapy: reducing plaque burden in Alzheimer's disease. J Drug Target 2024:1-21. [PMID: 39403775 DOI: 10.1080/1061186x.2024.2417012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
Alzheimer's disease is the most common form, accounting for 60-70% of 55 million dementia cases. Even though the precise pathophysiology of AD is not completely understood, clinical trials focused on antibodies targeting aggregated forms of β amyloid (Aβ) have demonstrated that reducing amyloid plaques can arrest cognitive decline in patients in the early stages of AD. In this study, we provide an overview of current research and innovations for controlled release from nano-biomaterial-assisted chimeric antigen receptor macrophage (CAR-M) therapeutic strategies targeted at AD. Nano-bio materials, such as iron-oxide nanoparticles (IONPs), can be made selectively (Hp-Hb/mannose) to bind and take up Aβ plaques like CAR-M cells. By using nano-bio materials, both the delivery and stability of CAR-M cells in brain tissue can be improved to overcome the barriers of the BBB and enhance therapeutic effects. By enhancing the targeting capabilities and stability of CAR-M cells, mRNA-loaded nano-biomaterials can significantly improve the efficacy of immunotherapy for plaque reduction in AD. This novel strategy holds promise for translating preclinical successes into clinical applications, potentially revolutionising the management of AD.
Collapse
Affiliation(s)
- Nishabh Kushwaha
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Drishti Panjwani
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Shruti Patel
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Priyanka Ahlawat
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Mange Ram Yadav
- Research and Development Cell, Parul University, Vadodara, India
| | - Asha S Patel
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| |
Collapse
|
2
|
Tang B, Xie X, Lu J, Huang W, Yang J, Tian J, Lei L. Designing biomaterials for the treatment of autoimmune diseases. APPLIED MATERIALS TODAY 2024; 39:102278. [DOI: 10.1016/j.apmt.2024.102278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
|
3
|
Nowak N, Czekanowska D, Gebarowski T, Wiglusz RJ. Highly cyto- and immune compatible new synthetic fluorapatite nanomaterials co-doped with rubidium(I) and europium(III) ions. BIOMATERIALS ADVANCES 2024; 156:213709. [PMID: 38039809 DOI: 10.1016/j.bioadv.2023.213709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/16/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
In the present study, biocompatible luminescent of nanosized fluorapatite doped with rubidium(I) (Rb+ ion) and europium(III) (Eu3+ ion) ions were synthesized via hydrothermal method. It was investigated the influence of co-doped Rb+ and Eu3+ ions on the structural, and morphological characteristics of the obtained fluorapatite materials. The characterization techniques utilized included: X-ray powder diffraction (XRPD), infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). Moreover, to establish the influence of the co-doped Rb+ and Eu3+ ions on the luminescence properties of the lanthanide ion, emission excitation, emission spectrum and luminescence decays were measured. This confirmed a distinct red emission originating from Eu3+ ions and an increased emission lifetime. To determine the biocompatibility of the obtained fluorapatite compounds, in vitro studies using normal dermal human fibroblasts were performed. The results of these studies clearly demonstrate the remarkable biocompatibility of our compounds. This discovery opens exciting prospects for the use of synthetic fluorapatites doped with Eu3+ and Rb+ ions in various biomedical contexts. In particular, these materials hold great promise for potential applications in regenerative engineering, but also serve as innovative and practical solutions as bone scaffolds and dental implants containing nano-fluorapatite. Further discussion of these properties can be found in this article, along with a discussion of their importance and potential in the field of biomedical applications. However, according to our pervious study and based on our current investigations but also based on available scientific records, it was proposed potential molecular mechanism of Rb+ ions in the process of osteoclastogenesis.
Collapse
Affiliation(s)
- Nicole Nowak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, PL-50-422 Wroclaw, Poland; Department of Animal Biostructure and Physiology, Wroclaw University of Environmental and Life Sciences, Norwida 25, PL-50-375 Wroclaw, Poland.
| | - Dominika Czekanowska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, PL-50-422 Wroclaw, Poland
| | - Tomasz Gebarowski
- Department of Animal Biostructure and Physiology, Wroclaw University of Environmental and Life Sciences, Norwida 25, PL-50-375 Wroclaw, Poland
| | - Rafal J Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, PL-50-422 Wroclaw, Poland; Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland.
| |
Collapse
|
4
|
Gupta G, Kaur J, Bhattacharya K, Chambers BJ, Gazzi A, Furesi G, Rauner M, Fuoco C, Orecchioni M, Delogu LG, Haag L, Stehr JE, Thomen A, Bordes R, Malmberg P, Seisenbaeva GA, Kessler VG, Persson M, Fadeel B. Exploiting Mass Spectrometry to Unlock the Mechanism of Nanoparticle-Induced Inflammasome Activation. ACS NANO 2023; 17:17451-17467. [PMID: 37643371 PMCID: PMC10510732 DOI: 10.1021/acsnano.3c05600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Nanoparticles (NPs) elicit sterile inflammation, but the underlying signaling pathways are poorly understood. Here, we report that human monocytes are particularly vulnerable to amorphous silica NPs, as evidenced by single-cell-based analysis of peripheral blood mononuclear cells using cytometry by time-of-flight (CyToF), while silane modification of the NPs mitigated their toxicity. Using human THP-1 cells as a model, we observed cellular internalization of silica NPs by nanoscale secondary ion mass spectrometry (nanoSIMS) and this was confirmed by transmission electron microscopy. Lipid droplet accumulation was also noted in the exposed cells. Furthermore, time-of-flight secondary ion mass spectrometry (ToF-SIMS) revealed specific changes in plasma membrane lipids, including phosphatidylcholine (PC) in silica NP-exposed cells, and subsequent studies suggested that lysophosphatidylcholine (LPC) acts as a cell autonomous signal for inflammasome activation in the absence of priming with a microbial ligand. Moreover, we found that silica NPs elicited NLRP3 inflammasome activation in monocytes, whereas cell death transpired through a non-apoptotic, lipid peroxidation-dependent mechanism. Together, these data further our understanding of the mechanism of sterile inflammation.
