1
|
Rajeev A, Bhatia D. DNA-templated fluorescent metal nanoclusters and their illuminating applications. NANOSCALE 2024; 16:18715-18731. [PMID: 39292491 DOI: 10.1039/d4nr03429e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
After the discovery of DNA during the mid-20th century, a multitude of novel methodologies have surfaced which exploit DNA for its various properties. One such recently developed application of DNA is as a template in metal nanocluster formation. In the early years of the new millennium, a group of researchers found that DNA can be adopted as a template for the binding of metal nanoparticles that ultimately form nanoclusters. Three metal nanoclusters have been studied so far, including silver, gold, and copper, which have a plethora of biological applications. This review focuses on the synthesis, mechanisms, and novel applications of DNA-templated metal nanoclusters, including the therapies that have employed them for their wide range of fluorescent properties, and the future perspectives related to their development by exploiting machine learning algorithms and molecular dynamics simulation studies.
Collapse
Affiliation(s)
- Ashwin Rajeev
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat-382355, India.
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat-382355, India.
| |
Collapse
|
2
|
Cybulski O, Quintana C, Siek M, Grzybowski BA. Stirring-Controlled Synthesis of Ultrastable, Fluorescent Silver Nanoclusters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400306. [PMID: 38934325 DOI: 10.1002/smll.202400306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/09/2024] [Indexed: 06/28/2024]
Abstract
This paper describes how macroscopic stirring of a reaction mixture can be used to produce nanostructures exhibiting properties not readily achievable via other protocols. In particular, it is shown that by simply adjusting the stirring rate, a standard glutathione-based method-to date, used to produce only marginally stable fluorescent silver nanoclusters, Ag NCs-can be boosted to yield nanoclusters retaining fluorescence for unprecedented periods of over 2 years. This enhancement derives not simply from increased homogenization of the reaction mixture but mainly from an appropriately timed delivery of oxygen from above the reaction mixture. In effect, oxygen serves as a reagent that dictates size, structure, stability, and functional properties of the growing nanoobjects.
Collapse
Affiliation(s)
- Olgierd Cybulski
- Center for Algorithmic and Robotized Synthesis (CARS), Institute for Basic Science (IBS), Ulsan, 44919, South Korea
| | - Cristóbal Quintana
- Center for Algorithmic and Robotized Synthesis (CARS), Institute for Basic Science (IBS), Ulsan, 44919, South Korea
| | - Marta Siek
- Center for Algorithmic and Robotized Synthesis (CARS), Institute for Basic Science (IBS), Ulsan, 44919, South Korea
| | - Bartosz A Grzybowski
- Center for Algorithmic and Robotized Synthesis (CARS), Institute for Basic Science (IBS), Ulsan, 44919, South Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| |
Collapse
|
3
|
Rival JV, Nonappa, Shibu ES. The interplay of chromophore-spacer length in light-induced gold nanocluster self-assembly. NANOSCALE 2024; 16:14302-14309. [PMID: 39011753 DOI: 10.1039/d4nr01954g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The light-induced self-assembly of chromophore-tethered precision nanoclusters (NCs) has recently received significant attention due to their facile control over structure, function, and reversibility under ambient conditions. However, the magnitude of assembly depends on the photoswitching efficiency, chemical structure, and proximity of the chromophore to the NC surface. Herein, using azobenzene alkyl monothiol (AMT)-capped gold NCs with two different spacer lengths (denoted as C3-NC and C9-NC), we show that reversible cis ↔ trans isomerization efficiency can be readily tuned to control the self-assembly kinetics of NCs. Irrespective of the chain length, the time required for trans-to-cis (140 s) and cis-to-trans (260 s) isomerization of individual C3-AMT and C9-AMT is identical in dichloromethane solution. When a similar experiment was performed using a solution of C3-NCs and C9-NCs, it resulted in self-assembled disc-like superstructures. Notably, the trans-to-cis photoswitching in C3-NC could reach only 65% even after 460 seconds of irradiation. On the other hand, C9-NC completed this process within 160 seconds of irradiation. The low photoswitching efficiency of the C3-NC analog is due to the short and rigid spacer length of C3-AMT ligands, which are in close proximity to the NC surface, resulting in steric hindrance experienced at the NC-chromophore interface. Importantly, the slow photoswitching in C3-NCs helps isolate and investigate the intermediates of assembly. Using high-resolution electron microscopy, atomic force microscopy, and 3D reconstruction, we show that the discs are made up of densely packed arrays of NCs. The prolonged illumination of C9-NCs results in a chain-like assembly due to the dipolar attraction between the previously assembled superstructures. The efficient photoisomerization of chromophores located away from the nanocluster surface has been identified as the key element to speed up the light-induced assembly in chromophore-tethered nanoclusters. Such information will be useful while developing nanoscale photoswitches for electrochemistry, biosensors, and electronic devices.
