1
|
Petelinšek N, Mommer S. Tough Hydrogels for Load-Bearing Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307404. [PMID: 38225751 PMCID: PMC10966577 DOI: 10.1002/advs.202307404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/08/2023] [Indexed: 01/17/2024]
Abstract
Tough hydrogels have emerged as a promising class of materials to target load-bearing applications, where the material has to resist multiple cycles of extreme mechanical impact. A variety of chemical interactions and network architectures are used to enhance the mechanical properties and fracture mechanics of hydrogels making them stiffer and tougher. In recent years, the mechanical properties of tough, high-performance hydrogels have been benchmarked, however, this is often incomplete as important variables like water content are largely ignored. In this review, the aim is to clarify the reported mechanical properties of state-of-the-art tough hydrogels by providing a comprehensive library of fracture and mechanical property data. First, common methods for mechanical characterization of such high-performance hydrogels are introduced. Then, various modes of energy dissipation to obtain tough hydrogels are discussed and used to categorize the individual datasets helping to asses the material's (fracture) mechanical properties. Finally, current applications are considered, tough high-performance hydrogels are compared with existing materials, and promising future opportunities are discussed.
Collapse
Affiliation(s)
- Nika Petelinšek
- Macromolecular Engineering LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichSonneggstrasse 3Zurich8092Switzerland
| | - Stefan Mommer
- Macromolecular Engineering LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichSonneggstrasse 3Zurich8092Switzerland
| |
Collapse
|
2
|
Zhao X, Hua B, Shao L. Constructing a solid-state supramolecular polymer based on host-guest recognition between perethylated pillar[5]arene and tetrathiafulvalene. Chem Commun (Camb) 2024; 60:1164-1167. [PMID: 38193162 DOI: 10.1039/d3cc03579d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Herein we present a novel linear supramolecular polymeric structure formed in both the solution and solid state, utilizing the host-guest recognition motif between perethylated pillar[5]arene and tetrathiafulvalene.
Collapse
Affiliation(s)
- Xueru Zhao
- Department of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| | - Bin Hua
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Li Shao
- Department of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| |
Collapse
|
3
|
Chang R, Chen CY, Gao L, Li Y, Lee ZH, Zhao H, Sue ACH, Chang KC. Highly selective Cu 2+ detection with a naphthalimide-functionalised pillar[5]arene fluorescent chemosensor. Org Biomol Chem 2024; 22:745-752. [PMID: 37982316 DOI: 10.1039/d3ob01558k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Ligand 1, a rim-differentiated pillar[5]arene macrocycle modified with five naphthalimide groups through click chemistry, serves as an effective ratiometric fluorescent chemosensor for Cu2+. In contrast to the monomeric naphthalimide control compound 2, which shows only monomer emission, ligand 1 demonstrates dual emission characteristics encompassing both the monomer and excimer of the naphthalimide moieties. The binding properties of ligand 1 toward 15 different metal ions were systematically investigated in CH2Cl2/CH3CN (v/v, 1 : 1) by UV-vis and fluorescence spectroscopy. Remarkably, ligand 1 exhibits exceptional selectivity for Cu2+ ions. Upon complexation with Cu2+, the excimer emission of ligand 1 diminishes, concomitant with an enhancement of its monomer emission. The binding ratio for 1·Cu2+ was determined to be 1 : 1, with an association constant of (3.39 ± 0.40) × 105 M-1 calculated using a nonlinear least-squares curve-fitting method. Furthermore, the limit of detection (LOD) was found to be 185 ± 7 nM. Our results from 1H NMR titration, high-resolution mass spectrometry analysis and density functional theory calculations of 1·Cu2+ suggest synergistic coordination between Cu2+ and the triazole groups on ligand 1.
Collapse
Affiliation(s)
- Rong Chang
- College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Rd, Siming District, Xiamen, Fujian Province 361005, P. R. China
| | - Chan-Yu Chen
- Bachelor Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan, Republic of China.
| | - Liya Gao
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Rd, Nankai District, Tianjin 300072, P. R. China
| | - Yana Li
- College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Rd, Siming District, Xiamen, Fujian Province 361005, P. R. China
| | - Zui-Harng Lee
- Bachelor Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan, Republic of China.
| | - Hongxia Zhao
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Rd, Nankai District, Tianjin 300072, P. R. China
| | - Andrew C-H Sue
- College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Rd, Siming District, Xiamen, Fujian Province 361005, P. R. China
| | - Kai-Chi Chang
- Bachelor Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan, Republic of China.
| |
Collapse
|
4
|
Zhang X, Huang Y, Huang Z. Editorial on Special Issue "Design and Optimization of Pharmaceutical Gels". Gels 2024; 10:38. [PMID: 38247762 PMCID: PMC10815103 DOI: 10.3390/gels10010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024] Open
Abstract
The efficacy of many bioactive agents, including drugs, food supplements, and vaccines, is limited because of their poor chemical stability, low water solubility, and low oral bioavailability [...].
Collapse
Affiliation(s)
- Xuejuan Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 511443, China; (X.Z.); (Y.H.)
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Ying Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 511443, China; (X.Z.); (Y.H.)
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Zhengwei Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 511443, China; (X.Z.); (Y.H.)
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| |
Collapse
|
5
|
Chen TR, Chang KC, Chen CY, Wu TW, Lee LW, Shen LC, Chen HN, Chung WS. Calix[4]arene-based Supramolecular Gels for Mercury Ion Removal in Water. Chem Asian J 2023; 18:e202300739. [PMID: 37800724 DOI: 10.1002/asia.202300739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/07/2023]
Abstract
A calix[4]arene-based gelator 1, with lower-rim mono triazolylpyridine group, capable of spontaneous self-assembly into microspheres in different ethanol/H2 O mixtures, is synthesized. The concentration-dependent 1 H NMR spectra and X-ray single-crystal structure of 1 provided evidence for self-assembly of gelator 1 via cooperative interactions of intermolecular noncovalent forces. Furthermore, metallogels by self-assembly of 1 was found to exhibit remarkable selectivity toward Hg2+ ions. 1 H NMR spectra support that Hg2+ ion was bound to the nitrogen atoms of two coordination sites of 1, which composed of triazole and pyridine. Moreover, the results of field emission scanning electron microscopy and rheology experiments indicated that Hg2+ ions not only enhanced the gelling ability of gelator 1 in ethanol but also led to morphological change of its self-assembly through metal-ligand interactions. Finally, the in situ gelation, triggered by mixing a gelator solution of 1 in ethanol with water samples such as deionized (DI), tap, and lake water, leads to the effective removal of Hg(II) from a water sample which reduced from 400 to 1.6 ppm.
Collapse
Grants
- MOST-112-2113-M-019-002-MY2 Ministry of Science and Technology, Taiwan, ROC
- MOST-110-2113-M-A49-009 Ministry of Science and Technology, Taiwan, ROC
- MOST-110-2113-M-019-003-MY2 Ministry of Science and Technology, Taiwan, ROC
- MOST-109-2113-M-009-016 Ministry of Science and Technology, Taiwan, ROC
- MOST-108-2113-M-009-006 Ministry of Science and Technology, Taiwan, ROC
Collapse
Affiliation(s)
- Tyng-Rong Chen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Kai-Chi Chang
- Bachelor Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Chan-Yu Chen
- Bachelor Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Ting-Wen Wu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Li-Wei Lee
- Bachelor Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Li-Ching Shen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Hsin-Ni Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Wen-Sheng Chung
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 30010, Taiwan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| |
Collapse
|
6
|
Benkhaled BT, Chaix A, Gomri C, Buys S, Namar N, Sehoulia N, Jadhav R, Richard J, Lichon L, Nguyen C, Gary-Bobo M, Semsarilar M. Novel Biocompatible Trianglamine Networks for Efficient Iodine Capture. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42942-42953. [PMID: 37647569 DOI: 10.1021/acsami.3c08061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Herein, we report for the first time a biocompatible cross-linked trianglamine (Δ) network for the efficient iodine removal from the vapor phase, water, and seawater. In the vapor phase, the cross-linked network could capture 6 g g-1 of iodine, ranking among the most performant materials for iodine vapor capture. In the liquid phase, this cross-linked network is also capable of capturing iodine at high rates from aqueous media (water and seawater). This network displayed fast adsorption kinetics, and they are fully recyclable. This study reveals the high affinity of iodine for the intrinsic cavity of the trianglamine. The synthesized materials are extremely interesting since they are environmentally friendly and inexpensive and the synthesis could easily be scaled up to be used as the material of choice in response to accidents in the nuclear industry.
