1
|
Das S, Chowdhury S, Tiwary CS. High-entropy-based nano-materials for sustainable environmental applications. NANOSCALE 2024; 16:8256-8272. [PMID: 38587499 DOI: 10.1039/d4nr00474d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
High entropy materials (HEMs), epitomized by high entropy alloys (HEAs), have sparked immense interest for a range of clean energy and environmental applications due to their remarkable structural versatility and adjustable characteristics. In the face of environmental challenges, HEMs have emerged as valuable tools for addressing issues ranging from wastewater remediation to energy conversion and storage. This review provides a comprehensive exploration of HEMs, spotlighting their catalytic capabilities in diverse redox reactions, such as carbon dioxide reduction to value-added products, degradation of organic pollutants, oxygen reduction, hydrogen evolution, and ammonia decomposition using electrocatalytic and photocatalytic pathways. Additionally, the review highlights HEMs as novel electrode nanomaterials, with the potential to enhance the performance of batteries and supercapacitors. Their unique features, including high capacitance, electrical conductivity, and thermal stability, make them valuable components for meeting crucial energy demands. Furthermore, the review examines challenges and opportunities in advancing HEMs, emphasizing the importance of understanding the underlying mechanisms governing their catalytic and electrochemical behaviors. Essential considerations for optimizing the HEM performance in catalysis and energy storage are outlined to guide future research. Moreover, to provide a comprehensive understanding of the current research landscape, a meticulous bibliometric analysis is presented, offering insights into the trends, focal points, and emerging directions within the realm of HEMs, particularly in addressing environmental concerns.
Collapse
Affiliation(s)
- Shubhasikha Das
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| | - Shamik Chowdhury
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| | - Chandra Sekhar Tiwary
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
2
|
Irmawati Y, Tan DA, Balqis F, Iskandar F, Sumboja A. Trifunctional electrocatalysts based on a bimetallic nanoalloy and nitrogen-doped carbon with brush-like heterostructure. NANOSCALE 2024; 16:1833-1842. [PMID: 38167734 DOI: 10.1039/d3nr05233h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Trifunctional ORR/OER/HER catalysts are emerging for various sustainable energy storage and conversion technologies. For this function, employing materials with 1D structures leads to catalysts having limited surface area and structural robustness. Instead of 1D catalysts, heterostructured catalysts (i.e., catalysts consisting of interfaces created by combining diverse structural components) have attracted much attention due to their high efficiency. We have fabricated a directly grown 1D-1D heterostructured bimetallic N-doped carbon trifunctional catalyst based on Fe/Co bimetallic-organic frameworks, forming nanobrushes (FeCoNC-NB) with improved resistance to collapsing and substantial numbers of exposed active sites. The secondary 1D structure of this design contributes to creating interparticle conductive networks. By combining the brush-like heterostructure, FeCo alloy active sites, and N-doped carbon as support and for encapsulation of the metal, the catalyst features a high ORR Eonset value (1.046 V), low OER overpotential (363 mV), and comparable HER overpotential (254 mV) in alkaline electrolyte. Zn-air batteries with FeCoNC-NB demonstrate a power density of 195 mW cm-2 and a superior battery life of up to 350 h. Self-powered FeCoNC-NB-based water electrolyzers as energy conversion devices are also demonstrated. This work drives the progress of trifunctional catalysts based on heterostructured nonprecious metal N-doped carbon for energy storage and conversion developments.
Collapse
Affiliation(s)
- Yuyun Irmawati
- Doctoral Program of Nanosciences and Nanotechnology, Graduate School, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia
- Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), Kawasan Puspiptek gedung 440, Tangerang Selatan 15314, Indonesia
| | - Davin Adinata Tan
- Material Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia.
| | - Falihah Balqis
- Material Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia.
| | - Ferry Iskandar
- Department of Physics, Faculty of Mathematics and Natural Science, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia
- Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia
- Collaboration Research Center for Advanced Energy Materials, National Research and Innovation Agency - Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia
| | - Afriyanti Sumboja
- Material Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia.