Collapse
Affiliation(s)
- Govind Gupta
- Institute
of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Jasreen Kaur
- Institute
of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Kunal Bhattacharya
- Institute
of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Arianna Gazzi
- Department
of Biomedical Sciences, University of Padua, Padua 35121, Italy
| | - Giulia Furesi
- Department
of Medicine III and Center for Healthy Aging, TU Dresden, 01307 Dresden, Germany
| | - Martina Rauner
- Department
of Medicine III and Center for Healthy Aging, TU Dresden, 01307 Dresden, Germany
| | - Claudia Fuoco
- Department
of Biology, University of Rome Tor Vergata, Rome 00173, Italy
| | - Marco Orecchioni
- Division
of Inflammation Biology, La Jolla Institute
for Immunology, La Jolla, California 92037, United States
| | - Lucia Gemma Delogu
- Department
of Biomedical Sciences, University of Padua, Padua 35121, Italy
| | - Lars Haag
- Department
of Laboratory Medicine, Karolinska Institutet, 141 52 Huddinge, Sweden
| | - Jan Eric Stehr
- Department
of Physics, Chemistry and Biology, Linköping
University, 581 83 Linköping, Sweden
| | - Aurélien Thomen
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 412 96 Göteborg, Sweden
| | - Romain Bordes
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 412 96 Göteborg, Sweden
| | - Per Malmberg
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 412 96 Göteborg, Sweden
| | - Gulaim A. Seisenbaeva
- Department
of Molecular Sciences, Swedish University
of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Vadim G. Kessler
- Department
of Molecular Sciences, Swedish University
of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Michael Persson
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 412 96 Göteborg, Sweden
| | - Bengt Fadeel
- Institute
of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
5
|
Portilla Y, Mulens-Arias V, Daviu N, Paradela A, Pérez-Yagüe S, Barber DF. Interaction of Iron Oxide Nanoparticles with Macrophages Is Influenced Distinctly by "Self" and "Non-Self" Biological Identities. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37478159 PMCID: PMC10401511 DOI: 10.1021/acsami.3c05555] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Upon contact with biological fluids like serum, a protein corona (PC) complex forms on iron oxide nanoparticles (IONPs) in physiological environments and the proteins it contains influence how IONPs act in biological systems. Although the biological identity of PC-IONP complexes has often been studied in vitro and in vivo, there have been inconsistent results due to the differences in the animal of origin, the type of biological fluid, and the physicochemical properties of the IONPs. Here, we identified differences in the PC composition when it was derived from the sera of three species (bovine, murine, or human) and deposited on IONPs with similar core diameters but with different coatings [dimercaptosuccinic acid (DMSA), dextran (DEX), or 3-aminopropyl triethoxysilane (APS)], and we assessed how these differences influenced their effects on macrophages. We performed a comparative proteomic analysis to identify common proteins from the three sera that adsorb to each IONP coating and the 10 most strongly represented proteins in PCs. We demonstrated that the PC composition is dependent on the origin of the serum rather than the nature of the coating. The PC composition critically affects the interaction of IONPs with macrophages in self- or non-self identity models, influencing the activation and polarization of macrophages. However, such effects were more consistent for DMSA-IONPs. As such, a self biological identity of IONPs promotes the activation and M2 polarization of murine macrophages, while a non-self biological identity favors M1 polarization, producing larger quantities of ROS. In a human context, we observed the opposite effect, whereby a self biological identity of DMSA-IONPs promotes a mixed M1/M2 polarization with an increase in ROS production. Conversely, a non-self biological identity of IONPs provides nanoparticles with a stealthy character as no clear effects on human macrophages were evident. Thus, the biological identity of IONPs profoundly affects their interaction with macrophages, ultimately defining their biological impact on the immune system.
Collapse
Affiliation(s)
- Yadileiny Portilla
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Vladimir Mulens-Arias
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Neus Daviu
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Alberto Paradela
- Proteomics Facility, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Sonia Pérez-Yagüe
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Domingo F Barber
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| |
Collapse
|
6
|
Uzhytchak M, Smolková B, Lunova M, Frtús A, Jirsa M, Dejneka A, Lunov O. Lysosomal nanotoxicity: Impact of nanomedicines on lysosomal function. Adv Drug Deliv Rev 2023; 197:114828. [PMID: 37075952 DOI: 10.1016/j.addr.2023.114828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Although several nanomedicines got clinical approval over the past two decades, the clinical translation rate is relatively small so far. There are many post-surveillance withdrawals of nanomedicines caused by various safety issues. For successful clinical advancement of nanotechnology, it is of unmet need to realize cellular and molecular foundation of nanotoxicity. Current data suggest that lysosomal dysfunction caused by nanoparticles is emerging as the most common intracellular trigger of nanotoxicity. This review analyzes prospect mechanisms of lysosomal dysfunction-mediated toxicity induced by nanoparticles. We summarized and critically assessed adverse drug reactions of current clinically approved nanomedicines. Importantly, we show that physicochemical properties have great impact on nanoparticles interaction with cells, excretion route and kinetics, and subsequently on toxicity. We analyzed literature on adverse reactions of current nanomedicines and hypothesized that adverse reactions might be linked with lysosomal dysfunction caused by nanomedicines. Finally, from our analysis it becomes clear that it is unjustifiable to generalize safety and toxicity of nanoparticles, since different particles possess distinct toxicological properties. We propose that the biological mechanism of the disease progression and treatment should be central in the optimization of nanoparticle design.
Collapse
Affiliation(s)
- Mariia Uzhytchak
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Barbora Smolková
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Mariia Lunova
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; Institute for Clinical & Experimental Medicine (IKEM), 14021 Prague, Czech Republic
| | - Adam Frtús
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), 14021 Prague, Czech Republic
| | - Alexandr Dejneka
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Oleg Lunov
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| |
Collapse
|
7
|
Ding H, Zhang Y, Mao Y, Li Y, Shen Y, Sheng J, Gu N. Modulation of macrophage polarization by iron-based nanoparticles. MEDICAL REVIEW (2021) 2023; 3:105-122. [PMID: 37724082 PMCID: PMC10471121 DOI: 10.1515/mr-2023-0002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/03/2023] [Indexed: 09/20/2023]
Abstract
Macrophage polarization is an essential process involved in immune regulation. In response to different microenvironmental stimulation, macrophages polarize into cells with different phenotypes and functions, most typically M1 (pro-inflammatory) and M2 (anti-inflammatory) macrophages. Iron-based nanoparticles have been widely explored and reported to regulate macrophage polarization for various biomedical applications. However, the influence factors and modulation mechanisms behind are complicated and not clear. In this review, we systemically summarized different iron-based nanoparticles that regulate macrophage polarization and function and discussed the influence factors and mechanisms underlying the modulation process. This review aims to deepen the understanding of the modulation of macrophage polarization by iron-based nanoparticles and expects to provide evidence and guidance for subsequent design and application of iron-based nanoparticles with specific macrophage modulation functions.