Collapse
Affiliation(s)
- Jose V Rival
- Smart Materials Lab, Department of Nanoscience and Technology (DNST), University of Calicut, Thenhipalam 673635, Kerala, India.
| | - Nonappa
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33101 Tampere, Finland
| | | |
Collapse
|
4
|
Chen X, Jiang Y, Liu Y, Yao C. Y 3+@CdTe quantum dot nanoprobe as a fluorescence signal enhancement sensing platform for the visualization of norfloxacin. Analyst 2023. [PMID: 37455634 DOI: 10.1039/d3an00921a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Quinolone antibiotics (norfloxacin) pose a serious threat to animal and human health due to their misuse and difficulty in being broken down in surface water and food. Rapid and effective detection of norfloxacin (NOR) is essential for environmental testing and ecosystems. In this study, yttrium was coordinated with mercaptopropionic acid (MPA)-modified CdTe quantum dots (QDs) to obtain a novel fluorescence sensor Y3+@CdTe QDs for the sensitive detection of NOR. NOR can bind to Y3+ to form a complex (NOR-Y3+). This complex enhances the luminescence of NOR and blue-shifts to 423 nm. The fluorescence intensity of NOR-Y3+ at 423 nm (I423) gradually increased with increasing NOR concentration; meanwhile, the fluorescence intensity of CdTe QDs at 634 nm (I634) gradually decreased due to aggregation induction. The ratio of I423 to I634 was used for the quantitative determination of NOR. The linear range of the constructed fluorescent probes was from 1.0 to 150.0 μM, with a detection limit of 31.8 nM. CdTe QDs act as a red fluorescent background, and with the addition of NOR, the color of the system transitions from red to purple and finally blue. This method was rapid (immediate) and visual, providing a simple analysis of various actual samples (tap water, lake water, honey, milk and human serum) for NOR.
Collapse
Affiliation(s)
- Xiong Chen
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Yuanhang Jiang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Ying Liu
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Cheng Yao
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| |
Collapse
|
5
|
Dai Z, Wang G, Xiao F, Lei D, Dou X. Amorphous Copper-Based Nanoparticles with Clusterization-Triggered Phosphorescence for Ultrasensing 2,4,6-Trinitrotoluene. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300526. [PMID: 36929680 DOI: 10.1002/adma.202300526] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/10/2023] [Indexed: 06/16/2023]
Abstract
Amorphous metal-based nanostructures have attracted great attention recently due to their facilitative electron transfer and abundant reactive sites, whereas it remains enigmatic as to whether amorphous copper-based nanoparticles (CuNPs) can be achieved. Here, for synthesizing amorphous CuNPs, glutathione is adopted as a ligand to inhibit the nucleation and crystallization process via its electrostatic repulsion. By subtly tailoring the solvent polarity, not only can amorphous glutathione-functionalized CuNPs (GSH-CuNPs) with phosphorescent performance be achieved after transferring the non-conjugation of GSH ligand to through-space conjugation, namely clusterization-triggered emission, but also the phosphorescence-off of GSH-CuNPs toward 2,4,6-trinitrotoluene (TNT) can be realized by the photoinduced electron-transfer process through the hydrogen bond channel, which is established between carboxyl and amino groups of GSH-CuNPs with the nitryl group of TNT. Benefitting from the intrinsic superiorities of the amorphous CuNPs, desired phosphorescence and detection performances of GSH-CuNPs toward airborne TNT microparticulates are undoubtedly realized, including high quantum yield (13.22%), excellent specificity in 33 potential interferents, instantaneous response, and ultralow detection limit (1.56 pg). The present GSH-CuNPs are expected to stretch amorphous metal-based nanostructures and deepen the insights into amorphous materials for optical detection.
Collapse
Affiliation(s)
- Zhuohua Dai
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangfa Wang
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China
| | - Fangfang Xiao
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Da Lei
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China
| | - Xincun Dou
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Lu J, Wang D, Li X, Guo W, Tian C, Luan F, Zhuang X. Preparation of a Red-Emitting, Chitosan-Stabilized Copper Nanocluster Composite and Its Application as a Hydrogen Peroxide Detection Probe in the Analysis of Water Samples. BIOSENSORS 2023; 13:361. [PMID: 36979573 PMCID: PMC10046763 DOI: 10.3390/bios13030361] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Hydrogen peroxide (H2O2) is an important reactive oxygen species that mediates a variety of physiological functions in biological processes, and it is an essential mediator in food, pharmaceutical, and environmental analysis. However, H2O2 can be dangerous and toxic at certain concentrations. It is crucial to detect the concentration of H2O2 in the environment for human health and environmental protection. Herein, we prepared the red-emitting copper nanoclusters (Cu NCs) by a one-step method, with lipoic acid (LA) and sodium borohydride as protective ligands and reducing agents, respectively, moreover, adding chitosan (CS) to wrap LA-Cu NCs. The as-prepared LA-Cu NCs@CS have stronger fluorescence than LA-Cu NCs. We found that the presence of H2O2 causes the fluorescence of LA-Cu NCs@CS to be strongly quenched. Based on this, a fluorescent probe based on LA-Cu NCs@CS was constructed for the detection of H2O2 with a limit of detection of 47 nM. The results from this research not only illustrate that the as--developed fluorescent probe exhibits good selectivity and high sensitivity to H2O2 in environmental water samples but also propose a novel strategy to prepare red-emitting copper nanoclusters (Cu NCs) by a one-step method.