Collapse
Affiliation(s)
| | - Arnaud Chaix
- IEM, Univ Montpellier, CNRS, ENSCM, Institut Européen des Membranes, Montpellier 34095, France
| | - Chaimaa Gomri
- IEM, Univ Montpellier, CNRS, ENSCM, Institut Européen des Membranes, Montpellier 34095, France
| | - Sébastien Buys
- IEM, Univ Montpellier, CNRS, ENSCM, Institut Européen des Membranes, Montpellier 34095, France
| | - Nabil Namar
- IEM, Univ Montpellier, CNRS, ENSCM, Institut Européen des Membranes, Montpellier 34095, France
| | - Nadine Sehoulia
- IEM, Univ Montpellier, CNRS, ENSCM, Institut Européen des Membranes, Montpellier 34095, France
| | - Rohitkumar Jadhav
- IEM, Univ Montpellier, CNRS, ENSCM, Institut Européen des Membranes, Montpellier 34095, France
| | - Jason Richard
- IEM, Univ Montpellier, CNRS, ENSCM, Institut Européen des Membranes, Montpellier 34095, France
| | - Laure Lichon
- IBMM, Univ Montpellier, CNRS, ENSCM, Institut des Biomolécules Max Mousseron, Montpellier 34095, France
| | - Christophe Nguyen
- IBMM, Univ Montpellier, CNRS, ENSCM, Institut des Biomolécules Max Mousseron, Montpellier 34095, France
| | - Magali Gary-Bobo
- IBMM, Univ Montpellier, CNRS, ENSCM, Institut des Biomolécules Max Mousseron, Montpellier 34095, France
| | - Mona Semsarilar
- IEM, Univ Montpellier, CNRS, ENSCM, Institut Européen des Membranes, Montpellier 34095, France
| |
Collapse
|
7
|
Lu J, Deng Y, Liu P, Han Q, Jin LY. Self-assembly of β-cyclodextrin-pillar[5]arene molecules into supramolecular nanoassemblies: morphology control by stimulus responsiveness and host-guest interactions. NANOSCALE 2023; 15:4282-4290. [PMID: 36762519 DOI: 10.1039/d2nr07097a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Macrocyclic molecules have attracted considerable attention as new functional materials owing to their unique pore size structure and excellent host-guest properties. With the development of macrocyclic compounds, the properties of mono-modified macrocyclic materials can be improved by incorporating pillar[n]arene or cyclodextrin derivatives through bridge bonds. Herein, we report the self-assembly of amphiphilic di-macrocyclic host molecules (H1-2) based on β-cyclodextrin and pillar[5]arene units linked by azophenyl or biphenyl groups. In a H2O/DMSO (19 : 1, v/v) mixed polar solvent, an amphiphile H1 with an azophenyl group self-assembled into unique nanorings and exhibited an obvious photoresponsive colour change. This photochromic behaviour makes H1 suitable for application in carbon paper materials on which arbitrary patterns can be erased and rewritten. The amphiphile H2, with a biphenyl unit, self-assembled into spherical micelles. These differences indicate that various linker units lead to changes in the intermolecular and hydrophilic-hydrophobic interactions. In a CHCl3/DMSO (19 : 1, v/v) mixed low-polarity solvent, the amphiphile H1 self-assembled into fibrous aggregates, whereas the molecule H2 assembled into unique nanoring aggregates. In this CHCl3/DMSO mixed solvent system, small nanosheet aggregates were formed by the addition of a guest molecule (G) composed of tetraphenylethene and hexanenitrile groups. With prolonged aggregation time, the small sheet aggregates further aggregated into cross-linked nanoribbons and eventually formed large nanosheet aggregates. The data reveal that the morphology of H1-2 can be controlled by tuning the intermolecular interactions of the molecules via the formation of host-guest complexes. Moreover, the polyhydroxy cyclodextrin unit on H1-2 can be strongly adsorbed on the stationary phase in column chromatography via multiple hydrogen bonds, and the singly modified pillar[5]arenes can be successfully separated by host-guest interactions.
Collapse
Affiliation(s)
- Jie Lu
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, P. R. China.
| | - Yingying Deng
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, P. R. China.
| | - Peng Liu
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, P. R. China.
| | - Qingqing Han
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, P. R. China.
| | - Long Yi Jin
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, P. R. China.
| |
Collapse
|
8
|
Yan M, Zhou J. Pillararene-Based Supramolecular Polymers for Cancer Therapy. Molecules 2023; 28:molecules28031470. [PMID: 36771136 PMCID: PMC9919256 DOI: 10.3390/molecules28031470] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Supramolecular polymers have attracted considerable interest due to their intriguing features and functions. The dynamic reversibility of noncovalent interactions endows supramolecular polymers with tunable physicochemical properties, self-healing, and externally stimulated responses. Among them, pillararene-based supramolecular polymers show great potential for biomedical applications due to their fascinating host-guest interactions and easy modification. Herein, we summarize the state of the art of pillararene-based supramolecular polymers for cancer therapy and illustrate its developmental trend and future perspective.
Collapse
|
9
|
Cation controlled rotation in anionic pillar[5]arenes and its application for fluorescence switch. Nat Commun 2023; 14:590. [PMID: 36737437 PMCID: PMC9898256 DOI: 10.1038/s41467-023-36131-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Controlling molecular motion is one of hot topics in the field of chemistry. Molecular rotors have wide applications in building nanomachines and functional materials, due to their controllable rotations. Hence, the development of novel rotor systems, controlled by external stimuli, is desirable. Pillar[n]arenes, a class of macrocycles, have a unique planar chirality, in which two stable conformational isomers pR and pS would interconvert by oxygen-through-the-annulus rotations of their hydroquinone rings. We observe the differential kinetic traits of planar chirality transformation in sodium carboxylate pillar[5]arene (WP5-Na) and ammonium carboxylate pillar[5]arene (WP5-NH4), which inspire us to construct a promising rotary platform in anionic pillar[5]arenes (WP5) skeletons. Herein, we demonstrate the non-negligible effect of counter cations on rotational barriers of hydroquinone rings in WP5, which enables a cation grease/brake rotor system. Applications of this tunable rotor system as fluorescence switch and anti-counterfeiting ink are further explored.
