1
|
Del Piero JVB, Miwa RH, Scopel WL. Vanadium incorporation in 2D-layered MoSe 2. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 37:045503. [PMID: 39442551 DOI: 10.1088/1361-648x/ad8abb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/23/2024] [Indexed: 10/25/2024]
Abstract
Recent advances in experimental techniques have made it possible to manipulate the structural and electronic properties of two-dimensional layered materials (2DM) through interaction with foreign atoms. Using quantum mechanics calculations based on the density functional theory, we explored the dependency of the structural, energetic, electronic, and magnetic properties of the interaction between Vanadium (V) atoms and monolayer and bilayer MoSe2. Spin-polarized metallic behavior was observed for high V concentration, and a semiconductor/metal interface emerged due to V adsorption on top of BL MoSe2. Our research demonstrated that the functionalization of 2D materials makes an important contribution to the design of spintronic devices based on a 2D-layered materials platform.
Collapse
Affiliation(s)
- João V B Del Piero
- Departamento de Física, Universidade Federal do Espírito Santo-UFES, 29075-910 Vitória, ES, Brazil
| | - Roberto H Miwa
- Instituto de Física, Universidade Federal de Uberlândia-UFU, 38400-902 Uberlândia, MG, Brazil
| | - Wanderlã L Scopel
- Departamento de Física, Universidade Federal do Espírito Santo-UFES, 29075-910 Vitória, ES, Brazil
| |
Collapse
|
2
|
Lan Q, Chen C. Auxetic and multiferroic MP 5 (M = Al, Ga): a novel 2D material with negative Possion's ratio and high anisotropic carrier mobility. Phys Chem Chem Phys 2023; 25:30405-30411. [PMID: 37916402 DOI: 10.1039/d3cp04301k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
In the field of materials science, the development of multifunctional 2D materials has been a long-standing research objective. In this study, we employ first-principles calculations to predict a novel 2D material named MP5 (M = Al, Ga), which exhibits ferroelasticity, ferroelectricity, negative Poisson's ratio, and high anisotropic carrier mobility. Our investigation reveals that a single layer of MP5 displays multiferroic behavior, wherein ferroelasticity and ferroelectricity are coupled. The remarkable structural anisotropy of MP5 enables easy switching between ferroelastic and ferroelectric states, rendering it suitable for nonvolatile memory applications. Simultaneously, monolayer AlP5 (GaP5) demonstrates a negative Poisson's ratio of -0.074 (-0.058) and a carrier mobility of up to 91 720 cm2 V-1 S-1 (99 690 cm2 V-1 S-1). These exceptional properties position monolayer MP5 as a highly versatile and promising 2D material for implementation in nanomechanical and microelectromechanical devices.
Collapse
Affiliation(s)
- Qingwen Lan
- School of Science, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Changpeng Chen
- School of Science, Wuhan University of Technology, Wuhan 430070, P. R. China.
- Research Center of Materials Genome Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| |
Collapse
|
3
|
Jiang S, Zheng G. Janus GaOClX (X = F, Br, and I) monolayers as predicted using first-principles calculations: a novel class of nanodielectrics with superior energy storage properties. Phys Chem Chem Phys 2023; 25:20854-20862. [PMID: 37522224 DOI: 10.1039/d3cp02410e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Dielectric materials play an important role in devices for energy conversion and storage. Based on first-principles calculations, novel two-dimensional Janus GaOClX (X = F, Br, and I) monolayers with superior energy storage properties are predicted. They are indirect-bandgap semiconductors with bandgaps in the range of 2.18-4.36 eV, and possess anisotropic carrier mobility, strong mechanical flexibility, and excellent out-of-plane piezoelectricity. More importantly, it is found that the GaOCl monolayer and Janus GaOClX monolayers could exhibit an ultrahigh energy storage density (as high as 893.32 J cm-3) comparable to those of electrochemical supercapacitors and batteries, unparalleled by other dielectric materials reported to date. This work opens up a new window in searching for novel dielectric materials, which could be used in dielectric capacitors with superior energy storage density and power density, excellent efficiency and thermal stability.
Collapse
Affiliation(s)
- Shujuan Jiang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China.
| | - Guangping Zheng
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China.
- Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| |
Collapse
|
4
|
Cicirello G, Wang M, Sam QP, Hart JL, Williams NL, Yin H, Cha JJ, Wang J. Two-Dimensional Violet Phosphorus P 11: A Large Band Gap Phosphorus Allotrope. J Am Chem Soc 2023; 145:8218-8230. [PMID: 36996286 DOI: 10.1021/jacs.3c01766] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
The discovery of novel large band gap two-dimensional (2D) materials with good stability and high carrier mobility will innovate the next generation of electronics and optoelectronics. A new allotrope of 2D violet phosphorus P11 was synthesized via a salt flux method in the presence of bismuth. Millimeter-sized crystals of violet-P11 were collected after removing the salt flux with DI water. From single-crystal X-ray diffraction, the crystal structure of violet-P11 was determined to be in the monoclinic space group C2/c (no. 15) with unit cell parameters of a = 9.166(6) Å, b = 9.121(6) Å, c = 21.803(14)Å, β = 97.638(17)°, and a unit cell volume of 1807(2) Å3. The structure differences between violet-P11, violet-P21, and fibrous-P21 are discussed. The violet-P11 crystals can be mechanically exfoliated down to a few layers (∼6 nm). Photoluminescence and Raman measurements reveal the thickness-dependent nature of violet-P11, and exfoliated violet-P11 flakes were stable in ambient air for at least 1 h, exhibiting moderate ambient stability. The bulk violet-P11 crystals exhibit excellent stability, being stable in ambient air for many days. The optical band gap of violet-P11 bulk crystals is 2.0(1) eV measured by UV-Vis and electron energy-loss spectroscopy measurements, in agreement with density functional theory calculations which predict that violet-P11 is a direct band gap semiconductor with band gaps of 1.8 and 1.9 eV for bulk and monolayer, respectively, and with a high carrier mobility. This band gap is the largest among the known single-element 2D layered bulk crystals and thus attractive for various optoelectronic devices.
Collapse
Affiliation(s)
- Gary Cicirello
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Mengjing Wang
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, United States
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Quynh P Sam
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14850, United States
| | - James L Hart
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Natalie L Williams
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Huabing Yin
- Institute for Computational Materials Science, Joint Center for Theoretical Physics, and International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Judy J Cha
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, United States
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Jian Wang
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, United States
| |
Collapse
|
5
|
Qiao Y, Shen H, Zhang F, Liu S, Yin H. W 4PCl 11 monolayer: an unexplored 2D material with moderate direct bandgap and strong visible-light absorption for highly efficient solar cells. NANOSCALE 2022; 14:12386-12394. [PMID: 35972044 DOI: 10.1039/d2nr03009h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The discovery of novel two-dimensional (2D) materials with excellent electronic and optoelectronic properties have attracted much scientific attention. Based on the first-principles calculations, we predict an unexplored 2D W4PCl11 monolayer, which is potentially strippable from its bulk counterpart with the exfoliation energy of only 0.16 J m-2. The dynamical, thermal, and mechanical stabilities have also been confirmed. Remarkably, W4PCl11 monolayer is direct semiconductor with a bandgap of 1.25 eV, which endows the monolayer with very strong visible-light absorption in the magnitude of 105 cm-1. Meanwhile, the calculated carrier mobilities of W4PCl11 monolayer can reach to 103 cm2 V-1 s-1. Considering the moderate direct bandgap and high carrier mobility, W4PCl11 monolayer should be a superior candidate for the donor material of excitonic solar cells. The estimated power conversion efficiency of the fabricated W4PCl11/Bi2WO6 heterojunction reaches as high as 21.64%, which much superior to those of most recently reported 2D heterojunction. All these outstanding properties accompanied with its experimental feasibility endows W4PCl11 monolayer with promising photovoltaic applications.
Collapse
Affiliation(s)
- Yusen Qiao
- Joint Center for Theoretical Physics, and Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Huimin Shen
- Joint Center for Theoretical Physics, and Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Fumin Zhang
- Joint Center for Theoretical Physics, and Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Siyuan Liu
- Joint Center for Theoretical Physics, and Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Huabing Yin
- Joint Center for Theoretical Physics, and Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| |
Collapse
|
6
|
Jiang S, Yin H, Zheng GP. Monolayer GaOCl: a novel wide-bandgap 2D material with hole-doping-induced ferromagnetism and multidirectional piezoelectricity. NANOSCALE 2022; 14:11369-11377. [PMID: 35894834 DOI: 10.1039/d2nr02821b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two-dimensional (2D) materials with excellent properties are emerging as promising candidates in electronics and spintronics. In this work, a novel GaOCl monolayer is proposed and studied systematically based on first-principles calculations. With excellent thermal and dynamic stability at room temperature, its wide direct bandgap (4.46 eV) can be further modulated under applied strains. The 2D semiconductor exhibits high mechanical flexibility, and anisotropy in Poisson's ratio and carrier mobilities, endowing it with a broad spectrum of electronic and optoelectronic applications. More importantly, the GaOCl monolayer has spontaneous magnetization induced by hole doping and shows outstanding multidirectional piezoelectricity, which are comparable with those of either magnetic or piezoelectric 2D materials. Our calculations indicate that the GaOCl monolayer with wide bandgaps and tunable piezoelectricity and ferromagnetism could be promising for applications in multifunctional integrated nano-devices with high performance.