Collapse
Affiliation(s)
- He Ding
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu Province, China
| | - Yuxin Zhang
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu Province, China
| | - Yu Mao
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Yan Li
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu Province, China
| | - Yan Shen
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jingyi Sheng
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu Province, China
| | - Ning Gu
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu Province, China
- Medical School, Nanjing University, Nanjing210093, China
| |
Collapse
|
8
|
Cancer immunotherapeutic effect of carboxymethylated β-d-glucan coupled with iron oxide nanoparticles via reprogramming tumor-associated macrophages. Int J Biol Macromol 2023; 228:692-705. [PMID: 36566807 DOI: 10.1016/j.ijbiomac.2022.12.154] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/28/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
The cancer immunotherapeutic effect of a carboxymethylated β-d-glucan (CMPTR)/iron oxide nanoparticles (IONPs) system (CMPTR/IONPs) were investigated by using cell culture of bone marrow-derived macrophages (BMDMs) and B16F10 melanoma skin cancer-bearing mouse model. When compared with that of control group, CMPTR/IONPs-treated M2-like BMDMs exhibited upregulated M1 biomarkers expression, significantly inhibited the migration of B16F10 cancer cells (p < 0.05), and had the highest apoptotic percentage of B16F10 cancer cells (80.39 ± 8.73 %) in co-culture system. Intratumoral administration of CMPTR/IONPs significantly (p < 0.05) suppressed tumor growth (46.58 % based on tumor weight) in mice and enhanced the M1/M2 ratio from 0.40 ± 0.09 (control group) to 6.64 ± 1.61 in tumor associated macrophages (TAMs) which was higher than that of in CMPTR (1.27 ± 0.38), IONPs (1.38 ± 0.17). CMPTR/IONPs treatment also promoted apoptosis in cancer cells and increased the infiltration of CD4 and CD8 T-lymphocytes in tumor tissues. These results could be due to the combined effects of CMPTR and IONPs in the CMPTR/IONPs system, possibly mediated by the activation of NF-κB and IRF5 pathways for inducing M1 macrophages polarization and had potential cancer immunotherapeutic applications.
Collapse
|
9
|
Wahab S, Ghazwani M, Hani U, Hakami AR, Almehizia AA, Ahmad W, Ahmad MZ, Alam P, Annadurai S. Nanomaterials-Based Novel Immune Strategies in Clinical Translation for Cancer Therapy. Molecules 2023; 28:molecules28031216. [PMID: 36770883 PMCID: PMC9920693 DOI: 10.3390/molecules28031216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
Immunotherapy shows a lot of promise for addressing the problems with traditional cancer treatments. Researchers and clinicians are working to create innovative immunological techniques for cancer detection and treatment that are more selective and have lower toxicity. An emerging field in cancer therapy, immunomodulation offers patients an alternate approach to treating cancer. These therapies use the host's natural defensive systems to identify and remove malignant cells in a targeted manner. Cancer treatment is now undergoing somewhat of a revolution due to recent developments in nanotechnology. Diverse nanomaterials (NMs) have been employed to overcome the limits of conventional anti-cancer treatments such as cytotoxic, surgery, radiation, and chemotherapy. Aside from that, NMs could interact with live cells and influence immune responses. In contrast, unexpected adverse effects such as necrosis, hypersensitivity, and inflammation might result from the immune system (IS)'s interaction with NMs. Therefore, to ensure the efficacy of immunomodulatory nanomaterials, it is essential to have a comprehensive understanding of the intricate interplay that exists between the IS and NMs. This review intends to present an overview of the current achievements, challenges, and improvements in using immunomodulatory nanomaterials (iNMs) for cancer therapy, with an emphasis on elucidating the mechanisms involved in the interaction between NMs and the immune system of the host.
Collapse
Affiliation(s)
- Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
- Correspondence: or (S.W.); (P.A.)
| | - Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Abdulrahim R. Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61481, Saudi Arabia
| | - Abdulrahman A. Almehizia
- Department of Pharmaceutical Chemistry, Drug Exploration and Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wasim Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Correspondence: or (S.W.); (P.A.)
| | - Sivakumar Annadurai
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| |
Collapse
|
10
|
Rijcken CJF, De Lorenzi F, Biancacci I, Hanssen RGJM, Thewissen M, Hu Q, Atrafi F, Liskamp RMJ, Mathijssen RHJ, Miedema IHC, Menke-van der Houven van Oordt CW, van Dongen GAMS, Vugts DJ, Timmers M, Hennink WE, Lammers T. Design, development and clinical translation of CriPec®-based core-crosslinked polymeric micelles. Adv Drug Deliv Rev 2022; 191:114613. [PMID: 36343757 DOI: 10.1016/j.addr.2022.114613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/18/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
Nanomedicines are used to improve the efficacy and safety of pharmacotherapeutic interventions. Unraveling the biological behavior of nanomedicines, including their biodistribution and target site accumulation, is essential to establish design criteria that contribute to superior performance. CriPec® technology is based on amphiphilic methoxy-poly(ethylene glycol)-b-poly[N-(2-hydroxypropyl) methacrylamide lactate] (mPEG-b-pHPMAmLacn) block copolymers, which are designed to upon self-assembly covalently entrap active pharmaceutical ingredients (API) in core-crosslinked polymeric micelles (CCPM). Key features of CCPM are a prolonged circulation time, high concentrations at pathological sites, and low levels of accumulation in the majority of healthy tissues. Proprietary hydrolysable linkers allow for tunable and sustained release of entrapped API, including hydrophobic and hydrophilic small molecules, as well as peptides and oligonucleotides. Preclinical imaging experiments provided valuable information on their tumor and tissue accumulation and distribution, as well as on uptake by cancer, healthy and immune cells. The frontrunner formulation CPC634, which refers to 65 nm-sized CCPM entrapping the chemotherapeutic drug docetaxel, showed excellent pharmacokinetic properties, safety, tumor accumulation and antitumor efficacy in multiple animal models. In the clinic, CPC634 also demonstrated favorable pharmacokinetics, good tolerability, signs of efficacy, and enhanced localization in tumor tissue as compared to conventional docetaxel. PET imaging of radiolabeled CPC634 showed quantifiable accumulation in ∼50 % of tumors and metastases in advanced-stage cancer patients, and demonstrated potential for use in a theranostic setting even when applied at a companion diagnostic dose. Altogether, the preclinical and clinical results obtained to date demonstrate that mPEG-b-pHPMAmLacn CCPM based on CriPec® technology are a potent, tunable, broadly applicable and well-tolerable platform for targeted drug delivery and improved anticancer therapy.