Collapse
|
10
|
Li Z, Shen Z, Pei Y, Chao S, Pei Z. Covalently bridged pillararene-based polymers: structures, synthesis, and applications. Chem Commun (Camb) 2023; 59:989-1005. [PMID: 36621829 DOI: 10.1039/d2cc05594e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Covalently bridged pillararene-based polymers (CBPPs) are a special class of macrocycle-based polymers in which multiple pillararene monomers are attached to the polymer structures by covalent bonds. Owing to the unique molecular structures including the connection components or the spatial structures, CBPPs have become increasingly popular in applications ranging from environmental science to biomedical science. In this review, CBPPs are divided into three types (linear polymers, grafted polymers, and cross-linked polymers) according to their structural characteristics and described from the perspective of synthesis methods comprehensively. In addition, the applications of CBPPs are presented, including selective adsorption and separation, fluorescence sensing and detection, construction of supramolecular gels, anticancer drug delivery, artificial light-harvesting, catalysis, and others. Finally, the current challenging issues and comprehensive prospects of CBPPs are discussed.
Collapse
Affiliation(s)
- Zhanghuan Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Ziyan Shen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Shuang Chao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China. .,College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China. .,College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
11
|
All-in-one functional supramolecular nanoparticles based on pillar[5]arene for controlled generation, storage and release of singlet oxygen. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2216-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Coudert N, Debrie C, Rieger J, Nicolai T, Colombani O. Thermosensitive Hydrogels of BAB Triblock Copolymers Exhibiting Gradually Slower Exchange Dynamics and an Unexpected Critical Reorganization Temperature Upon Heating. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Noémie Coudert
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS Le Mans Université, Avenue Olivier Messiaen, 72085Le Mans Cedex 9, France
| | - Clément Debrie
- Institut Parisien de Chimie Moléculaire (IPCM), Polymer Chemistry Team, Sorbonne Université, CNRS, UMR 8232, 4 Place Jussieu, 75252Paris Cedex 05, France
| | - Jutta Rieger
- Institut Parisien de Chimie Moléculaire (IPCM), Polymer Chemistry Team, Sorbonne Université, CNRS, UMR 8232, 4 Place Jussieu, 75252Paris Cedex 05, France
| | - Taco Nicolai
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS Le Mans Université, Avenue Olivier Messiaen, 72085Le Mans Cedex 9, France
| | - Olivier Colombani
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS Le Mans Université, Avenue Olivier Messiaen, 72085Le Mans Cedex 9, France
| |
Collapse
|
13
|
Wu JR, Wu G, Yang YW. Pillararene-Inspired Macrocycles: From Extended Pillar[ n]arenes to Geminiarenes. Acc Chem Res 2022; 55:3191-3204. [PMID: 36265167 DOI: 10.1021/acs.accounts.2c00555] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
chemistry since their establishment due to their innate functional features of molecular recognition and complexation. The rapid development of modern supramolecular chemistry has also significantly benefited from creating new macrocycles with distinctive geometries and properties. For instance, pillar[n]arenes (pillarenes), a relatively young generation of star macrocyclic hosts among the well-established ones (e.g., crown ethers, cyclodextrins, cucurbiturils, and calixarenes), promoted a phenomenal research hotspot all over the world in the past decade. Although the synthesis, host-guest properties, and various supramolecular functions of pillarenes have been intensively studied, many objective limitations and challenges still cannot be ignored. For example, high-level pillar[n]arenes (n > 7) usually do not possess applicable large-sized cavities due to structural folding and cannot be synthesized on a large scale because of the uncompetitive cyclization process. Furthermore, two functional groups must be covalently para-connected to each repeating phenylene unit, which severely limits their structural diversity and flexibility. In this context, we have developed a series of pillarene-inspired macrocycles (PIMs) using a versatile and modular synthetic strategy during the past few years, aiming to break through the synthetic limitations in traditional pillarenes and find new opportunities and challenges in supramolecular chemistry and beyond. Specifically, by grafting biphenyl units into the pillarene backbones, extended pillar[n]arenes with rigid and nanometer-sized cavities could be obtained with reasonable synthetic yields by selectively removing hydroxy/alkoxy substitutes on pillarene backbones, leaning pillar[6]arenes and leggero pillar[n]arenes with enhanced structural flexibility and cavity adaptability were obtained. By combining the two types of bridging modes in pillarenes and calixarenes, a smart macrocyclic receptor with two different but interconvertible conformational features, namely geminiarene, was discovered. Benefiting from the synthetic accessibility, facile functionalization, and superior host-guest properties in solution or the solid state, this new family of macrocycles has exhibited a broad range of applications, including but not limited to supramolecular assembly/gelation/polymers, pollutant detection and separation, porous organic polymers, crystalline/amorphous molecular materials, hybrid materials, and controlled drug delivery. Thus, in this Account, we summarize our research efforts on these PIMs. We first present an overview of their design and modular synthesis and a summary of their derivatization strategies. Thereafter, particular attention is paid to their structural features, supramolecular functions, and application exploration. Finally, the remaining challenges and perspectives are outlined for their future development. We hope that this Account and our works can stimulate further advances in synthetic macrocyclic chemistry and supramolecular functional systems, leading to practical applications in various research areas.
Collapse
Affiliation(s)
- Jia-Rui Wu
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Gengxin Wu
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| |
Collapse
|
14
|
Li Y, Lou X, Wang C, Wang Y, Jia Y, Lin Q, Yang Y. Synthesis of stimuli-responsive pillararene-based supramolecular polymer materials for the detection and separation of metal ions. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Raza R, Baildya N, Ghosh K. Nanoarchitectonics with Positionally Isomeric Coumarin Carbamates: Structure‐Gelation Study, F‐ Recognition, Dye Removal and Excellent Oil‐Spill Recovery. Chempluschem 2022; 87:e202200270. [DOI: 10.1002/cplu.202200270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/22/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Rameez Raza
- University of Kalyani Chemistry Kalyani 741235 Kalyani INDIA
| | | | - Kumaresh Ghosh
- University of Kalyani Chemistry Kalyani 741235 Kalyani INDIA
| |
Collapse
|
16
|
Enhancing Mechanical Performance of a Polymer Material by Incorporating Pillar[5]arene-Based Host–Guest Interactions. Gels 2022; 8:gels8080475. [PMID: 36005076 PMCID: PMC9407059 DOI: 10.3390/gels8080475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 12/04/2022] Open
Abstract
Polymer gels have been widely used in the field for tissue engineering, sensing, and drug delivery due to their excellent biocompatibility, hydrophilicity, and degradability. However, common polymer gels are easily deformed on account of their relatively weak mechanical properties, thereby hindering their application fields, as well as shortening their service life. The incorporation of reversible non-covalent bonds is capable of improving the mechanical properties of polymer gels. Thus, here, a poly(methyl methacrylate) polymer network was prepared by introducing host–guest interactions between pillar[5]arene and pyridine cation. Owing to the incorporated host–guest interactions, the modified polymer gels exhibited extraordinary mechanical properties according to the results of the tensile tests. In addition, the influence of the host–guest interaction on the mechanical properties of the gels was also proved by rheological experiments and swelling experiments.
Collapse
|
17
|
The pillar[5]arene-based spun thin films: preparation, characterization, development of optical and mass sensitive sensors for swelling dynamics and gas sensing abilities. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04710-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Fabricating a novel supramolecular light-activated platform based on internal-driven forces induced by the UV-light. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Xue HF, Huang YX, Dong M, Zhang ZY, Li C. Stabilization of Antitumor Agent Busulfan through the Encapsulation within a Water-Soluble Pillar[5]arene. Chem Asian J 2022; 17:e202101332. [PMID: 35040585 DOI: 10.1002/asia.202101332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/18/2022] [Indexed: 11/12/2022]
Abstract
The complexation of antitumor agent busulfan by negatively charged carboxylatopillar[5]arenein water is reported. The encapsulation within carboxylatopillar[5]arenein reduces the hydrolytic degradation of busulfan from 90.7 % to 25.2 % after 24 days and accordingly enhances its stability by providing a hydrophobic shelter for busulfan in water. Moreover, the complexation result in 12 times improvement of water solubility for busulfan. Our result provides a supramolecular approach for stabilizing the anticancer agent busulfan.