Collapse
Affiliation(s)
- Jiaojiao Lu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Dawei Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xin Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Wei Guo
- Shandong Dyne Marine Biopharmaceutical Co., Ltd., Weihai 264300, China
| | - Chunyuan Tian
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Feng Luan
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xuming Zhuang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
7
|
Sebastian A, Aarya, Sarangi BR, Sen Mojumdar S. Lysozyme protected copper nano-cluster: A photo-switch for the selective sensing of Fe2+. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Pan Y, Han Z, Chen S, Wei K, Wei X. Metallic nanoclusters: From synthetic challenges to applications of their unique properties in food contamination detection. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Zhai H, Gao M, Bai Y, Qin J, Song Q, Liu Z, Wang H, Feng F. Development of fluorescence sensors with copper-based nanoclusters via Förster resonance energy transfer and the quenching effect for vanillin detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4245-4251. [PMID: 36250613 DOI: 10.1039/d2ay01170k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Two kinds of copper-based metal fluorescent nanoclusters were successfully prepared by the chemical reduction method; one of them (CuNCs) was synthesized by direct reduction of copper sulfate, and the other (CuAuNCs) was synthesized by the stepwise addition of copper salt and chloroauric acid. CuNCs were used to establish the fluorescence resonance energy transfer (FRET) system with neutral red (NR) due to the supramolecular effect of β-cyclodextrin (β-CD) modified on the surface of CuNCs. NR could enter the hydrophobic cavity of β-CD and narrow the distance between CuNCs and NR, which could lead to FRET. Fluorescence was transferred from CuNCs to NR, resulting in amplification of the NR fluorescence signal, which could be used to detect vanillin. In addition, CuAuNCs with strong fluorescence were used as fluorescent probes to detect vanillin through the quenching mechanism. By comparison, the simplicity of CuNC synthesis and the high selectivity of β-CD made the FRET method more practical, which may provide a new strategy for assaying vanillin.
Collapse
Affiliation(s)
- Hong Zhai
- College of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong, 037009, China.
| | - Mengmeng Gao
- College of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong, 037009, China.
| | - Yunfeng Bai
- College of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong, 037009, China.
| | - Jun Qin
- College of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong, 037009, China.
| | - Qing Song
- College of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong, 037009, China.
| | - Zhixiong Liu
- College of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong, 037009, China.
| | - Haiyan Wang
- College of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong, 037009, China.
| | - Feng Feng
- College of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong, 037009, China.
| |
Collapse
|
10
|
Wang Y, Tan Y, Ding Y, Fu L, Qing W. Phenylalanine stabilized copper nanoclusters for specific destruction of Congo red and bacteria in aqueous solution. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Panthi G, Park M. Synthesis of metal nanoclusters and their application in Hg 2+ ions detection: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127565. [PMID: 34736203 DOI: 10.1016/j.jhazmat.2021.127565] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Mercuric (Hg2+) ions released from human activities, natural phenomena, and industrial sources are regarded as the global pollutant of world's water. Hg2+ ions contaminated water has several adverse effects on human health and the environment even at low concentrations. Therefore, rapid and cost-effective method is urgently required for the detection of Hg2+ ions in water. Although, the current analytical methods applied for the detection of Hg2+ ions provide low detection limit, they are time consuming, require expensive equipment, and are not suitable for in-situ analysis. Metal nanoclusters (MNCs) consisting of several to ten metal atoms are important transition missing between single atoms and plasmonic metal nanoparticles. In addition, sub-nanometer sized MNCs possess unique electronic structures and the subsequent unusual optical, physical, and chemical properties. Because of these novel properties, MNCs as a promising material have attracted considerable attention for the construction of selective and sensitive sensors to monitor water quality. Hence this review is focused on recent advances on synthesis strategies, and optical and chemical properties of various MNCs including their applications to develop optical assay for Hg2+ ions in aqueous solutions.