- Collaboration Research Center for Advanced Energy Materials, National Research and Innovation Agency - Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia
| |
Collapse
|
3
|
Lin F, Li M, Zeng L, Luo M, Guo S. Intermetallic Nanocrystals for Fuel-Cells-Based Electrocatalysis. Chem Rev 2023; 123:12507-12593. [PMID: 37910391 DOI: 10.1021/acs.chemrev.3c00382] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Electrocatalysis underpins the renewable electrochemical conversions for sustainability, which further replies on metallic nanocrystals as vital electrocatalysts. Intermetallic nanocrystals have been known to show distinct properties compared to their disordered counterparts, and been long explored for functional improvements. Tremendous progresses have been made in the past few years, with notable trend of more precise engineering down to an atomic level and the investigation transferring into more practical membrane electrode assembly (MEA), which motivates this timely review. After addressing the basic thermodynamic and kinetic fundamentals, we discuss classic and latest synthetic strategies that enable not only the formation of intermetallic phase but also the rational control of other catalysis-determinant structural parameters, such as size and morphology. We also demonstrate the emerging intermetallic nanomaterials for potentially further advancement in energy electrocatalysis. Then, we discuss the state-of-the-art characterizations and representative intermetallic electrocatalysts with emphasis on oxygen reduction reaction evaluated in a MEA setup. We summarize this review by laying out existing challenges and offering perspective on future research directions toward practicing intermetallic electrocatalysts for energy conversions.
Collapse
Affiliation(s)
- Fangxu Lin
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Menggang Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Lingyou Zeng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Yang X, Li X, Bu S, Wan T, Xiang D, Ye L, Sun Z, Wang K, Zhu M, Li P. Bismuth Incorporation in Palladium Hydride for the Electrocatalytic Ethanol Oxidation with Enhanced CO Tolerance. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41560-41568. [PMID: 37608619 DOI: 10.1021/acsami.3c08885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Introducing nonmetal and oxophilic metal into palladium (Pd)-based catalysts is beneficial for boosting electrocatalysis, especially regarding the improvement of mass activity (MA) and CO tolerance. Herein, the stable bismuth-doped palladium hydride (Bi/PdH) networks have been successfully fabricated through a simple one-step method. The intercalation of interstitial H atoms expands the lattice of Pd, and the doping of oxophilic metal Bi restrains the adsorption of poisonous intermediates on the surface of Pd, thereby improving the activity and durability of the as-prepared catalysts in the ethanol oxidation reaction (EOR). The obtained Bi/PdH networks manifest a remarkable MA of 8.51 A·mgPd-1, which is 11.18 times higher than that of commercial Pd/C (0.76 A·mgPd-1). The CO-stripping analysis results indicate that Bi doping can significantly prohibit CO adsorption on the surface of the Bi/PdH networks. The density functional theory (DFT) calculations also reveal that Bi doping enhances the OH* adsorption on the catalyst surface and mitigates the interaction between Pd and CO* intermediates, providing deeper insights into the origin of the enhanced EOR activity and CO tolerance. This work describes an impactful path for producing high-performance and durable PdH-based nanocatalysts.