Collapse
Affiliation(s)
- Hui-Feng Xue
- Tianjin Normal University, College of Chemistry, CHINA
| | - Yu-Xi Huang
- Tianjin Normal University, College of Chemistry, CHINA
| | - Ming Dong
- Tianjin Normal University, College of Chemistry, CHINA
| | - Zhi-Yuan Zhang
- Tianjin Normal University, Department of Chemistry, 300387, Tianjin, CHINA
| | - Chunju Li
- Shanghai University, Chemistry, 99 Shangda Road, 200443, Shanghai, CHINA
| |
Collapse
|
20
|
Zhang M, Zhang H, Jin L, Li H, Liu S, Chang S, Liang F. Evidenced cucurbit[ n]uril-based host-guest interactions using single-molecule force spectroscopy. Chem Commun (Camb) 2022; 58:1736-1739. [PMID: 35029268 DOI: 10.1039/d1cc06791e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this work, enhanced guest-pair interactions in the cavity of cucurbit[8]uril (CB[8]) are quantitatively determined using single-molecule force spectroscopy (SMFS). Significantly, the light-driven dynamic conformational change of guest pairs leads to a rupture force switching between the connected and broken CB[8]-mediated heteroternary complexation with viologen and bis(azobenzene) derivatives. SMFS is further utilized to detect methyl viologen based on the competitive host-guest interaction toward the guest in CB[8] or CB[7]. These findings highlight the extraordinary power of SMFS in supramolecular chemistry and will contribute to the fundamental understanding of the mechanochemical behavior of host-guest interactions.
Collapse
Affiliation(s)
- Mingyang Zhang
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Hao Zhang
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Lunqiang Jin
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Hao Li
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Simin Liu
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Shuai Chang
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Feng Liang
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| |
Collapse
|
21
|
Wang J, Wang D, Cen M, Jing D, Bei J, Huang Y, Zhang J, Lu B, Wang Y, Yao Y. GOx-assisted synthesis of pillar[5]arene based supramolecular polymeric nanoparticles for targeted/synergistic chemo-chemodynamic cancer therapy. J Nanobiotechnology 2022; 20:33. [PMID: 35016673 PMCID: PMC8753913 DOI: 10.1186/s12951-021-01237-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/30/2021] [Indexed: 12/31/2022] Open
Abstract
Background Cancer is the most serious world's health problems on the global level and various strategies have been developed for cancer therapy. Pillar[5]arene-based supramolecular therapeutic nano-platform (SP/GOx NPs) was constructed successfully via orthogonal dynamic covalent bonds and intermolecular H-bonds with the assistance of glucose oxidase (GOx) and exhibited efficient targeted/synergistic chemo-chemodynamic cancer therapy. Methods The morphology of SP/GOx NPs was characterized by DLS, TEM, SEM and EDS mapping. The cancer therapy efficinecy was investigated both in vivo and in vitro. Results SP/GOx NPs can load drug molecules (Dox) and modify target molecule (FA-Py) on its surface conveniently. When the resultant FA-Py/SP/GOx/Dox NPs enters blood circulation, FA-Py will target it to cancer cells efficiently, where GOx can catalyst the overexpressed glucose to generate H2O2. Subsequently, the generated H2O2 in cancer cells catalyzed by ferrocene unit to form •OH, which can kill cancer cells. Furthermore, the loaded Dox molecules released under acid microenvironment, which can further achieve chemo-therapy. Conclusion All the experiments showed that the excellent antitumor performance of FA-Py/SP/GOx/Dox NPs, which provided an new method for pillar[5]arene-based supramolecular polymer for biomedical applications. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01237-0.
Collapse
Affiliation(s)
- Jin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 22 6019, People's Republic of China
| | - Di Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 22 6019, People's Republic of China
| | - Moupan Cen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 22 6019, People's Republic of China
| | - Danni Jing
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 22 6019, People's Republic of China
| | - Jiali Bei
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 22 6019, People's Republic of China
| | - Youyou Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 22 6019, People's Republic of China
| | - Jiannan Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 22 6019, People's Republic of China
| | - Bing Lu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 22 6019, People's Republic of China
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 22 6019, People's Republic of China.
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 22 6019, People's Republic of China.
| |
Collapse
|
22
|
Liu C, Zhou L, Cao S, Zhang H, Han J, Liu Z. Supramolecular systems prepared using terpyridine-containing pillararene. Polym Chem 2022. [DOI: 10.1039/d1py01397a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent progresses about the preparation of terpyridine-containing pillararene, as well as the utilization of those building blocks for making external stimulud-responsive supramolecular systems were summarized in this review.
Collapse
Affiliation(s)
- Chang Liu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Le Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Shuai Cao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Huacheng Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jie Han
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Energy), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhaona Liu
- Medical School, Xi'an Peihua University, Xi'an 710125, Shaanxi, China
| |
Collapse
|
23
|
Zhang B, Zhou Q, Zhang X, Ma J, Cong X, Wang Q, Liao Y, Yang Y, Wang H. Thermostable fluorescent supramolecular gels constructed from a single gelator and its application in discriminating organic acids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Khamphaijun K, Namnouad P, Docker A, Ruengsuk A, Tantirungrotechai J, Díaz-Torres R, Harding DJ, Bunchuay T. Neutral Isocyanide-Templated Assembly of Pillar[5]arene [2] and [3]Pseudorotaxanes. Chem Commun (Camb) 2022; 58:7253-7256. [DOI: 10.1039/d2cc02255a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unprecedented pillar[5]arene–isocyanide pseudorotaxane inclusion complexes are reported. Extensive 1H-NMR experiments reveal remarkably strong binding affinities of alkyl diisocyanide guests (Ka >105 M-1 in CDCl3) by pillar[5]arenes. Characterised by multinuclear 1H...
Collapse
|
25
|
Lu B, Wang J, Zhang Z, Yan X, Zhao Q, Ding Y, Wang J, Wang Y, Yao Y. Pillar[5]arene based supramolecular polymer for a singlet oxygen reservoir. Polym Chem 2022. [DOI: 10.1039/d2py00723a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel type of supramolecular polymer based on pillararene for the storage and control release of singlet oxygen.
Collapse
Affiliation(s)
- Bing Lu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Jian Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Zhecheng Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Xin Yan
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Qin Zhao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Yue Ding
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Jin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| |
Collapse
|
26
|
Zhu XY, Yang XN, Wu H, Tao Z, Xiao X. Construction of supramolecular fluorescent probe by a water-soluble pillar[5]arene and its recognition of carbonate ion. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xin Yi Zhu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Xi Nan Yang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Heng Wu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| |
Collapse
|
27
|
Shi C, Li H, Shi X, Zhao L, Qiu H. Chiral pillar[n]arenes: Conformation inversion, material preparation and applications. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
28
|
Liu J, Sun X, Huang T, Zhang Y, Yao H, Wei T, Lin Q. Influence of Monomers’ Structure on the Assembly and Material Property of Pillar[5]
arene‐Based
Supramolecular Polymer Gels. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Juan Liu
- College of Chemical Engineering, Northwest Minzu University (Northwest University for Nationalities), Xibei Xincun Lanzhou Gansu 730000 China
| | - Xiao‐Wen Sun
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Ting‐Ting Huang
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - You‐Ming Zhang
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Hong Yao
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Tai‐Bao Wei
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Qi Lin
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| |
Collapse
|
29
|
Horin I, Shalev O, Cohen Y. Aggregation Mode, Host-Guest Chemistry in Water, and Extraction Capability of an Uncharged, Water-Soluble, Liquid Pillar[5]arene Derivative. ChemistryOpen 2021; 10:1111-1115. [PMID: 34730286 PMCID: PMC8564886 DOI: 10.1002/open.202100206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/10/2021] [Indexed: 11/05/2022] Open
Abstract
An uncharged, water-soluble per-ethylene-glycol pillar[5]arene derivative (1) was synthesized and its aggregation mode, host-guest chemistry in water and extraction ability was explored. Compound 1 is a liquid at room temperature; in water, limited self-aggregation occurred at high concentrations as deduced from diffusion NMR and dynamic light scattering. Compound 1 forms pseudo-rotaxane-like 1 : 1 host-guest complexes with 1,ω-di-substituted alkanes with association constants on the order of 103 -104 m-1 . Interestingly, NMR experiments showed that the guest location relative to the host ring system differs among the different complexes. In proof-of-concept experiments, compound 1 was shown to extract structurally related organic compounds from benzene into water with significant selectivity. Compound 1, which is a liquid at room temperature and has only limited interactions with its side arms, can, in principle, be regarded as a complement to or as a kind of type I porous liquid.