Collapse
Affiliation(s)
| | - Federica De Lorenzi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
| | - Ilaria Biancacci
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
| | | | | | - Qizhi Hu
- Cristal Therapeutics, Maastricht, the Netherlands
| | - Florence Atrafi
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | | | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Iris H C Miedema
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
| | - C Willemien Menke-van der Houven van Oordt
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
| | - Guus A M S van Dongen
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Danielle J Vugts
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Matt Timmers
- Cristal Therapeutics, Maastricht, the Netherlands
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht University, Utrecht, the Netherlands
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany.
| |
Collapse
|
11
|
Joorabloo A, Liu T. Recent advances in nanomedicines for regulation of macrophages in wound healing. J Nanobiotechnology 2022; 20:407. [PMID: 36085212 PMCID: PMC9463766 DOI: 10.1186/s12951-022-01616-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
Macrophages are essential immune cells and play a major role in the immune response as pro-inflammatory or anti-inflammatory agents depending on their plasticity and functions. Infiltration and activation of macrophages are usually involved in wound healing. Herein, we first described macrophage polarization and their critical functions in wound healing process. It is addressed how macrophages collaborate with other immune cells in the wound microenvironment. Targeting macrophages by manipulating or re-educating macrophages in inflammation using nanomedicines is a novel and feasible strategy for wound management. We discussed the design and physicochemical properties of nanomaterials and their functions for macrophages activation and anti-inflammatory signaling during wound therapy. The mechanism of action of the strategies and appropriate examples are also summarized to highlight the pros and cons of those approaches. Finally, the potential of nanomedicines to modulate macrophage polarization for skin regeneration is discussed.
Collapse
Affiliation(s)
- Alireza Joorabloo
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, 2145, Australia
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, 2145, Australia.
| |
Collapse
|
12
|
Wang Y, Zhang L, Liu Y, Tang L, He J, Sun X, Younis MH, Cui D, Xiao H, Gao D, Kong X, Cai W, Song J. Engineering CpG-ASO-Pt-Loaded Macrophages (CAP@M) for Synergistic Chemo-/Gene-/Immuno-Therapy. Adv Healthc Mater 2022; 11:e2201178. [PMID: 35668035 PMCID: PMC9664705 DOI: 10.1002/adhm.202201178] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 11/06/2022]
Abstract
Adoptive cell therapy by natural cells for drug delivery has achieved encouraging progress in cancer treatment over small-molecule drugs. Macrophages have a great potential in antitumor drug delivery due to their innate capability of sensing chemotactic cues and homing toward tumors. However, major challenge in current macrophage-based cell therapy is loading macrophages with adequate amounts of therapeutic, while allowing them to play a role in immunity without compromising cell functions. Herein, a potent strategy to construct a macrophage-mediated drug delivery platform loaded with a nanosphere (CpG-ASO-Pt) (CAP) composed of functional nucleic acid therapeutic (CpG-ASO) and chemotherapeutic drug cisplatin (Pt) is demonstrated. These CAP nanosphere loaded macrophages (CAP@M) are employed not only as carriers to deliver this nanosphere toward the tumor sites, but also simultaneously to guide the differentiation and maintain immunostimulatory effects. Both in vitro and in vivo experiments indicate that CAP@M is a promising nanomedicine by macrophage-mediated nanospheres delivery and synergistically immunostimulatory activities. Taken together, this study provides a new strategy to construct a macrophage-based drug delivery system for synergistic chemo-/gene-/immuno-therapy.
Collapse
Affiliation(s)
- Yuqi Wang
- School of Materials Science and EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
- Institute of Nano Biomedicine and EngineeringDepartment of Instrument Science and EngineeringSchool of Electronic Information and ElectricalEngineering, Shanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Lingpu Zhang
- Beijing National Laboratory for Molecular SciencesState Key Laboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of SciencesBeijing100190China
| | - Yan Liu
- Institute of Nano Biomedicine and EngineeringDepartment of Instrument Science and EngineeringSchool of Electronic Information and ElectricalEngineering, Shanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Linlin Tang
- Institute of Nano Biomedicine and EngineeringDepartment of Instrument Science and EngineeringSchool of Electronic Information and ElectricalEngineering, Shanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Juan He
- State Key Laboratory of Cell BiologyShanghai Key Laboratory of Molecular AndrologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Xiaqing Sun
- School of Materials Science and EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
- Institute of Nano Biomedicine and EngineeringDepartment of Instrument Science and EngineeringSchool of Electronic Information and ElectricalEngineering, Shanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Muhsin H. Younis
- Departments of Radiology and Medical PhysicsUniversity of Wisconsin – MadisonMadisonWI53705USA
| | - Daxiang Cui
- Institute of Nano Biomedicine and EngineeringDepartment of Instrument Science and EngineeringSchool of Electronic Information and ElectricalEngineering, Shanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular SciencesState Key Laboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of SciencesBeijing100190China
| | - Dong Gao
- State Key Laboratory of Cell BiologyShanghai Key Laboratory of Molecular AndrologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Xiang‐Yang Kong
- School of Materials Science and EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Weibo Cai
- Departments of Radiology and Medical PhysicsUniversity of Wisconsin – MadisonMadisonWI53705USA
| | - Jie Song
- Institute of Nano Biomedicine and EngineeringDepartment of Instrument Science and EngineeringSchool of Electronic Information and ElectricalEngineering, Shanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
- Institute of Cancer and Basic Medicine (IBMC)Cancer Hospital of the University of Chinese Academy of SciencesChinese Academy of SciencesHangzhouZhejiang310022China
| |
Collapse
|
13
|