Collapse
Affiliation(s)
- Xianlong Yang
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, China
| | - Xinghao Li
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, China
| | - Shu Bu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, China
| | - Tingting Wan
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, China
| | - Dong Xiang
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, China
| | - Lina Ye
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, China
| | - Zhenjie Sun
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, China
| | - Kun Wang
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, China
| | - Manzhou Zhu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, China
| | - Peng Li
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, China
| |
Collapse
|
5
|
Jun S, Shin K, Lee J, Kim S, Chun J, Ryu W. Molecular Dipoles as a Surface Flattening and Interface Stabilizing Agent for Lithium-Metal Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301426. [PMID: 37218540 PMCID: PMC10427410 DOI: 10.1002/advs.202301426] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/04/2023] [Indexed: 05/24/2023]
Abstract
Reaching the border of the capable energy limit in existing battery technology has turned research attention away from the rebirth of unstable Li-metal anode chemistry in order to achieve exceptional performance. Strict regulation of the dendritic Li surface reaction, which results in a short circuit and safety issues, should be achieved to realize Li-metal batteries. Herein, this study reports a surface-flattening and interface product stabilizing agent employing methyl pyrrolidone (MP) molecular dipoles in the electrolyte for cyclable Li-metal batteries. The excellent stability of the Li-metal electrode over 600 cycles at a high current density of 5 mA cm-2 has been demonstrated using an optimal concentration of the MP additive. This study has identified the flattening surface reconstruction and crystal rearrangement behavior along the stable (110) plane assisted by the MP molecular dipoles. The stabilization of the Li-metal anodes using molecular dipole agents has helped develop next-generation energy storage devices using Li-metal anodes, such as Li-air, Li-S, and semi-solid-state batteries.
Collapse
Affiliation(s)
- Seo‐Young Jun
- Dept. of Chemical and Biological EngineeringSookmyung Women's University100 Cheongpa‐ro 47‐gilYongsan‐guSeoul04310Republic of Korea
| | - Kihyun Shin
- Dept. of Materials Science and EngineeringHanbat National UniversityDaejeon34158Republic of Korea
| | - Jun‐Seo Lee
- Dept. of Chemical and Biological EngineeringSookmyung Women's University100 Cheongpa‐ro 47‐gilYongsan‐guSeoul04310Republic of Korea
| | - Suji Kim
- Dept. of Chemical and Biological EngineeringSookmyung Women's University100 Cheongpa‐ro 47‐gilYongsan‐guSeoul04310Republic of Korea
| | - Jinyoung Chun
- Emerging Materials R&D DivisionKorea Institute of Ceramic Engineering and Technology (KICET)Jinju52851Republic of Korea
| | - Won‐Hee Ryu
- Dept. of Chemical and Biological EngineeringSookmyung Women's University100 Cheongpa‐ro 47‐gilYongsan‐guSeoul04310Republic of Korea
- Institute of Advanced Materials and SystemsSookmyung Women's University100 Cheongpa‐ro 47‐gilYongsan‐guSeoul04310Republic of Korea
| |
Collapse
|
6
|
Zhuang Y, Cheng H, Meng C, Chen B, Zhou H. Self-catalyzed Co, N-doped carbon nanotubes-grafted hollow carbon polyhedrons as efficient trifunctional electrocatalysts for zinc-air batteries and self-powered overall water splitting. J Colloid Interface Sci 2023; 643:162-173. [PMID: 37058891 DOI: 10.1016/j.jcis.2023.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/16/2023]
Abstract
It is still essential and challenging to explore inexpensive and versatile electrocatalysts for oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER), for the development of rechargeable zinc-air batteries (ZABs) and overall water splitting. Herein, a rambutan-like trifunctional electrocatalyst is fabricated by re-growth of secondary zeolitic imidazole frameworks (ZIFs) on ZIF-8-derived ZnO and the following carbonization treatment. Co nanoparticles (NPs) are encapsulated into N-doped carbon nanotubes (NCNT) grafted N-enriched hollow carbon (NHC) polyhedrons to form the Co-NCNT@NHC catalyst. The strong synergy between the N-doped carbon matrix and Co NPs endows Co-NCNT@NHC with trifunctional catalytic activity. The Co-NCNT@NHC displays a half-wave potential of 0.88 V versus RHE for ORR in alkaline electrolyte, an overpotential of 300 mV at 20 mA cm-2 for OER, and an overpotential of 180 mV at 10 mA cm-2 for HER. Impressively, a water electrolyzer is successfully powered by two rechargeable ZABs in series, with Co-NCNT@NHC as the 'all-in-one' electrocatalyst. These findings are inspiring for the rational fabrication of high-performance and multifunctional electrocatalysts intended for the practical application of integrated energy-related systems.