Collapse
Affiliation(s)
- Inbar Horin
- School of Chemistry, Sackler Faculty of Exact SciencesTel Aviv University Ramat Aviv69978Tel AvivIsrael
| | - Ori Shalev
- School of Chemistry, Sackler Faculty of Exact SciencesTel Aviv University Ramat Aviv69978Tel AvivIsrael
| | - Yoram Cohen
- School of Chemistry, Sackler Faculty of Exact SciencesTel Aviv University Ramat Aviv69978Tel AvivIsrael
| |
Collapse
|
30
|
|
31
|
Yang J, Dai D, Cai Z, Liu YQ, Qin JC, Wang Y, Yang YW. MOF-based multi-stimuli-responsive supramolecular nanoplatform equipped with macrocycle nanovalves for plant growth regulation. Acta Biomater 2021; 134:664-673. [PMID: 34329784 DOI: 10.1016/j.actbio.2021.07.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022]
Abstract
Controllable and on-demand delivery of agrochemicals such as plant hormones is conducive to improving agrochemicals utilization, tackling water and environmental pollution, reducing soil acidification, and realizing the goals of precision agriculture. Herein, a smart plant hormone delivery system based on metal-organic frameworks (MOFs) and supramolecular nanovalves, namely gibberellin (GA)-loaded CLT6@PCN-Q, is constructed through supramolecular host-guest interaction to regulate the growth of dicotyledonous Chinese cabbage and monocotyledonous wheat. The porous nanoscale MOF (NMOF) with a uniform diameter of 97 nm modified by quaternary ammonium (Q) stalks is served as a cargo reservoir, followed by the decoration of carboxylated leaning tower[6]arene (CLT6) based nanovalves on NMOF surfaces through host-guest interactions to fabricate CLT6@PCN-Q with a diameter of ∼101 nm and a zeta potential value of -13.2 mV. Interestingly, the as-fabricated supramolecular nanoplatform exhibits efficient cargo loading and multi-stimuli-responsive release under various external stimuli including pH, temperature, and competitive agent spermine (SPM), which can realize the on-demand release of cargo. In addition, GA-loaded CLT6@PCN-Q is capable of effectively promoting the seeds germination of wheat and stem growth of dicotyledonous Chinese cabbage and monocotyledonous wheat (1.86 and 1.30 times of control groups, respectively). The smart supramolecular nanoplatform based on MOFs and supramolecular nanovalves paves a way for the controlled delivery of plant hormones and other agrochemicals for promoting plant growth, offering new insights and methods to realize precision agriculture. STATEMENT OF SIGNIFICANCE: To achieve controllable and sustainable release of cargos such as agrochemicals, a smart MOF-based multi-stimuli-responsive supramolecular nanoplatform equipped with supramolecular nanovalves was fabricated via the host-guest interaction between quaternary ammonium stalks-functionalized nanoMOFs and water-soluble leaning tower[6]arene. The as-prepared supramolecular nanoplatform with uniform diameter distribution demonstrated good cargo release in response to various external stimuli. The installation of synthetic macrocycles could effectively reduce cargo loss in the pre-treatment process. This type of supramolecular nanoplatform exhibited good promoting effect on seed germination and plant growth dicotyledonous Chinese cabbage and monocotyledonous wheat. As an eco-friendly, controlled, and efficient cargo delivery system, this supramolecular nanoplatform will be a promising candidate in precision agriculture and controlled drug release to attract the broad readership.
Collapse
Affiliation(s)
- Jie Yang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China; School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Dihua Dai
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Zhi Cai
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Yu-Qing Liu
- College of Plant Science, Jilin University, Changchun 130012, PR China
| | - Jian-Chun Qin
- College of Plant Science, Jilin University, Changchun 130012, PR China
| | - Yan Wang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Ying-Wei Yang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China.
| |
Collapse
|
32
|
GSH/ROS Dual-Responsive Supramolecular Nanoparticles Based on Pillar[6]arene and Betulinic Acid Prodrug for Chemo-Chemodynamic Combination Therapy. Molecules 2021; 26:molecules26195900. [PMID: 34641443 PMCID: PMC8512399 DOI: 10.3390/molecules26195900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023] Open
Abstract
Chemodynamic therapy (CDT) based on intracellular Fenton reactions is attracting increasing interest in cancer treatment. A simple and novel method to regulate the tumor microenvironment for improved CDT with satisfactory effectiveness is urgently needed. Therefore, glutathione (GSH)/ROS (reactive oxygen species) dual-responsive supramolecular nanoparticles (GOx@BNPs) for chemo–chemodynamic combination therapy were constructed via host–guest complexation between water-soluble pillar[6]arene and the ferrocene-modified natural anticancer product betulinic acid (BA) prodrug, followed by encapsulation of glucose oxidase (GOx) in the nanoparticles. The novel supramolecular nanoparticles could be activated by the overexpressed GSH and ROS in the tumor microenvironment (TME), not only accelerating the dissociation of nanoparticles—and, thus, improving the BA recovery and release capability in tumors—but also showing the high-efficiency conversion of glucose into hydroxyl radicals (·OH) in succession through intracellular Fenton reactions. Investigation of antitumor activity and mechanisms revealed that the dramatic suppression of cancer cell growth induced by GOx@BNPs was derived from the elevation of ROS, decrease in ATP and mitochondrial transmembrane potential (MTP) and, finally, cell apoptosis. This work presents a novel method for the regulation of the tumor microenvironment for improved CDT, and the preparation of novel GSH/ROS dual-responsive supramolecular nanoparticles, which could exert significant cytotoxicity against cancer cells through the synergistic interaction of chemodynamic therapy, starvation therapy, and chemotherapy (CDT/ST/CT).
Collapse
|
33
|
Wang WM, Dai D, Wu JR, Wang CY, Wang Y, Yang YW. Recyclable Supramolecular Assembly-Induced Emission System for Selective Detection and Efficient Removal of Mercury(II). Chemistry 2021; 27:11879-11887. [PMID: 34043289 DOI: 10.1002/chem.202101437] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Indexed: 02/06/2023]
Abstract
An efficient strategy for simultaneously detecting and removing Hg2+ from water is vital to address mercury pollution. Herein a supramolecular assembly G⊂H with photoluminescent properties is facilely constructed through the self-assembly of a functional pillar[5]arene bearing two N,N-dimethyldithiocarbamoyl binding sites (H) and an AIE-active tetraphenylethene derivative (G). Remarkably, the fluorescence of G⊂H can be exclusively quenched by Hg2+ among the 30 cations due to the formation of non-luminous ground state complex and only L-cysteine can restore fluorescence in the common 20 amino acids. Meanwhile, the probe G⊂H has a considerable thermal and pH stability, a good anti-interference property from various cations, and a satisfactory sensitivity. More importantly, G⊂H exhibits a prominent capability of Hg2+ removal with rapid capture rate (within 1 h) and excellent adsorption efficiency (98 %), as well as a highly efficient recyclability without losing any adsorption activity.