Mirkasymov AB, Zelepukin IV, Ivanov IN, Belyaev IB, Sh. Dzhalilova D, Trushina DB, Yaremenko AV, Yu. Ivanov V, Nikitin MP, Nikitin PI, Zvyagin AV, Deyev SM. Macrophage Blockade using Nature-Inspired Ferrihydrite for Enhanced Nanoparticle Delivery to Tumor. Int J Pharm 2022; 621:121795. [DOI: 10.1016/j.ijpharm.2022.121795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/28/2022] [Accepted: 04/29/2022] [Indexed: 11/28/2022]
|
14
|
The consequences of particle uptake on immune cells. Trends Pharmacol Sci 2022; 43:305-320. [DOI: 10.1016/j.tips.2022.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 12/11/2022]
|
15
|
Portilla Y, Mulens-Arias V, Paradela A, Ramos-Fernández A, Pérez-Yagüe S, Morales MP, Barber DF. The surface coating of iron oxide nanoparticles drives their intracellular trafficking and degradation in endolysosomes differently depending on the cell type. Biomaterials 2022; 281:121365. [PMID: 35038611 DOI: 10.1016/j.biomaterials.2022.121365] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/15/2021] [Accepted: 01/04/2022] [Indexed: 12/13/2022]
Abstract
Magnetic nanoparticles (MNPs) are potential theranostic tools that are biodegraded through different endocytic pathways. However, little is known about the endolysosomal network through which MNPs transit and the influence of the surface coating in this process. Here, we studied the intracellular transit of two MNPs with identical iron oxide core size but with two distinct coatings: 3-aminopropyl-trietoxysilane (APS) and dimercaptosuccinic acid (DMSA). Using endolysosomal markers and a high throughput analysis of the associated proteome, we tracked the MNPs intracellularly in two different mouse cell lines, RAW264.7 (macrophages) and Pan02 (tumor cells). We did not detect differences in the MNP trafficking kinetics nor in the MNP-containing endolysosome phenotype in Pan02 cells. Nonetheless, DMSA-MNPs transited at slower rate than APS-MNPs in macrophages as measured by MNP accumulation in Rab7+ endolysosomes. Macrophage DMSA-MNP-containing endolysosomes had a higher percentage of lytic enzymes and catalytic proteins than their APS-MNP counterparts, concomitantly with a V-type ATPase enrichment, suggesting an acidic nature. Consequently, more autophagic vesicles are induced by DMSA-MNPs in macrophages, enhancing the expression of iron metabolism-related genes and proteins. Therefore, unlike Pan02 cells, the MNP coating appears to influence the intracellular trafficking rate and the endolysosome nature in macrophages. These results highlight how the MNP coating can determine the nanoparticle intracellular fate and biodegradation in a cell-type bias.
Collapse
Affiliation(s)
- Yadileiny Portilla
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049, Madrid, Spain
| | - Vladimir Mulens-Arias
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049, Madrid, Spain; Current address: Integrative Biomedical Materials and Nanomedicine Lab, Department of Experimental and Health Sciences (DCEXS), Pompeu Fabra University, PRBB, Carrer Doctor Aiguader 88, 08003, Barcelona, Spain
| | - Alberto Paradela
- Proteomics Facility, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049, Madrid, Spain
| | - Antonio Ramos-Fernández
- Proteomics Facility, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049, Madrid, Spain
| | - Sonia Pérez-Yagüe
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049, Madrid, Spain
| | - M Puerto Morales
- Department of Energy, Environment and Health, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
| | - Domingo F Barber
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049, Madrid, Spain.
| |
Collapse
|
16
|
Mohammapdour R, Ghandehari H. Mechanisms of immune response to inorganic nanoparticles and their degradation products. Adv Drug Deliv Rev 2022; 180:114022. [PMID: 34740764 PMCID: PMC8898339 DOI: 10.1016/j.addr.2021.114022] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 09/24/2021] [Accepted: 10/20/2021] [Indexed: 01/03/2023]
Abstract
Careful assessment of the biological fate and immune response of inorganic nanoparticles is crucial for use of such carriers in drug delivery and other biomedical applications. Many studies have elucidated the cellular and molecular mechanisms of the interaction of inorganic nanoparticles with the components of the immune system. The biodegradation and dissolution of inorganic nanoparticles can influence their ensuing immune response. While the immunological properties of inorganic nanoparticles as a function of their physicochemical properties have been investigated in detail, little attention has been paid to the immune adverse effects towards the degradation products of these nanoparticles. To fill this gap, we herein summarize the cellular mechanisms of immune response to inorganic nanoparticles and their degradation products with specific focus on immune cells. We also accentuate the importance of designing new methods and instruments for the in situ characterization of inorganic nanoparticles in order to assess their safety as a result of degradation. This review further sheds light on factors that need to be considered in the design of safe and effective inorganic nanoparticles for use in delivery of bioactive and imaging agents.
Collapse
Affiliation(s)
- Raziye Mohammapdour
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA.
| | - Hamidreza Ghandehari
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
17
|
Deng J, Wang J, Shi J, Li H, Lu M, Fan Z, Gu Z, Cheng H. Tailoring the physicochemical properties of nanomaterials for immunomodulation. Adv Drug Deliv Rev 2022; 180:114039. [PMID: 34742825 DOI: 10.1016/j.addr.2021.114039] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/16/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022]
Abstract
Immunomodulation is poised to revolutionize the treatment of cancer, autoimmune diseases, and many other inflammation-related disorders. The immune system in these conditions can be either activated or suppressed by nanocarriers loaded with bioactive molecules. Although immunomodulation via these therapeutics has long been recognized, and a broad range of nanocarriers have been designed to accommodate varied usages, less studies have focused on the effects of nanomaterial physicochemical properties on immune responses, especially the immunity altered by nanocarrier materials alone. Conclusions are sometimes seemly inconsistent due to the complexities of nanomaterials and the immune system. An in-depth understanding of the nanocarrier-induced immune responses is essential for clinical applications. In this review, we summarize recent studies of the immune responses influenced by nanomaterial physicochemical properties with an emphasis on the intrinsic features of nanomaterials that modulate the innate and adaptive immunities. We then provide our perspectives on the design of nanomaterials for immunomodulation.