Collapse
Affiliation(s)
- Yongyue Zhuang
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Hao Cheng
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Chunfeng Meng
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China.
| | - Boyuan Chen
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Hu Zhou
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China.
| |
Collapse
|
7
|
Zhang K, Wang C, Gao F, Guo S, Zhang Y, Wang X, Hata S, Shiraishi Y, Du Y. Recent progress in ultrafine 3D Pd-based nanocubes with multiple structures for advanced fuel cells electrocatalysis. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Oxygen reduction reaction on PdM/C (M = Pb, Sn, Bi) alloy nanocatalysts. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Xiao F, Wang YC, Wu ZP, Chen G, Yang F, Zhu S, Siddharth K, Kong Z, Lu A, Li JC, Zhong CJ, Zhou ZY, Shao M. Recent Advances in Electrocatalysts for Proton Exchange Membrane Fuel Cells and Alkaline Membrane Fuel Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006292. [PMID: 33749011 DOI: 10.1002/adma.202006292] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/10/2020] [Indexed: 05/18/2023]
Abstract
The rapid progress of proton exchange membrane fuel cells (PEMFCs) and alkaline exchange membrane fuel cells (AMFCs) has boosted the hydrogen economy concept via diverse energy applications in the past decades. For a holistic understanding of the development status of PEMFCs and AMFCs, recent advancements in electrocatalyst design and catalyst layer optimization, along with cell performance in terms of activity and durability in PEMFCs and AMFCs, are summarized here. The activity, stability, and fuel cell performance of different types of electrocatalysts for both oxygen reduction reaction and hydrogen oxidation reaction are discussed and compared. Research directions on the further development of active, stable, and low-cost electrocatalysts to meet the ultimate commercialization of PEMFCs and AMFCs are also discussed.
Collapse
Affiliation(s)
- Fei Xiao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yu-Cheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhi-Peng Wu
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Guangyu Chen
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Fok Ying Tung Research Institute, The Hong Kong University of Science and Technology, Guangzhou, 511458, China
| | - Fei Yang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Shangqian Zhu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Kumar Siddharth
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zhijie Kong
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Aolin Lu
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Jin-Cheng Li
- Fok Ying Tung Research Institute, The Hong Kong University of Science and Technology, Guangzhou, 511458, China
| | - Chuan-Jian Zhong
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Zhi-You Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Fok Ying Tung Research Institute, The Hong Kong University of Science and Technology, Guangzhou, 511458, China
- Energy Institute, and Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| |
Collapse
|
10
|
Bueno SLA, Zhan X, Wolfe J, Chatterjee K, Skrabalak SE. Phase-Controlled Synthesis of Pd-Sn Nanocrystal Catalysts of Defined Size and Shape. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51876-51885. [PMID: 33945682 DOI: 10.1021/acsami.1c04801] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bimetallic Pd-based nanoparticles (NPs) are of interest as electrocatalysts for formic acid electrooxidation (FAEO) because of their higher initial catalytic activity and CO tolerance when compared to Pt. Intermetallic NPs (i-NPs) with specific geometric and electronic structures generally exhibit superior catalytic activity, selectivity, and durability when compared to their disordered (random alloy) counterparts; however, the colloidal synthesis of i-NPs remains a challenge. Here, a one-pot method was demonstrated as a facile route to obtain monodisperse Pd-Sn NPs with phase control, including intermetallic hexagonal Pd3Sn2 (P63/mmc), intermetallic orthorhombic Pd2Sn (Pnma), and alloy cubic Pd3Sn (FCC, Fm3m) as size-controlled NPs with quasi-spherical shapes. Initial metal precursor ratios and reaction temperature were critical parameters to achieving phase control. Also, slight modifications of synthetic conditions resulted in either Pd2Sn nanorhombohedra or nanorods with tunable aspect ratios. A systematic evaluation of the Pd-Sn NPs for FAEO showed that most presented higher specific activities when compared to commercial Pd/C, in which Pd2Sn quasi-spheres and nanorhombohedra showed the highest catalytic activity for FAEO. These results highlight the benefits of phase-controlled Pd-based nanocatalysts with defined nanocrystal size and shape, with use of trioctylphospine (TOP) and oleic acid (OA) central to shape and size control.