Collapse
Affiliation(s)
- Wei-Ming Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Dihua Dai
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Jia-Rui Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Chun-Yu Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Yan Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ying-Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
34
|
Cao X, Gao A, Hou JT, Yi T. Fluorescent supramolecular self-assembly gels and their application as sensors: A review. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213792] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
Zhang Q, Li K, Fan L, Li N, Li J, Guo H. Rapid Self‐Healing Supramoleular Gel Constructed from Pillar[5]arene. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Qian Zhang
- Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals NMPA Key Laboratory for Research and Evaluation of Innovative Drug School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Ke‐Qing Li
- Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals NMPA Key Laboratory for Research and Evaluation of Innovative Drug School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
- High and New Technology Research Center of Henan Academy of Sciences Zhengzhou Henan 450000 P. R. China
| | - Lu‐Lu Fan
- Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals NMPA Key Laboratory for Research and Evaluation of Innovative Drug School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Na Li
- Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals NMPA Key Laboratory for Research and Evaluation of Innovative Drug School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Jun Li
- Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals NMPA Key Laboratory for Research and Evaluation of Innovative Drug School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Hai‐Ming Guo
- Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals NMPA Key Laboratory for Research and Evaluation of Innovative Drug School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| |
Collapse
|
36
|
Butera E, Zammataro A, Pappalardo A, Trusso Sfrazzetto G. Supramolecular Sensing of Chemical Warfare Agents. Chempluschem 2021; 86:681-695. [PMID: 33881227 DOI: 10.1002/cplu.202100071] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/06/2021] [Indexed: 12/31/2022]
Abstract
Chemical warfare agents are a class of organic molecules used as chemical weapons due to their high toxicity and lethal effects. For this reason, the fast detection of these compounds in the environment is crucial. Traditional detection methods are based on instrumental techniques, such as mass spectrometry or HPLC, however the use of molecular sensors able to change a detectable property (e. g., luminescence, color, electrical resistance) can be cheaper and faster. Today, molecular sensing of chemical warfare agents is mainly based on the "covalent approach", in which the sensor reacts with the analyte, or on the "supramolecular approach", which involves the formation of non-covalent interactions between the sensor and the analyte. This Review is focused on the recent developments of supramolecular sensors of organophosphorus chemical warfare agents (from 2013). In particular, supramolecular sensors are classified by function of the sensing mechanism: i) Lewis Acids, ii) hydrogen bonds, iii) macrocyclic hosts, iv) multi-topic sensors, v) nanosensors. It is shown how the supramolecular non-covalent approach leads to a reversible sensing and higher selectivity towards the selected analyte respect to other interfering molecules.
Collapse
Affiliation(s)
- Ester Butera
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Agatino Zammataro
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Andrea Pappalardo
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy.,INSTM Udr of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Giuseppe Trusso Sfrazzetto
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy.,INSTM Udr of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| |
Collapse
|
37
|
Chi X, Tian J, Luo D, Gong HY, Huang F, Sessler JL. "Texas-Sized" Molecular Boxes: From Chemistry to Applications. Molecules 2021; 26:molecules26092426. [PMID: 33919472 PMCID: PMC8122447 DOI: 10.3390/molecules26092426] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/10/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022] Open
Abstract
The design and synthesis of novel macrocyclic host molecules continues to attract attention because such species play important roles in supramolecular chemistry. However, the discovery of new classes of macrocycles presents a considerable challenge due to the need to embody by design effective molecular recognition features, as well as ideally the development of synthetic routes that permit further functionalization. In 2010, we reported a new class of macrocyclic hosts: a set of tetracationic imidazolium macrocycles, which we termed “Texas-sized” molecular boxes (TxSBs) in homage to Stoddart’s classic “blue box” (CBPQT4+). Compared with the rigid blue box, the first generation TxSB displayed considerably greater conformational flexibility and a relatively large central cavity, making it a good host for a variety of electron-rich guests. In this review, we provide a comprehensive summary of TxSB chemistry, detailing our recent progress in the area of anion-responsive supramolecular self-assembly and applications of the underlying chemistry to water purification, information storage, and controlled drug release. Our objective is to provide not only a review of the fundamental findings, but also to outline future research directions where TxSBs and their constructs may have a role to play.
Collapse
Affiliation(s)
- Xiaodong Chi
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (J.T.); (D.L.)
- Correspondence: (X.C.); (H.-Y.G.); (F.H.); (J.L.S.)
| | - Jinya Tian
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (J.T.); (D.L.)
| | - Dan Luo
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (J.T.); (D.L.)
| | - Han-Yuan Gong
- College of Chemistry, Beijing Normal University, No. 19, Xinwai Street, Beijing 100875, China
- Correspondence: (X.C.); (H.-Y.G.); (F.H.); (J.L.S.)
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Key Laboratory of Excited-State Materials of Zhejiang Province, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Correspondence: (X.C.); (H.-Y.G.); (F.H.); (J.L.S.)
| | - Jonathan L. Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712-1224, USA
- Correspondence: (X.C.); (H.-Y.G.); (F.H.); (J.L.S.)
| |
Collapse
|
38
|
Abstract
ConspectusMacrocycles have had a profound influence on the establishment of supramolecular chemistry because of their abundant molecular recognition and self-assembly characteristics. The design of new macrocyclic receptors that can be tailored by synthesis to display new and exotic properties is an important research objective for chemists and materials scientists. Rigid macrocycles with π-conjugated aromatic units, in contrast with flexible ones, tend to possess large interior and exterior π-surfaces in addition to persistent shapes. These features not only endow these macrocycles with a wide range of host-guest properties but also render them ideal building blocks for constructing a diverse variety of supramolecular architectures. The incorporation of π-conjugated units into macrocycles also imbues them with a wealth of optical, electronic, and magnetic properties, resulting in their broad application in materials science and molecular nanotechnology.Recently, we have designed and synthesized a new class of macrocycles, namely, molecular triangles, which have rigid structures with triangular geometries. They consist of three chiral trans-1,2-cyclohexano apexes and three aromatic tetracarboxylic diimide linkers, such as pyromellitic diimide, naphthalene diimide, and perylene diimide. Benefiting from the availability of facile synthetic protocols, the geometries and properties of these rigid molecular triangles can be altered at will. By combining these tetracarboxylic diimide linkers, we have been able to synthesize both molecular equilateral and isosceles triangles. During the past few years, we have conducted research in a systematic manner on the structural features and self-assembly characteristics of these molecular triangles. The following points are worthy of note regarding these molecular triangles: (i) They possess shape-persistent inner cavities of a highly electron-deficient nature. These features endow them with the ability to complex with anions and electron-rich molecules, forming supramolecular nanotubes and two-dimensional tilings. (ii) Those with intrinsic chirality are able to self-assemble into solid-state nonhelical or single-handed helical superstructures, inducing selective chirality transfer from the macrocycles to their crystalline supramolecular assemblies. (iii) The triangular arrangement of aromatic tetracarboxylic diimide linkers contributes to through-space electron delocalization encompassing the entire macrocycle, conferring exotic electronic and spin properties. To date, the family of molecular triangles has exhibited a range of physicochemical properties, such as anion recognition, chiral assembly, supramolecular gelation, energy storage, solid-state luminescence, and nonlinear optical response.In this Account, we summarize our recent progress in research into these molecular triangles. We present an overview of their design and synthesis, as well as a general summary of their structural features. Thereafter, we discuss state-of-the-art developments in relation to their molecular recognition properties and their assembly characteristics. In addition, we highlight the potential applications of these molecular triangles and their complexes with a range of solvents and electron-rich molecules. Finally, we speculate on further structural modifications and application-oriented explorations based on this class of molecular triangles.