Collapse
|
18
|
Ispanixtlahuatl-Meráz O, Delgado-Buenrostro NL, Déciga-Alcaraz A, Ramos-Godinez MDP, Oliva-Rico D, López-Villegas EO, Vázquez-Zapién GJ, Mata-Miranda MM, Ilhuicatzi-Alvarado D, Moreno-Fierros L, García Cuellar CM, Sánchez-Pérez Y, Chirino YI. Differential response of immobile (pneumocytes) and mobile (monocytes) barriers against 2 types of metal oxide nanoparticles. Chem Biol Interact 2021; 347:109596. [PMID: 34329616 DOI: 10.1016/j.cbi.2021.109596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/17/2021] [Accepted: 07/21/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Inhaled nanoparticles (NPs) challenges mobile and immobile barriers in the respiratory tract, which can be represented by type II pneumocytes (immobile) and monocytes (mobile) but what is more important for biological effects, the cell linage, or the type of nanoparticle? Here, we addressed these questions and we demonstrated that the type of NPs exerts a higher influence on biological effects, but cell linages also respond differently against similar type of NPs. DESIGN Type II pneumocytes and monocytes were exposed to tin dioxide (SnO2) NPs and titanium dioxide (TiO2) NPs (1, 10 and 50 μg/cm2) for 24 h and cell viability, ultrastructure, cell granularity, molecular spectra of lipids, proteins and nucleic acids and cytoskeleton architecture were evaluated. RESULTS SnO2 NPs and TiO2 NPs are metal oxides with similar physicochemical properties. However, in the absence of cytotoxicity, SnO2 NPs uptake was low in monocytes and higher in type II pneumocytes, while TiO2 NPs were highly internalized by both types of cells. Monocytes exposed to both types of NPs displayed higher number of alterations in the molecular patterns of proteins and nuclei acids analyzed by Fourier-transform infrared spectroscopy (FTIR) than type II pneumocytes. In addition, cells exposed to TiO2 NPs showed more displacements in FTIR spectra of biomolecules than cells exposed to SnO2 NPs. Regarding cell architecture, microtubules were stable in type II pneumocytes exposed to both types of NPs but actin filaments displayed a higher number of alterations in type II pneumocytes and monocytes exposed to SnO2 NPs and TiO2 NPs. NPs exposure induced the formation of large vacuoles only in monocytes, which were not seen in type II pneumocytes. CONCLUSIONS Most of the cellular effects are influenced by the NPs exposure rather than by the cell type. However, mobile, and immobile barriers in the respiratory tract displayed differential response against SnO2 NPs and TiO2 NPs in absence of cytotoxicity, in which monocytes were more susceptible than type II pneumocytes to NPs exposure.
Collapse
Affiliation(s)
- Octavio Ispanixtlahuatl-Meráz
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla de Baz, CP, 54090, Estado de México, Mexico; Programa de Doctorado en Ciencias Biomédicas, Unidad de Posgrado Edificio B Primer Piso Ciudad Universitaria, Coyoacán, CP, 04510, Ciudad de México, Mexico
| | - Norma L Delgado-Buenrostro
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla de Baz, CP, 54090, Estado de México, Mexico
| | - Alejandro Déciga-Alcaraz
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla de Baz, CP, 54090, Estado de México, Mexico; Programa de Doctorado en Ciencias Biomédicas, Unidad de Posgrado Edificio B Primer Piso Ciudad Universitaria, Coyoacán, CP, 04510, Ciudad de México, Mexico
| | | | - Diego Oliva-Rico
- Unidad de Microscopía Avanzada, Instituto Nacional de Cancerología, RAI, UNAM, Mexico
| | - Edgar O López-Villegas
- Departamento de Graduados e Investigación en Alimentos, Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, CP, 11340, Ciudad de México, Mexico
| | - Gustavo J Vázquez-Zapién
- Escuela Militar de Medicina, Centro Militar de Ciencias de la Salud, Secretaría de la Defensa Nacional, Cerrada de Palomas S/N, Lomas de San Isidro, Alcaldía Miguel Hidalgo, CP, 11200, Ciudad de México, Mexico
| | - Mónica M Mata-Miranda
- Escuela Militar de Medicina, Centro Militar de Ciencias de la Salud, Secretaría de la Defensa Nacional, Cerrada de Palomas S/N, Lomas de San Isidro, Alcaldía Miguel Hidalgo, CP, 11200, Ciudad de México, Mexico
| | - Damaris Ilhuicatzi-Alvarado
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla de Baz, CP, 54090, Estado de México, Mexico
| | - Leticia Moreno-Fierros
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla de Baz, CP, 54090, Estado de México, Mexico
| | - Claudia M García Cuellar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, CP, 14080, Cuidad de México, Mexico
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, CP, 14080, Cuidad de México, Mexico
| | - Yolanda I Chirino
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla de Baz, CP, 54090, Estado de México, Mexico.
| |
Collapse
|
19
|
Mulens-Arias V, Rojas JM, Barber DF. The Use of Iron Oxide Nanoparticles to Reprogram Macrophage Responses and the Immunological Tumor Microenvironment. Front Immunol 2021; 12:693709. [PMID: 34177955 PMCID: PMC8221395 DOI: 10.3389/fimmu.2021.693709] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
The synthesis and functionalization of iron oxide nanoparticles (IONPs) is versatile, which has enhanced the interest in studying them as theranostic agents over recent years. As IONPs begin to be used for different biomedical applications, it is important to know how they affect the immune system and its different cell types, especially their interaction with the macrophages that are involved in their clearance. How immune cells respond to therapeutic interventions can condition the systemic and local tissue response, and hence, the final therapeutic outcome. Thus, it is fundamental to understand the effects that IONPs have on the immune response, especially in cancer immunotherapy. The biological effects of IONPs may be the result of intrinsic features of their iron oxide core, inducing reactive oxygen species (ROS) and modulating intracellular redox and iron metabolism. Alternatively, their effects are driven by the nanoparticle coating, for example, through cell membrane receptor engagement. Indeed, exploiting these properties of IONPs could lead to the development of innovative therapies. In this review, after a presentation of the elements that make up the tumor immunological microenvironment, we will review and discuss what is currently known about the immunomodulatory mechanisms triggered by IONPs, mainly focusing on macrophage polarization and reprogramming. Consequently, we will discuss the implications of these findings in the context of plausible therapeutic scenarios for cancer immunotherapy.