Collapse
Affiliation(s)
- Gopal Panthi
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju, Chonbuk 55338, Republic of Korea.
| | - Mira Park
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju, Chonbuk 55338, Republic of Korea; Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, Wanju, Chonbuk 55338, Republic of Korea.
| |
Collapse
|
12
|
Kumar A, Kumar S, Chae PS. A Chromo-Fluorogenic Naphthoquinolinedione-Based Probe for Dual Detection of Cu 2+ and Its Use for Various Water Samples. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030785. [PMID: 35164050 PMCID: PMC8838320 DOI: 10.3390/molecules27030785] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 11/18/2022]
Abstract
The presence of an abnormal amount of Cu2+ in the human body causes various health issues. In the current study, we synthesized a new naphthoquinolinedione-based probe (probe 1) to monitor Cu2+ in different water systems, such as tap water, lakes, and drain water. Two triazole units were introduced into the probe via a click reaction to increase the binding affinity to a metal ion. In day-light, probe 1 dissolved in a mixed solvent system (HEPES: EtOH = 1:4) showed a vivid color change from light greenish-yellow to pink in the presence of only Cu2+ among various metal ions. In addition, the green luminescence and fluorescence emission of the probe were effectively bleached out immediately after Cu2+ addition. The limit of detection (LOD) of the probe was 0.5 µM when a ratio-metric method was used for metal ion detection. The fluorescence titration data of the probe with Cu2+ showed a calculated LOD of 41.5 pM. Hence, probe 1 possesses the following dual response toward Cu2+ detection: color change and fluorescence quenching. Probe 1 was also useful for detecting Cu2+ spiked in tap/lake water as well as the cytoplasm of live HeLa cells. The current system was investigated using ultraviolet-visible and fluorescence spectroscopy as well as density functional theory calculations (DFT).
Collapse
Affiliation(s)
- Ashwani Kumar
- Department of Bionano Engineering, Hanyang University, Ansan 15588, Korea
- Correspondence: (A.K.); (P.S.C.)
| | - Subodh Kumar
- Department of Chemistry, UGC Center for Advanced Studies, Guru Nanak Dev University, Amritsar 143005, India;
| | - Pil Seok Chae
- Department of Bionano Engineering, Hanyang University, Ansan 15588, Korea
- Correspondence: (A.K.); (P.S.C.)
| |
Collapse
|
13
|
Qian S, Wang Z, Zuo Z, Wang X, Wang Q, Yuan X. Engineering luminescent metal nanoclusters for sensing applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214268] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Basu S, Paul A, Antoine R. Controlling the Chemistry of Nanoclusters: From Atomic Precision to Controlled Assembly. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:62. [PMID: 35010012 PMCID: PMC8746821 DOI: 10.3390/nano12010062] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Metal nanoclusters have gained prominence in nanomaterials sciences, owing to their atomic precision, structural regularity, and unique chemical composition. Additionally, the ligands stabilizing the clusters provide great opportunities for linking the clusters in higher order dimensions, eventually leading to the formation of a repertoire of nanoarchitectures. This makes the chemistry of atomic clusters worth exploring. In this mini review, we aim to focus on the chemistry of nanoclusters. Firstly, we summarize the important strategies developed so far for the synthesis of atomic clusters. For each synthetic strategy, we highlight the chemistry governing the formation of nanoclusters. Next, we discuss the key techniques in the purification and separation of nanoclusters, as the chemical purity of clusters is deemed important for their further chemical processing. Thereafter which we provide an account of the chemical reactions of nanoclusters. Then, we summarize the chemical routes to the spatial organization of atomic clusters, highlighting the importance of assembly formation from an application point of view. Finally, we raise some fundamentally important questions with regard to the chemistry of atomic clusters, which, if addressed, may broaden the scope of research pertaining to atomic clusters.