Collapse
Affiliation(s)
- Yu Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Huang Wu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - J. Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| |
Collapse
|
39
|
Affiliation(s)
- Roymon Joseph
- Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India – 682013
- Department of Chemistry University of Calicut Malappuram Kerala India – 673635
| |
Collapse
|
40
|
Acikbas Y, Aksoy M, Aksoy M, Karaagac D, Bastug E, Kursunlu AN, Erdogan M, Capan R, Ozmen M, Ersoz M. Recent progress in pillar[n]arene-based thin films on chemical sensor applications. J INCL PHENOM MACRO 2021. [DOI: 10.1007/s10847-021-01059-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
41
|
Kaizerman-Kane D, Hadar M, Joseph R, Logviniuk D, Zafrani Y, Fridman M, Cohen Y. Design Guidelines for Cationic Pillar[n]arenes that Prevent Biofilm Formation by Gram-Positive Pathogens. ACS Infect Dis 2021; 7:579-585. [PMID: 33657813 PMCID: PMC8041275 DOI: 10.1021/acsinfecdis.0c00662] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Bacterial biofilms are a major threat
to human health, causing
persistent infections that lead to millions of fatalities worldwide
every year. Biofilms also cause billions of dollars of damage annually
by interfering with industrial processes. Recently, cationic pillararenes
were found to be potent inhibitors of biofilm formation in Gram-positive
bacteria. To identify the structural features of pillararenes that
result in antibiofilm activity, we evaluated the activity of 16 cationic
pillar[5]arene derivatives including that of the first cationic water-soluble
pillar[5]arene-based rotaxane. Twelve of the derivatives were potent
inhibitors of biofilm formation by Gram-positive pathogens. Structure
activity analyses of our pillararene derivatives indicated that positively
charged head groups are critical for the observed antibiofilm activity.
Although certain changes in the lipophilicity of the substituents
on the positively charged head groups are tolerated, dramatic elevation
in the hydrophobicity of the substituents or an increase in steric
bulk on these positive charges abolishes the antibiofilm activity.
An increase in the overall positive charge from 10 to 20 did not affect
the activity significantly, but pillararenes with 5 positive charges
and 5 long alkyl chains had reduced activity. Surprisingly, the cavity
of the pillar[n]arene is not essential for the observed activity,
although the macrocyclic structure of the pillar[n]arene core, which
facilitates the clustering of the positive charges, appears important.
Interestingly, the compounds found to be efficient inhibitors of biofilm
formation were nonhemolytic at concentrations that are ∼100-fold
of their MBIC50 (the minimal concentration of a compound
at which at least 50% inhibition of biofilm formation was observed
compared to untreated cells). The structure–activity relationship
guidelines established here pave the way for a rational design of
potent cationic pillar[n]arene-based antibiofilm agents.
Collapse
Affiliation(s)
- Dana Kaizerman-Kane
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Maya Hadar
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Roymon Joseph
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Dana Logviniuk
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Yossi Zafrani
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona 74000, Israel
| | - Micha Fridman
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Yoram Cohen
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| |
Collapse
|
42
|
Shurpik DN, Aleksandrova YI, Rodionov AA, Razina EA, Gafurov MR, Vakhitov IR, Evtugyn VG, Gerasimov AV, Kuzin YI, Evtugyn GA, Cragg PJ, Stoikov II. Metallo-Supramolecular Coordination Polymers Based on Amidopyridine Derivatives of Pillar[5]arene and Cu(II) and Pd(II) Cations: Synthesis and Recognition of Nitroaromatic Compounds. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2942-2953. [PMID: 33630597 DOI: 10.1021/acs.langmuir.0c03579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Decasubstituted pillar[5]arenes containing amidopyridine fragments have been synthesized for the first time. As was shown by UV-vis spectroscopy, the pillar[5]arenes with p-amidopyridine fragments form supramolecular associates with Cu(II) and Pd(II) cations in methanol in a 2:1 ratio. Using a sol-gel approach these associates are transformed into metallo-supramolecular coordination polymers (supramolecular gels) which were characterized as amorphous powders by scanning electron microscopy (SEM) and dynamic light scattering (DLS). The powders are able to selectively adsorb up to 46% of nitrophenols from water and were incorporated into an electrochemical sensor to selectively recognize them in aqueous acidic solution.
Collapse
Affiliation(s)
- Dmitriy N Shurpik
- A. M. Butlerov Chemical Institute, Kazan Federal University, 420008 Kremlevskaya Street, 18, Kazan, Russian Federation
| | - Yulia I Aleksandrova
- A. M. Butlerov Chemical Institute, Kazan Federal University, 420008 Kremlevskaya Street, 18, Kazan, Russian Federation
| | - Alexander A Rodionov
- Institute of Physics, Kazan Federal University, Kremlevskaya, 18, Kazan 420008, Russia
| | - Elena A Razina
- Institute of Physics, Kazan Federal University, Kremlevskaya, 18, Kazan 420008, Russia
| | - Marat R Gafurov
- Institute of Physics, Kazan Federal University, Kremlevskaya, 18, Kazan 420008, Russia
| | - Iskander R Vakhitov
- Institute of Physics, Kazan Federal University, Kremlevskaya, 18, Kazan 420008, Russia
| | - Vladimir G Evtugyn
- Interdisciplinary Centre for Analytical Microscopy, Kazan Federal University, 420008 Kazan, Kremlevskaya 18, Russian Federation
| | - Alexander V Gerasimov
- A. M. Butlerov Chemical Institute, Kazan Federal University, 420008 Kremlevskaya Street, 18, Kazan, Russian Federation
| | - Yurii I Kuzin
- A. M. Butlerov Chemical Institute, Kazan Federal University, 420008 Kremlevskaya Street, 18, Kazan, Russian Federation
| | - Gennady A Evtugyn
- A. M. Butlerov Chemical Institute, Kazan Federal University, 420008 Kremlevskaya Street, 18, Kazan, Russian Federation
| | - Peter J Cragg
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Moulsecoomb, Brighton, East Sussex BN2 4GJ, United Kingdom
| | - Ivan I Stoikov
- A. M. Butlerov Chemical Institute, Kazan Federal University, 420008 Kremlevskaya Street, 18, Kazan, Russian Federation
| |
Collapse
|
43
|
Abdelrahman MS, Khattab TA, Kamel S. Hydrazone‐Based Supramolecular Organogel for Selective Chromogenic Detection of Organophosphorus Nerve Agent Mimic. ChemistrySelect 2021. [DOI: 10.1002/slct.202004850] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Meram S. Abdelrahman
- Dyeing Printing and Auxiliaries Department National Research Centre Cairo 12622 Egypt
| | - Tawfik A. Khattab
- Dyeing Printing and Auxiliaries Department National Research Centre Cairo 12622 Egypt
| | - Samir Kamel
- Chemical Industries Research Division National Research Centre Cairo 12622 Egypt
| |
Collapse
|
44
|
Zhang Q, Zhang YM, Yao H, Wei TB, Shi B, Lin Q. Supramolecular AIE polymer-based rare earth metallogels for the selective detection and high efficiency removal of cyanide and perchlorate. Polym Chem 2021. [DOI: 10.1039/d0py01630f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two novel supramolecular AIE polymer-based rare earth metallogels (PT-GEu and PT-GTb) have been rationally designed and synthesized for the efficient detection and removal of cyanide (CN−) and perchlorate (ClO4−).