Collapse
Affiliation(s)
- Vladimir Mulens-Arias
- Department of Immunology and Oncology, and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - José Manuel Rojas
- Centro de Investigación en Sanidad Animal, Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (CISA-INIA)-CSIC, Valdeolmos, Madrid, Spain
| | - Domingo F Barber
- Department of Immunology and Oncology, and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| |
Collapse
|
20
|
Pan S, Zhang Y, Huang M, Deng Z, Zhang A, Pei L, Wang L, Zhao W, Ma L, Zhang Q, Cui D. Urinary exosomes-based Engineered Nanovectors for Homologously Targeted Chemo-Chemodynamic Prostate Cancer Therapy via abrogating EGFR/AKT/NF-kB/IkB signaling. Biomaterials 2021; 275:120946. [PMID: 34119884 DOI: 10.1016/j.biomaterials.2021.120946] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 12/14/2022]
Abstract
Multi-functional nanovectors based on exosomes from cancer cell culture supernatants in vitro has been successfully utilized for tumor-specific targeting and immune escape. However, the labor-intensive purification procedures for rich-dose and high-purity homogeneous exosomes without using targeting ligands are still a challenging task. Herein, we developed a nanovector Exo-PMA/Fe-HSA@DOX through cloaked by urinary exosome membrane as a chemo/chemodynamic theranostic nano-platform for targeted homologous prostate cancer therapy which pertain to the abrogation of Epidermal Growth Factor Receptor (EGFR) and its downstream AKT/NF-kB/IkB signaling instead of ERK signaling cascades. Urinary exosomes-based nanovectors own the same urological cancer cell membrane antigen inclusive of E-cadherin, CD 47 and are free from intracellular substance such as Histone 3 and COX Ⅳ. The targeting properties of the homologous cancer cell are well preserved in Exo-PMA/Fe-HSA@DOX nanovectors in high purity. Meanwhile, the nanovectors based on urinary exosomes from prostate patients deeply penetrated into prostate cancer DU145 3D MCTS, and successfully achieve superior synergistic low-dose chemo/chemodynamic performance in vivo. In addition, the blockage of bypassing EGFR/AKT/NF-kB/IkB signaling pathway is greatly enhanced via elevated intracellular PMA/Fe-HSA@DOX nanoparticles (NPs). It is expected that the rich source and high purity of urinary exosomes offer a reliable solution for mass production of such nanovectors in the future. The targeted homologous cancer therapy based on the urinary exosomes from cancer patients exemplifies a novel targeted anticancer scheme with efficient and facile method.
Collapse
Affiliation(s)
- Shaojun Pan
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, PR China; First Affiliated Hospital of Bengbu Medical College, Bengbu, 233030, China
| | - Yuhui Zhang
- Department of General Practice, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Mark Huang
- School of Electronic Information and Electrical Engineering, Shenzhen University, Shenzhen, 518061, China
| | - Zhoufeng Deng
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, PR China
| | - Amin Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, PR China
| | - Lijia Pei
- First Affiliated Hospital of Bengbu Medical College, Bengbu, 233030, China
| | - Lirui Wang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, PR China
| | - Weiyong Zhao
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, PR China
| | - Lijun Ma
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, PR China
| | - Qian Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, PR China.
| | - Daxiang Cui
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, PR China.
| |
Collapse
|
21
|
Luo T, Fan S, Liu Y, Song J. Information processing based on DNA toehold-mediated strand displacement (TMSD) reaction. NANOSCALE 2021; 13:2100-2112. [PMID: 33475669 DOI: 10.1039/d0nr07865d] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
SemiSynBio is an emerging topic toward the construction of platforms for next-generation information processing. Recent research has indicated its promising prospect toward information processing including algorithm design and pattern manipulation with the DNA TMSD reaction, which is one of the cores of the SemiSynBio technology route. The DNA TMSD reaction is the process in which an invader strand displaces the incumbent strand from the gate strand through initiation at the exposed toehold domain. Also, the DNA TMSD reaction generally involves three processes: toehold association, branch migration and strand disassociation. Herein, we review the recent progress on information processing with the DNA TMSD reaction. We highlight the diverse developments on information processing with the logic circuit, analog circuit, combinational circuit and information relay with the DNA origami structure. Additionally, we explore the current challenges and various trends toward the design and application of the DNA TMSD reaction in future information processing.
Collapse
Affiliation(s)
- Tao Luo
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Sisi Fan
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yan Liu
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China. and Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences; The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
22
|
Wang Y, Cheng J, Zhao D, Liu Y, Luo T, Zhong YF, Mo F, Kong XY, Song J. Designed DNA nanostructure grafted with erlotinib for non-small-cell lung cancer therapy. NANOSCALE 2020; 12:23953-23958. [PMID: 33244548 DOI: 10.1039/d0nr06945k] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chemotherapy for non-small-cell lung cancer (NSCLC) treatment has been employed over the past 20 years. However, poor water-solubility, low bioavailability and less drug accumulation of chemotherapeutic drugs restrict its antitumor activities in clinic. DNA nanostructures are proposed as drug carriers due to their intrinsic biocompatibility and programmability. In this work, we demonstrate a novel DNA nanocarrier grafted with erlotinib as an effective drug delivery system (DDS) for anti-cancer treatment. Specifically, erlotinib (Er), a hydrophobic small molecule drug targeting the epidermal growth factor receptor (EGFR), is covalently conjugated with azide (N3) modified DNA strands and subsequently self-assembled on spatially programmable erlotinib-grafted 6 × 6 × 64 nt DNA nanostructures. Thus, Er was successfully grafted on DNA carriers and transformed into a hydrophilic formulation. The antitumor efficacy was evaluated both in vitro and in vivo, and enhanced cytotoxicity toward A549 cells and the marked inhibition of tumor growth for non-small-cell lung cancer (NSCLC) were observed.