Collapse
Affiliation(s)
- Sandra L A Bueno
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Xun Zhan
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Joshua Wolfe
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Kaustav Chatterjee
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Sara E Skrabalak
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
11
|
Li M, Xia Z, Luo M, He L, Tao L, Yang W, Yu Y, Guo S. Structural Regulation of Pd‐Based Nanoalloys for Advanced Electrocatalysis. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100061] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Menggang Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin Heilongjiang 150001 China
- School of Materials Science and Engineering Peking University Beijing 100871 China
| | - Zhonghong Xia
- School of Materials Science and Engineering Peking University Beijing 100871 China
| | - Mingchuan Luo
- School of Materials Science and Engineering Peking University Beijing 100871 China
| | - Lin He
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin Heilongjiang 150001 China
| | - Lu Tao
- School of Materials Science and Engineering Peking University Beijing 100871 China
| | - Weiwei Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin Heilongjiang 150001 China
| | - Yongsheng Yu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin Heilongjiang 150001 China
| | - Shaojun Guo
- School of Materials Science and Engineering Peking University Beijing 100871 China
| |
Collapse
|
12
|
Pd-based intermetallic nanocrystals: From precise synthesis to electrocatalytic applications in fuel cells. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214085] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Kundu A, Mallick S, Ghora S, Raj CR. Advanced Oxygen Electrocatalyst for Air-Breathing Electrode in Zn-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40172-40199. [PMID: 34424683 DOI: 10.1021/acsami.1c08462] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The electrochemical reduction of oxygen to water and the evolution of oxygen from water are two important electrode reactions extensively studied for the development of electrochemical energy conversion and storage technologies based on oxygen electrocatalysis. The development of an inexpensive, highly active, and durable nonprecious-metal-based oxygen electrocatalyst is indispensable for emerging energy technologies, including anion exchange membrane fuel cells, metal-air batteries (MABs), water electrolyzers, etc. The activity of an oxygen electrocatalyst largely decides the overall energy storage performance of these devices. Although the catalytic activities of Pt and Ru/Ir-based catalysts toward an oxygen reduction reaction (ORR) and an oxygen evolution reaction (OER) are known, the high cost and lack of durability limit their extensive use for practical applications. This review article highlights the oxygen electrocatalytic activity of the emerging non-Pt and non-Ru/Ir oxygen electrocatalysts including transition-metal-based random alloys, intermetallics, metal-coordinated nitrogen-doped carbon (M-N-C), and transition metal phosphides, nitrides, etc., for the development of an air-breathing electrode for aqueous primary and secondary zinc-air batteries (ZABs). Rational surface and chemical engineering of these electrocatalysts is required to achieve the desired oxygen electrocatalytic activity. The surface engineering increases the number of active sites, whereas the chemical engineering enhances the intrinsic activity of the catalyst. The encapsulation or integration of the active catalyst with undoped or heteroatom-doped carbon nanostructures affords an enhanced durability to the active catalyst. In many cases, the synergistic effect between the heteroatom-doped carbon matrix and the active catalyst plays an important role in controlling the catalytic activity. The ORR activity of these catalysts is evaluated in terms of onset potential, number of electrons transferred, limiting current density, and durability. The bifunctional oxygen electrocatalytic activity and ZAB performance, on the other hand, are measured in terms of potential gap between the ORR and OER, ΔE = Ej10OER - E1/2ORR, specific capacity, peak power density, open circuit voltage, voltaic efficiency, and charge-discharge cycling stability. The nonprecious metal electrocatalyst-based ZABs are very promising and they deliver high power density, specific capacity, and round-trip efficiency. The active site for oxygen electrocatalysis and challenges associated with carbon support is briefly addressed. Despite the considerable progress made with the emerging electrocatalysts in recent years, several issues are yet to be addressed to achieve the commercial potential of rechargeable ZAB for practical applications.