Collapse
Affiliation(s)
- Srestha Basu
- Schulich Faculty of Chemistry, Technion—Israel Institute of Technology, Haifa 3200003, Israel;
| | - Anumita Paul
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Rodolphe Antoine
- Institut Lumière Matière UMR 5306, Univ Lyon, Université Claude Bernard Lyon 1, CNRS, F-69100 Villeurbanne, France
| |
Collapse
|
15
|
Anusuyadevi K, Wu SP, Velmathi S. Reversible enhancement of fluorescence in acidic pH driven by tryptophan stabilized copper nanoclusters and its application in bioimaging. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Quijada-Garrido I, García O. How a family of nanostructured amphiphilic block copolymers synthesized by RAFT-PISA take advantage of thiol groups to direct the in situ assembly of high luminescent CuNCs within their thermo-responsive core. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Xue Y, Cheng Z, Luo M, Hu H, Xia C. Synthesis of Copper Nanocluster and Its Application in Pollutant Analysis. BIOSENSORS 2021; 11:424. [PMID: 34821639 PMCID: PMC8615659 DOI: 10.3390/bios11110424] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 05/09/2023]
Abstract
Copper nanoclusters (Cu NCs) with their inherent optical and chemical advantages have gained increasing attention as a kind of novel material that possesses great potential, primarily in the use of contaminants sensing and bio-imaging. With a focus on environmental safety, this article comprehensively reviews the recent advances of Cu NCs in the application of various contaminants, including pesticide residues, heavy metal ions, sulfide ions and nitroaromatics. The common preparation methods and sensing mechanisms are summarized. The typical high-quality sensing probes based on Cu NCs towards various target contaminants are presented; additionally, the challenges and future perspectives in the development and application of Cu NCs in monitoring and analyzing environmental pollutants are discussed.
Collapse
Affiliation(s)
- Yan Xue
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China; (Y.X.); (Z.C.); (M.L.)
| | - Zehua Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China; (Y.X.); (Z.C.); (M.L.)
| | - Mai Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China; (Y.X.); (Z.C.); (M.L.)
| | - Hao Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China; (Y.X.); (Z.C.); (M.L.)
| | - Chenglai Xia
- Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan 528000, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510150, China
| |
Collapse
|
18
|
Rival JV, Mymoona P, Lakshmi KM, Pradeep T, Shibu ES. Self-Assembly of Precision Noble Metal Nanoclusters: Hierarchical Structural Complexity, Colloidal Superstructures, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005718. [PMID: 33491918 DOI: 10.1002/smll.202005718] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/07/2020] [Indexed: 06/12/2023]
Abstract
Ligand protected noble metal nanoparticles are excellent building blocks for colloidal self-assembly. Metal nanoparticle self-assembly offers routes for a wide range of multifunctional nanomaterials with enhanced optoelectronic properties. The emergence of atomically precise monolayer thiol-protected noble metal nanoclusters has overcome numerous challenges such as uncontrolled aggregation, polydispersity, and directionalities faced in plasmonic nanoparticle self-assemblies. Because of their well-defined molecular compositions, enhanced stability, and diverse surface functionalities, nanoclusters offer an excellent platform for developing colloidal superstructures via the self-assembly driven by surface ligands and metal cores. More importantly, recent reports have also revealed the hierarchical structural complexity of several nanoclusters. In this review, the formulation and periodic self-assembly of different noble metal nanoclusters are focused upon. Further, self-assembly induced amplification of physicochemical properties, and their potential applications in molecular recognition, sensing, gas storage, device fabrication, bioimaging, therapeutics, and catalysis are discussed. The topics covered in this review are extensively associated with state-of-the-art achievements in the field of precision noble metal nanoclusters.
Collapse
Affiliation(s)
- Jose V Rival
- Smart Materials Lab, Electrochemical Power Sources (ECPS) Division, Council of Scientific and Industrial Research (CSIR)-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR)-CSIR, Ghaziabad, Uttar Pradesh, 201002, India
| | - Paloli Mymoona
- Smart Materials Lab, Electrochemical Power Sources (ECPS) Division, Council of Scientific and Industrial Research (CSIR)-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR)-CSIR, Ghaziabad, Uttar Pradesh, 201002, India
| | - Kavalloor Murali Lakshmi
- Smart Materials Lab, Electrochemical Power Sources (ECPS) Division, Council of Scientific and Industrial Research (CSIR)-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR)-CSIR, Ghaziabad, Uttar Pradesh, 201002, India
| | - Thalappil Pradeep
- Department of Chemistry, DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu, 600036, India
| | - Edakkattuparambil Sidharth Shibu
- Smart Materials Lab, Electrochemical Power Sources (ECPS) Division, Council of Scientific and Industrial Research (CSIR)-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR)-CSIR, Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
19
|
Confining copper nanoclusters on exfoliation-free 2D boehmite nanosheets: Fabrication of ultra-sensitive sensing platform for α-glucosidase activity monitoring and natural anti-diabetes drug screening. Biosens Bioelectron 2021; 182:113198. [PMID: 33799024 DOI: 10.1016/j.bios.2021.113198] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/13/2021] [Accepted: 03/22/2021] [Indexed: 12/21/2022]
Abstract
α-Glucosidase (α-Glu) and its inhibitors play critical roles in diabetes therapy. Herein, a simple and ultra-sensitive fluorescence sensing approach was fabricated for α-Glu activity monitoring and natural inhibitor screening by electrostatically confining negatively charged glutathione-capped copper nanoclusters (GSH-CuNCs) on exfoliation-free and positively charged 2D boehmite (Boe) nanosheets. Boe significantly improved the fluorescence emission/stability of GSH-CuNCs and simultaneously led to an obvious blue-shift of the excitation peak of CuNCs from 365 nm to 330 nm. As a result, the fluorescence emission of Boe@GSH-CuNCs was efficiently quenched by 4-nitrophenyl-α-D-glucopyranoside (PNPG) with a maximum absorbance peak (λmax) at 310 nm via inner filter effect, and sequentially recovered by α-Glu through the hydrolysis of PNPG to p-nitrophenol (λmax = 410 nm). Accordingly, an ultra-sensitive fluorescence assay for the determination of α-Glu activity was proposed by using Boe@GSH-CuNCs as fluorescence probes. The detection limit of 0.43 U/L was achieved, which was lower than most of other α-Glu activity assays. Furthermore, this method was capable of screening α-Glu inhibitors originated from actinomycetes, peanut, sophora flower, celery, and orange as potential anti-diabetes drugs. Taken together, this work provided a promising strategy for clinical treatment of diabetes and discovery of anti-diabetes drugs.