Collapse
Affiliation(s)
- Yuqi Wang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Mirkasymov AB, Zelepukin IV, Nikitin PI, Nikitin MP, Deyev SM. In vivo blockade of mononuclear phagocyte system with solid nanoparticles: Efficiency and affecting factors. J Control Release 2020; 330:111-118. [PMID: 33326812 DOI: 10.1016/j.jconrel.2020.12.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/03/2020] [Indexed: 12/21/2022]
Abstract
Smart nanomaterials, contrast nanoparticles and drug nanocarriers of advanced targeting architecture were designed for various biomedical applications. Most of such agents demonstrate poor pharmacokinetics in vivo due to rapid elimination from the bloodstream by cells of the mononuclear phagocyte system (MPS). One of the promising methods to prolong blood circulation of the nanoparticles without their modification is MPS blockade. The method temporarily decreases macrophage endocytosis in response to uptake of a low-toxic non-functional material. The effect of different factors on the efficiency of macrophage blockade in vivo induced by solid nanomaterials has been studied here. Those include: blocker nanoparticle size, ζ-potential, surface coating, dose, mice strain, presence of tumor or inflammation. We found that the blocker particle coating type had the strongest effect on MPS blockade efficiency, which allowed to prolong functional particle blood circulation half-life 18 times. The mechanisms capable of regulation of the MPS blockade have been demonstrated, which can promote application of this phenomenon in medicine for improving delivery of diagnostic and therapeutic nanomaterials.
Collapse
Affiliation(s)
- Aziz B Mirkasymov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Ivan V Zelepukin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
| | - Petr I Nikitin
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia; Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Maxim P Nikitin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Sergey M Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia.
| |
Collapse
|
24
|
Zhong YF, Cheng J, Liu Y, Luo T, Wang Y, Jiang K, Mo F, Song J. DNA Nanostructures as Pt(IV) Prodrug Delivery Systems to Combat Chemoresistance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003646. [PMID: 32815274 DOI: 10.1002/smll.202003646] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Cisplatin is a first-line drug in clinical cancer treatment but its efficacy is often hindered by chemoresistance in cancer cells. Reduced intracellular drug accumulation is revealed to be a major mechanism of cisplatin resistance. Nanoscale drug delivery systems could help to overcome this problem because of their more active cellular uptake and more accurate tumor localization. DNA nanostructures have emerged as promising drug delivery systems because of their intrinsic biocompatibility and structural programmability. Herein, three diverse DNA nanostructures are constructed and their potential for cisplatin prodrug delivery is investigated. Results found that these DNA nanostructures could remarkably enhance the cellular internalization of platinum drugs and thus increase the anticancer activity, not only to regular lung cancer cells (A549), but more importantly to cisplatin-resistant cancer cells (A549cisR). Further, in vivo studies also demonstrate that cisplatin prodrug loaded DNA nanostructures could effectively suppress tumor growth in both regular and cisplatin-resistant tumor models. This study suggests that DNA nanostructures are effective carriers for platinum prodrug delivery to combat chemoresistance.
Collapse
Affiliation(s)
- Yi-Fang Zhong
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Jin Cheng
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Yan Liu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Tao Luo
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Yuqi Wang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Kai Jiang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Fangli Mo
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, 310022, P. R. China
| |
Collapse
|
25
|
Wang JJ, Qian Y, Qian C, Yao JY, Bi XL. Paclitaxel-loaded cyclodextrin-cored unimolecular micelles and their in vivo behavior. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
The Intrinsic Biological Identities of Iron Oxide Nanoparticles and Their Coatings: Unexplored Territory for Combinatorial Therapies. NANOMATERIALS 2020; 10:nano10050837. [PMID: 32349362 PMCID: PMC7712800 DOI: 10.3390/nano10050837] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022]
Abstract
Over the last 20 years, iron oxide nanoparticles (IONPs) have been the subject of increasing investigation due to their potential use as theranostic agents. Their unique physical properties (physical identity), ample possibilities for surface modifications (synthetic identity), and the complex dynamics of their interaction with biological systems (biological identity) make IONPs a unique and fruitful resource for developing magnetic field-based therapeutic and diagnostic approaches to the treatment of diseases such as cancer. Like all nanomaterials, IONPs also interact with different cell types in vivo, a characteristic that ultimately determines their activity over the short and long term. Cells of the mononuclear phagocytic system (macrophages), dendritic cells (DCs), and endothelial cells (ECs) are engaged in the bulk of IONP encounters in the organism, and also determine IONP biodistribution. Therefore, the biological effects that IONPs trigger in these cells (biological identity) are of utmost importance to better understand and refine the efficacy of IONP-based theranostics. In the present review, which is focused on anti-cancer therapy, we discuss recent findings on the biological identities of IONPs, particularly as concerns their interactions with myeloid, endothelial, and tumor cells. Furthermore, we thoroughly discuss current understandings of the basic molecular mechanisms and complex interactions that govern IONP biological identity, and how these traits could be used as a stepping stone for future research.
Collapse
|
27
|
Yunna C, Mengru H, Lei W, Weidong C. Macrophage M1/M2 polarization. Eur J Pharmacol 2020; 877:173090. [PMID: 32234529 DOI: 10.1016/j.ejphar.2020.173090] [Citation(s) in RCA: 1022] [Impact Index Per Article: 255.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022]
Abstract
Macrophages can be affected by a variety of factors to change their phenotype and thus affect their function. Activated macrophages are usually divided into two categories, M1-like macrophages and M2-like macrophages. Both M1 macrophages and M2 macrophages are closely related to inflammatory responses, among which M1 macrophages are mainly involved in pro-inflammatory responses and M2 macrophages are mainly involved in anti-inflammatory responses. Improving the inflammatory environment by modulating the activation state of macrophages is an effective method for the treatment of diseases. In this review, we analyzed the mechanism of macrophage polarization from the tumor microenvironment, nanocarriers, nuclear receptor PPARγ, phagocytosis, NF-κB signaling pathways, and other pathways.
Collapse
Affiliation(s)
- Chen Yunna
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Hu Mengru
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Wang Lei
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Education Office of Anhui Province, Hefei, Anhui, 230012, China.
| | - Chen Weidong
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Education Office of Anhui Province, Hefei, Anhui, 230012, China.
| |
Collapse
|