Collapse
Affiliation(s)
- Aniruddha Kundu
- Functional Materials and Electrochemistry Lab, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Sourav Mallick
- Functional Materials and Electrochemistry Lab, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Santanu Ghora
- Functional Materials and Electrochemistry Lab, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - C Retna Raj
- Functional Materials and Electrochemistry Lab, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| |
Collapse
|
14
|
Shen R, Wu X, Li X, Huang J, Luo S, Li J, Qian N, Ji L, Yang D, Zhang H. Ga‐Doped Intermetallic Pd3Pb Nanocubes as a Highly Efficient and Durable Oxygen Reduction Reaction Electrocatalyst. ChemistrySelect 2021. [DOI: 10.1002/slct.202101015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rong Shen
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering Zhejiang University Hangzhou Zhejiang 310027 People's Republic of China
| | - Xingqiao Wu
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering Zhejiang University Hangzhou Zhejiang 310027 People's Republic of China
| | - Xiao Li
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering Zhejiang University Hangzhou Zhejiang 310027 People's Republic of China
| | - Jingbo Huang
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering Zhejiang University Hangzhou Zhejiang 310027 People's Republic of China
| | - Sai Luo
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering Zhejiang University Hangzhou Zhejiang 310027 People's Republic of China
| | - Junjie Li
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering Zhejiang University Hangzhou Zhejiang 310027 People's Republic of China
| | - Ningkang Qian
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering Zhejiang University Hangzhou Zhejiang 310027 People's Republic of China
| | - Liang Ji
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering Zhejiang University Hangzhou Zhejiang 310027 People's Republic of China
| | - Deren Yang
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering Zhejiang University Hangzhou Zhejiang 310027 People's Republic of China
| | - Hui Zhang
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering Zhejiang University Hangzhou Zhejiang 310027 People's Republic of China
- Institute of Advanced Semiconductors Hangzhou Innovation Center Zhejiang University Hangzhou Zhejiang 310027 People's Republic of China
| |
Collapse
|
15
|
Bueno SLA, Ashberry HM, Shafei I, Skrabalak SE. Building Durable Multimetallic Electrocatalysts from Intermetallic Seeds. Acc Chem Res 2021; 54:1662-1672. [PMID: 33377763 DOI: 10.1021/acs.accounts.0c00655] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
ConspectusWhen combined with earth-abundant metals, Pt-based alloy nanoparticles (NPs) can be cost-effective electrocatalysts. However, these NPs can experience leaching of non-noble-metal components under harsh electrocatalytic conditions. The Skrabalak group has demonstrated a novel NP construct in which Pt-based random alloy surfaces are stabilized against non-noble-metal leaching by their deposition onto intermetallic seeds. These core@shell NPs are highly durable electrocatalysts, with the ability to tune catalytic performance by the core@shell architecture, surface alloy composition, and NP shape. This versatility was demonstrated in a model system in which random alloy (ra-) PtM surfaces were deposited onto ordered intermetallic (i-) PdCu seeds using seed-mediated co-reduction (SMCR). In the initial demonstration, ra-PtCu shells were deposited on i-PdCu seeds, with these core@shell NPs exhibiting higher specific and mass activities for the oxygen reduction reaction (ORR) when compared to similarly sized ra-PtCu NPs. These NPs also showed outstanding durability, maintaining ∼85% in specific activity after 5000 cycles. Characterization of the NPs after use revealed minimal loss of Cu. The activity enhancement was attributed to the strained surface that arises from the lattice mismatch between the intermetallic core and random alloy surface. The outstanding durability was attributed to the ordered structure of the intermetallic core.The origin of this durability enhancement was investigated by classical molecular dynamics simulations, where Pt atoms were found to have a lower potential energy