Collapse
|
20
|
Tawfik SM, Abd-Elaal AA, Lee YI. Selective dual detection of Hg 2+ and TATP based on amphiphilic conjugated polythiophene-quantum dot hybrid materials. Analyst 2021; 146:2894-2901. [PMID: 33720268 DOI: 10.1039/d1an00166c] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The design of multifunctional sensors based on biocompatible hybrid materials consisting of conjugated polythiophene-quantum dots for multiple environmental pollutants is a promising strategy for the development of new monitoring technologies. Herein, we present a new approach for the "on-off-on" sensing of Hg2+ and triacetone triperoxide (TATP) based on amphiphilic polythiophene-coated CdTe QDs (PQDs, PLQY ∼78%). The emission of the PQDs is quenched by Hg2+ ions via electron transfer interactions. Based on the strong interaction between TATP and Hg2+ ions, the addition of TATP to the PQD-Hg2+ complex results in a remarkable recovery of the PQD emission. Under the optimized conditions, the PQD sensor shows a good linear response to Hg2+ and TATP with detection limits of 7.4 nM and 0.055 mg L-1, respectively. Furthermore, the "on-off-on" sensor demonstrates good biocompatibility, high stability, and excellent selectivity in the presence of other metal ions and common explosives. Importantly, the proposed method can be used to determine the level of Hg2+ and TATP in environmental water samples.
Collapse
Affiliation(s)
- Salah M Tawfik
- Department of Petrochemicals, Egyptian Petroleum Research Institute, Cairo 11727, Egypt
| | - Ali A Abd-Elaal
- Department of Petrochemicals, Egyptian Petroleum Research Institute, Cairo 11727, Egypt
| | - Yong-Ill Lee
- Department of Materials Convergence and System Engineering, Changwon National University, Changwon 51140, Republic of Korea.
| |
Collapse
|
21
|
Li D, Chen H, Gao X, Mei X, Yang L. Development of General Methods for Detection of Virus by Engineering Fluorescent Silver Nanoclusters. ACS Sens 2021; 6:613-627. [PMID: 33660987 DOI: 10.1021/acssensors.0c02322] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Viruses have caused significant damage to the world. Effective detection is required to relieve the impact of viral infections. A biomolecule can be used as a template such as deoxyribonucleic acid (DNA), peptide, or protein, for the growth of silver nanoclusters (AgNCs) and for recognizing a virus. Both the AgNCs and the recognition elements are tunable, which is promising for the analysis of new viruses. Considering that a new virus such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) urgently requires a facile sensing strategy, various virus detection strategies based on AgNCs including fluorescence enhancement, color change, quenching, and recovery are summarized. Particular emphasis is placed on the molecular analysis of viruses using DNA stabilized AgNCs (DNA-AgNCs), which detect the virus's genetic material. The more widespread applications of AgNCs for general virus detection are also discussed. Further development of these technologies may address the challenge for facile detection of SARS-CoV-2.