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Polymer Materials of Gansu Province
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - You-Ming Zhang
- Key Laboratory of Polymer Materials of Gansu Province
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Hong Yao
- Key Laboratory of Polymer Materials of Gansu Province
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Tai-Bao Wei
- Key Laboratory of Polymer Materials of Gansu Province
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Bingbing Shi
- Key Laboratory of Polymer Materials of Gansu Province
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Qi Lin
- Key Laboratory of Polymer Materials of Gansu Province
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| |
Collapse
|
45
|
Liu Z, Zhang H, Han J. Crown ether-pillararene hybrid macrocyclic systems. Org Biomol Chem 2021; 19:3287-3302. [PMID: 33899894 DOI: 10.1039/d1ob00222h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A combination of Nobel macrocycle-crown ether and star macrocycle-pillararenes together in organic synthesis and material science is significant in obtaining hybrid systems, with rigid/flexible structural architecture, induced planar chirality, a negative cooperative effect and multiple fused cyclic hosts. In this review, we will discuss the synthesis/preparation of crown ether-pillararene hybrid macrocyclic systems by covalent bonds, supramolecular interactions and mechanical bonds, leading to hybrid compounds, supramolecular assemblies and mechanically interlocked molecules. The practical applications of crown ether-containing pillararenes will also be discussed in diverse areas, such as molecular recognition via fused multiple macrocycles and ion channels as well as external stimuli-responsive smart materials. We also call the attention of related researchers towards academic and technical issues about topological structures and applied functions in this fresh new fused macrocyclic field.
Collapse
Affiliation(s)
- Zhaona Liu
- Medical School, Xi'an Peihua University, Xi'an 710125, Shaanxi, China.
| | - Huacheng Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Jie Han
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Energy), College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
46
|
Tan X, Mu T, Wang S, Li J, Huang J, Huang H, Pu Y, Zhao G. Simultaneous determination of Acetaminophen and dopamine based on a water-soluble pillar[6]arene and ultrafine Pd nanoparticle-modified covalent organic framework nanocomposite. Analyst 2021; 146:262-269. [DOI: 10.1039/d0an01717e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A novel electrochemical sensing platform for the simultaneous determination of AP and DA based on a water-soluble pillar[6]arene and ultrafine Pd nanoparticle-modified covalent organic framework nanocomposite.
Collapse
Affiliation(s)
- Xiaoping Tan
- Chongqing Key Laboratory of Inorganic Special Functional Materials
- College of Chemistry and Chemical Engineering
- Yangtze Normal University
- Fuling 408100
- China
| | - Tong Mu
- Chongqing Key Laboratory of Inorganic Special Functional Materials
- College of Chemistry and Chemical Engineering
- Yangtze Normal University
- Fuling 408100
- China
| | - Sheng Wang
- Chongqing Key Laboratory of Inorganic Special Functional Materials
- College of Chemistry and Chemical Engineering
- Yangtze Normal University
- Fuling 408100
- China
| | - Jian Li
- Chongqing Key Laboratory of Inorganic Special Functional Materials
- College of Chemistry and Chemical Engineering
- Yangtze Normal University
- Fuling 408100
- China
| | - Juan Huang
- Chongqing Key Laboratory of Inorganic Special Functional Materials
- College of Chemistry and Chemical Engineering
- Yangtze Normal University
- Fuling 408100
- China
| | - Huisheng Huang
- Chongqing Key Laboratory of Inorganic Special Functional Materials
- College of Chemistry and Chemical Engineering
- Yangtze Normal University
- Fuling 408100
- China
| | - Yan Pu
- Chongqing Key Laboratory of Inorganic Special Functional Materials
- College of Chemistry and Chemical Engineering
- Yangtze Normal University
- Fuling 408100
- China
| | - Genfu Zhao
- School of Materials and Energy
- Yunnan Key Laboratory for Micro/Nano Materials and Technology
- Yunnan University
- Kunming 650091
- China
| |
Collapse
|
47
|
Abstract
The synthesis and application of promising polymeric materials–pillararene-based conjugated porous polymers–are discussed and summarized in this review.
Collapse
Affiliation(s)
- Huacheng Zhang
- School of Chemical Engineering and Technology
- Xi'an Jiaotong University
- Xi'an
- China
| | - Jie Han
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Energy)
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Chao Li
- Department of Laboratory
- Shandong University Hospital
- Jinan 250100
- China
| |
Collapse
|
48
|
Notti A, Pisagatti I, Nastasi F, Patanè S, Parisi MF, Gattuso G. Stimuli-Responsive Internally Ion-Paired Supramolecular Polymer Based on a Bis-pillar[5]arene Dicarboxylic Acid Monomer. J Org Chem 2020; 86:1676-1684. [PMID: 33369427 PMCID: PMC7871325 DOI: 10.1021/acs.joc.0c02501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
A novel
bis-pillar[5]arene dicarboxylic acid self-assembles in
the presence of 1,12-diaminododecane to yield overall neutral, internally
ion-paired supramolecular polymers. Their aggregation, binding mode,
and morphology can be tuned by external stimuli such as solvent polarity,
concentration, and base treatment.
Collapse
Affiliation(s)
- Anna Notti
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Ilenia Pisagatti
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Francesco Nastasi
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Salvatore Patanè
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Melchiorre F Parisi
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Giuseppe Gattuso
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
49
|
Sun XW, Wang ZH, Li YJ, Zhang YF, Zhang YM, Yao H, Wei TB, Lin Q. Tri-pillar[5]arene-Based Multifunctional Stimuli-Responsive Supramolecular Polymer Network with Conductivity, Aggregation-Induced Emission, Thermochromism, Fluorescence Sensing, and Separation Properties. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01972] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Xiao-Wen Sun
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Zhong-Hui Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ying-Jie Li
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yun-Fei Zhang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - You-Ming Zhang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Hong Yao
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Tai-Bao Wei
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Qi Lin
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
50
|
Li M, Hua B, Liang H, Liu J, Shao L, Huang F. Supramolecular Tessellations via Pillar[ n]arenes-Based Exo-Wall Interactions. J Am Chem Soc 2020; 142:20892-20901. [PMID: 33242958 DOI: 10.1021/jacs.0c11037] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Supramolecular tessellation is a newly emerging and promising area in supramolecular chemistry because of its unique structural aesthetics and potential applications. Herein, we investigate the "exo-wall" interactions of pillar[n]arenes and prepare fantastic hexagonal supramolecular tessellations based on perethylated pillar[6]arenes (EtP6) with electron-deficient molecules 1,5-difluoro-2,4-dinitrobenzene (DFN) and tetrafluoro-1,4-benzoquinone (TFB). The crystal structures clearly confirm that EtP6 can form highly ordered hexagonal 2D tiling patterns with DFN/TFB as linkers through cocrystallization. Moreover, the self-assembled packing arrangements in the ultimate cocrystal superstructures can be adjusted under different crystallization conditions. This work not only explores the rare exo-wall interactions based on pillar[n]arenes but also reports the fabrication of supramolecular tessellations based on pillararenes for the first time, showing a new perspective in supramolecular chemistry.
Collapse
Affiliation(s)
- Ming Li
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Bin Hua
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Haozhong Liang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jiyong Liu
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Li Shao
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.,Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|