when deposited on an intermetallic core than when deposited on a random alloy core. Also, ordering of Cu atoms at the core@shell interface appears to enhance the overall binding between the core and the shell materials. Inspired by this initial demonstration, SMCR has been used to achieve shells of different random alloy compositions, PtM (M = Ni, Co, Cu, or Fe). This advance is significant because ligand effects vary as a function of PtM identity and Pt/M ratio. These features also influence the degree of surface strain imparted from the lattice mismatch between the core and shell materials. Like the initial demonstration, standout features of these core@shell NPs were high durability and resistance to non-noble metal leaching.Moving forward, efforts have been directed toward integrating shape-control to this core@shell NP construct. This integration is motivated by the shape-dependent catalytic performance of NPs derived from the selective expression of specific facets. Considering the initial i-PdCu@ra-PtCu system, NPs with a cubic shape have been achieved by judicious selection of capping ligands during SMCR. Evaluation of these NPs as catalysts for the electrooxidation of formic acid found that the nanocubic shape enhances catalytic performance compared to similar core@shell NPs with a spherical morphology. We envision that SMCR can be applied to other NP systems to achieve highly durable catalysts as the syntheses of monodisperse and shape-controlled intermetallic seeds are advanced. This Account highlights the role of intermetallic cores in providing more durable electrocatalysts. More broadly, the versatility of SMCR is highlighted as a route to integrate architecture, alloy surfaces, and shape within one NP system, and how this achievement is inspiring new high-performance and robust catalysts is discussed.
Collapse
Affiliation(s)
- Sandra L. A. Bueno
- Department of Chemistry, Indiana University−Bloomington, 800 E. Kirkwood Ave., Bloomington, Indiana 47405, United States
| | - Hannah M. Ashberry
- Department of Chemistry, Indiana University−Bloomington, 800 E. Kirkwood Ave., Bloomington, Indiana 47405, United States
| | - Ibrahim Shafei
- Department of Chemistry, Indiana University−Bloomington, 800 E. Kirkwood Ave., Bloomington, Indiana 47405, United States
| | - Sara E. Skrabalak
- Department of Chemistry, Indiana University−Bloomington, 800 E. Kirkwood Ave., Bloomington, Indiana 47405, United States
| |
Collapse
|
16
|
Li M, Li Z, Fu G, Tang Y. Recent Advances in Amino-Based Molecules Assisted Control of Noble-Metal Electrocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007179. [PMID: 33709573 DOI: 10.1002/smll.202007179] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Morphology-control synthesis is an effective means to tailor surface structure of noble-metal nanocrystals, which offers a sensitive knob for tuning their electrocatalytic properties. The functional molecules are often indispensable in the morphology-control synthesis through preferential adsorption on specific crystal facets, or controlling certain crystal growth directions. In this review, the recent progress in morphology-control synthesis of noble-metal nanocrystals assisted by amino-based functional molecules for electrocatalytic applications are focused on. Although a mass of noble-metal nanocrystals with different morphologies have been reported, few review studies have been published related to amino-based molecules assisted control strategy. A full understanding for the key roles of amino-based molecules in the morphology-control synthesis is still necessary. As a result, the explicit roles and mechanisms of various types of amino-based molecules, including amino-based small molecules and amino-based polymers, in morphology-control of noble-metal nanocrystals are summarized and discussed in detail. Also presented in this progress are unique electrocatalytic properties of various shaped noble-metal nanocrystals. Particularly, the optimization of electrocatalytic selectivity induced by specific amino-based functional molecules (e.g., polyallylamine and polyethyleneimine) is highlighted. At the end, some critical prospects, and challenges in terms of amino-based molecules-controlled synthesis and electrocatalytic applications are proposed.