Collapse
Affiliation(s)
- Dan Li
- Department of Basic Science, Jinzhou Medical University, Jinzhou 121001, China
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Hui Chen
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xianhui Gao
- Department of Basic Science, Jinzhou Medical University, Jinzhou 121001, China
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Xifan Mei
- Department of Basic Science, Jinzhou Medical University, Jinzhou 121001, China
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Liqun Yang
- NHC Key Laboratory of Reproductive Health and Medical Genetics (Liaoning Research Institute of Family Planning), China Medical University, Shenyang 110122, China
| |
Collapse
|
22
|
Qiao Z, Zhang J, Hai X, Yan Y, Song W, Bi S. Recent advances in templated synthesis of metal nanoclusters and their applications in biosensing, bioimaging and theranostics. Biosens Bioelectron 2021; 176:112898. [PMID: 33358287 DOI: 10.1016/j.bios.2020.112898] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/03/2020] [Accepted: 12/03/2020] [Indexed: 12/19/2022]
Abstract
As a kind of promising nanomaterials, metal nanoclusters (MNCs) generally composed of several to hundreds of metal atoms have received increasing interest owing to their unique properties, such as ultrasmall size (<2 nm), fascinating physical and chemical properties, and so on. Recently, template-assisted synthesis of MNCs (e.g., Au, Ag, Cu, Pt and Cd) has attracted extensive attention in biological fields. Up to now, various templates (e.g., dendrimers, polymers, DNAs, proteins and peptides) with different configurations and spaces have been applied to prepare MNCs with the advantages of facile preparation, controllable size, good water-solubility and biocompatibility. Herein, we focus on the recent advances in the template-assisted synthesis of MNCs, including the templates used to synthesize MNCs, and their applications in biosensing, bioimaging, and disease theranostics. Finally, the challenges and future perspectives of template-assisted synthesized MNCs are highlighted. We believe that this review could not only arouse more interest in MNCs but also promote their further development and applications by presenting the recent advances in this area to researchers from various fields, such as chemistry, material science, physiology, biomedicine, and so on.
Collapse
Affiliation(s)
- Zhenjie Qiao
- Research Center for Intelligent and Wearable Technology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Jian Zhang
- Research Center for Intelligent and Wearable Technology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Xin Hai
- Research Center for Intelligent and Wearable Technology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Yongcun Yan
- Research Center for Intelligent and Wearable Technology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Weiling Song
- Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Sai Bi
- Research Center for Intelligent and Wearable Technology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China.
| |
Collapse
|
23
|
Choudhury N, Saha B, De P. Recent progress in polymer-based optical chemosensors for Cu2+ and Hg2+ Ions: A comprehensive review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110233] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
"Turn-off" sensing probe based on fluorescent gold nanoclusters for the sensitive detection of hemin. Anal Bioanal Chem 2021; 413:1639-1649. [PMID: 33483839 DOI: 10.1007/s00216-020-03126-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 01/18/2023]
Abstract
Balanced level of hemin in the body is fundamentally important for normal human organ function. Therefore, environmentally benign, stable, and fluorescent metal nanoclusters (NCs) for selective and sensitive detection of hemin have been investigated and reported. Herein, highly orange red emissive gold NCs are successfully synthesized using glutathione as a reducing and stabilizing agent (GSH-Au NCs). The clusters are characterized using various techniques like Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), UV-vis spectroscopy, and fluorescence spectrometer. The fluorescence intensity of as-synthesized Au NCs strongly quenched upon addition of different concentrations of hemin. The decrease in fluorescence intensity of GSH-Au NCs has been applied for determination of hemin concentration in the linear range from 1 to 25 nM with a low limit of detection (LOD) of 0.43 nM. The method was also successfully applied for quantification of hemin in human serum sample. In view of this reality, the system can be considered as a possible strategy and excellent platform for determination of hemin in various areas of application.
Collapse
|
25
|
Fluorescent sensing of mercury (II) and copper (II) ions based on DNA-templated Cu/Ag nanoclusters. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Lv Y, Zhao R, Weng S, Yu H. Core Charge Density Dominated Size‐Conversion from Au
6
P
8
to Au
8
P
8
Cl
2. Chemistry 2020; 26:12382-12387. [DOI: 10.1002/chem.202002617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/16/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Ying Lv
- Department of Chemistry and Centre for Atomic Engineering of, Advanced Materials Anhui Province Key Laboratory of Chemistry for, Inorganic/Organic Hybrid Functionalized Materials Key Laboratory of, Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education Hefei Anhui 230601 P. R. China
| | - Ruoya Zhao
- Department of Chemistry and Centre for Atomic Engineering of, Advanced Materials Anhui Province Key Laboratory of Chemistry for, Inorganic/Organic Hybrid Functionalized Materials Key Laboratory of, Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education Hefei Anhui 230601 P. R. China
| | - Shiyin Weng
- Department of Chemistry and Centre for Atomic Engineering of, Advanced Materials Anhui Province Key Laboratory of Chemistry for, Inorganic/Organic Hybrid Functionalized Materials Key Laboratory of, Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education Hefei Anhui 230601 P. R. China
| | - Haizhu Yu
- Department of Chemistry and Centre for Atomic Engineering of, Advanced Materials Anhui Province Key Laboratory of Chemistry for, Inorganic/Organic Hybrid Functionalized Materials Key Laboratory of, Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education Hefei Anhui 230601 P. R. China
- Institute of Physical Science and Information Technology Anhui University Hefei Anhui 230601 P. R. China
| |
Collapse
|
27
|
Chitosan-stabilized silver nanoclusters with luminescent, photothermal and antibacterial properties. Carbohydr Polym 2020; 250:116973. [PMID: 33049902 DOI: 10.1016/j.carbpol.2020.116973] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/04/2020] [Accepted: 08/18/2020] [Indexed: 11/23/2022]
Abstract
The aim of this paper is to achieve in situ photochemical synthesis of silver nanoclusters (AgNCs) stabilized by the multiple-amine groups of chitosan (Ch@AgNCs) with luminescent and photothermal properties. Ch@AgNCs were obtained by applying a fast and simple methodology previously described by our group. Direct functionalization of AgNCs with chitosan template provided new nanohybrids directly in water solution, both in the presence or absence of oxygen. The formation of hybrid AgNCs could be monitored by the rapid increase of the absorption and emission maximum band with light irradiation time. New Ch@AgNCs not only present photoluminescent properties but also photothermal properties when irradiated with near infrared light (NIR), transducing efficiently NIR into heat and increasing the temperature of the medium up to 23 °C. The chitosan polymeric shell associated to AgNCs works as a protective support stabilizing the metal cores, facilitating the storage of nanohybrids and preserving luminescent, photothermal and bactericide properties.