Collapse
Affiliation(s)
- Meng Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Zhijuan Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Gengtao Fu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, TX, 79407, USA
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
17
|
Kim S, Kwag J, Machello C, Kang S, Heo J, Reboul CF, Kang D, Kang S, Shim S, Park SJ, Kim BH, Hyeon T, Ercius P, Elmlund H, Park J. Correlating 3D Surface Atomic Structure and Catalytic Activities of Pt Nanocrystals. NANO LETTERS 2021; 21:1175-1183. [PMID: 33416334 DOI: 10.1021/acs.nanolett.0c04873] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Active sites and catalytic activity of heterogeneous catalysts is determined by their surface atomic structures. However, probing the surface structure at an atomic resolution is difficult, especially for solution ensembles of catalytic nanocrystals, which consist of heterogeneous particles with irregular shapes and surfaces. Here, we constructed 3D maps of the coordination number (CN) and generalized CN (CN_) for individual surface atoms of sub-3 nm Pt nanocrystals. Our results reveal that the synthesized Pt nanocrystals are enclosed by islands of atoms with nonuniform shapes that lead to complex surface structures, including a high ratio of low-coordination surface atoms, reduced domain size of low-index facets, and various types of exposed high-index facets. 3D maps of CN_ are directly correlated to catalytic activities assigned to individual surface atoms with distinct local coordination structures, which explains the origin of high catalytic performance of small Pt nanocrystals in important reactions such as oxygen reduction reactions and CO electro-oxidation.
Collapse
Affiliation(s)
- Sungin Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jimin Kwag
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Chiara Machello
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- ARC Centre of Excellence for Advanced Molecular Imaging, Clayton, Victoria 3800, Australia
| | - Sungsu Kang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Junyoung Heo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Cyril F Reboul
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- ARC Centre of Excellence for Advanced Molecular Imaging, Clayton, Victoria 3800, Australia
| | - Dohun Kang
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seulki Kang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sangdeok Shim
- Department of Chemistry, Sunchon National University, Suncheon 57922, Republic of Korea
| | - So-Jung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Byung Hyo Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Department of Organic Materials and Fiber Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Peter Ercius
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Hans Elmlund
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- ARC Centre of Excellence for Advanced Molecular Imaging, Clayton, Victoria 3800, Australia
| | - Jungwon Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
18
|
Xin Y, Li S, Qian Y, Zhu W, Yuan H, Jiang P, Guo R, Wang L. High-Entropy Alloys as a Platform for Catalysis: Progress, Challenges, and Opportunities. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03617] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
| | | | | | - Wenkun Zhu
- State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang, Sichuan 621010, P. R. China
| | | | | | | | | |
Collapse
|
19
|
He F, Liu Y, Cai Q, Zhao J. Size-dependent electrocatalytic activity of ORR/OER on palladium nanoclusters anchored on defective MoS 2monolayers. NEW J CHEM 2020. [DOI: 10.1039/d0nj03645e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The catalytic performance of MoS2monolayer for oxygen reduction/evolution can be effectively tuned by carefully controlling the sizes of the deposited Pd clusters.
Collapse
Affiliation(s)
- Fan He
- College of Chemistry and Chemical Engineering
- Key Laboratory of Photonic and Electronic Bandgap Materials
- Ministry of Education
- Harbin Normal University
- Harbin
| | - Yuejie Liu
- Modern Experiment Center
- Harbin Normal University
- Harbin
- China
| | - Qinghai Cai
- College of Chemistry and Chemical Engineering
- Key Laboratory of Photonic and Electronic Bandgap Materials
- Ministry of Education
- Harbin Normal University
- Harbin
| | - Jingxiang Zhao
- College of Chemistry and Chemical Engineering
- Key Laboratory of Photonic and Electronic Bandgap Materials
- Ministry of Education
- Harbin Normal University
- Harbin
| |
Collapse
|