Collapse
|
28
|
One‐step synthesis of cationic gold nanoclusters with high catalytic activity on luminol chemiluminescence reaction. LUMINESCENCE 2020. [DOI: 10.1002/bio.3916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
29
|
Li Q, Li Y, Li H, Yan X, Han G, Chen F, Song Z, Zhang J, Fan W, Yi C, Xu Z, Tan B, Yan W. Highly Luminescent Copper Nanoclusters Stabilized by Ascorbic Acid for the Quantitative Detection of 4-Aminoazobenzene. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1531. [PMID: 32759865 PMCID: PMC7466603 DOI: 10.3390/nano10081531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 12/30/2022]
Abstract
As one of the widely studied metal nanoclusters, the preparation of copper nanoclusters (Cu NCs) by a facile method with high fluorescence performance has been the interest of researchers. In this paper, a simple, green, clean, and time-saving chemical etching method was used to synthesize water-soluble Cu NCs using ascorbic acid (AA) as the reducing agent. The as-prepared Cu NCs showed strong green fluorescence (with a quantum yield as high as 33.6%) and high ion stability, and good antioxidant activity as well. The resultant Cu NCs were used for the detection of 4-aminoazobenzene (one of 24 kinds of prohibited textile compounds) in water with a minimum detection limit of 1.44 μM, which has good potential for fabric safety monitoring.
Collapse
Affiliation(s)
- Qiang Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education, Key Laboratory of Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China; (Q.L.); (Y.L.); (F.C.); (Z.S.); (W.F.); (C.Y.); (Z.X.)
| | - Yunhao Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education, Key Laboratory of Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China; (Q.L.); (Y.L.); (F.C.); (Z.S.); (W.F.); (C.Y.); (Z.X.)
| | - Heguo Li
- State Key Laboratory of NBC Protection for Civilian, Research Institution of Chemical Defense, Beijing 100191, China; (X.Y.); (G.H.)
| | - Xiaoshan Yan
- State Key Laboratory of NBC Protection for Civilian, Research Institution of Chemical Defense, Beijing 100191, China; (X.Y.); (G.H.)
| | - Guolin Han
- State Key Laboratory of NBC Protection for Civilian, Research Institution of Chemical Defense, Beijing 100191, China; (X.Y.); (G.H.)
| | - Feng Chen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education, Key Laboratory of Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China; (Q.L.); (Y.L.); (F.C.); (Z.S.); (W.F.); (C.Y.); (Z.X.)
| | - Zhengwei Song
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education, Key Laboratory of Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China; (Q.L.); (Y.L.); (F.C.); (Z.S.); (W.F.); (C.Y.); (Z.X.)
| | - Jianqiao Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Wen Fan
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education, Key Laboratory of Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China; (Q.L.); (Y.L.); (F.C.); (Z.S.); (W.F.); (C.Y.); (Z.X.)
| | - Changfeng Yi
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education, Key Laboratory of Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China; (Q.L.); (Y.L.); (F.C.); (Z.S.); (W.F.); (C.Y.); (Z.X.)
| | - Zushun Xu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education, Key Laboratory of Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China; (Q.L.); (Y.L.); (F.C.); (Z.S.); (W.F.); (C.Y.); (Z.X.)
| | - Bien Tan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Wei Yan
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education, Key Laboratory of Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China; (Q.L.); (Y.L.); (F.C.); (Z.S.); (W.F.); (C.Y.); (Z.X.)
| |
Collapse
|