Collapse
Affiliation(s)
- Shujuan Jiang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China.
| | - Huabing Yin
- Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
| | - Guang-Ping Zheng
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China.
- Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| |
Collapse
|
7
|
Shen H, Liu S, Qiao Y, Zhang F, Yin H, Ju L. High electron mobility and wide-bandgap properties in a novel 1D PdGeS 3 nanochain. Phys Chem Chem Phys 2022; 24:18868-18876. [PMID: 35912920 DOI: 10.1039/d2cp02732a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As a versatile platform, one-dimensional (1D) electronic systems host plenty of excellent merits, such as high length-to-diameter ratios, flexible mechanical properties, and manageable electronic characteristics, which endow them with significant potential applications in catalysts, flexible wearable devices, and multifunctional integrated circuits. Herein, based on first-principles calculations, we propose a versatile 1D PdGeS3 nanochain system. Our calculations show that the 1D PdGeS3 nanochain can be synthesized simply from its bulk crystal by exfoliation methods and can stably exist at room temperature. The 1D PdGeS3 nanochain is an indirect semiconductor with a wide bandgap of 2.86 eV, and such a bandgap can be effectively modulated by strain. Remarkably, the electron mobility of the 1D PdGeS3 nanochain reaches as high as 1506 cm2 V-1 s-1, which is one to two orders of magnitude larger than those of most reported 1D materials and even some 2D materials. Such high electron mobility accompanied with low hole mobility endow the 1D PdGeS3 nanochain with the capacity of the separation of carriers. Our work shows that the 1D PdGeS3 nanochain is a promising candidate for applications in novel multifunctional nanoelectronic devices.
Collapse
Affiliation(s)
- Huimin Shen
- Institute for Computational Materials Science, Joint Center for Theoretical Physics (JCTP), School of Physics and Electronics, Henan University, Kaifeng 475004, China. .,International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Siyuan Liu
- Institute for Computational Materials Science, Joint Center for Theoretical Physics (JCTP), School of Physics and Electronics, Henan University, Kaifeng 475004, China. .,International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Yusen Qiao
- Institute for Computational Materials Science, Joint Center for Theoretical Physics (JCTP), School of Physics and Electronics, Henan University, Kaifeng 475004, China. .,International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Fumin Zhang
- Institute for Computational Materials Science, Joint Center for Theoretical Physics (JCTP), School of Physics and Electronics, Henan University, Kaifeng 475004, China. .,International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Huabing Yin
- Institute for Computational Materials Science, Joint Center for Theoretical Physics (JCTP), School of Physics and Electronics, Henan University, Kaifeng 475004, China. .,International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Lin Ju
- School of Physics and Electrical Engineering, Anyang Normal University, Anyang 455000, China.
| |
Collapse
|
8
|
Shi X, Jiang S, Han X, Wei M, Wang B, Zhao G, Zheng GP, Yin H. Ultrahigh mechanical flexibility induced superior piezoelectricity of InSeBr-type 2D Janus materials. Phys Chem Chem Phys 2022; 24:8371-8377. [PMID: 35332903 DOI: 10.1039/d2cp00918h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
InSeBr-Type monolayers, ternary In(Se,S)(Br,Cl) compounds, are typical two-dimensional (2D) Janus materials and can be exfoliated from their bulk crystals. The structural stability, electronic properties, mechanical flexibility, and intrinsic piezoelectricity of these InSeBr-type 2D Janus monolayers are comprehensively investigated by first-principles calculations. Our calculations show that the stable InSeBr-type monolayers exhibit ultrahigh mechanical flexibility with low Young's moduli. Due to the amazing flexibility of the InSeBr monolayer with an ultra-low Young's modulus of 0.81 N m-1, the piezoelectric strain coefficient d11 can reach 103 pm V-1 orders of magnitude (around 2361-3224 pm V-1), which is larger than those of reported 2D materials and even superior to those of conventional perovskite bulk materials. Such a superior piezoelectric response of InSeBr-type monolayers could facilitate their practical applications in sensors and energy harvesters.
Collapse
Affiliation(s)
- Xiaobo Shi
- Institute for Computational Materials Science, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China. .,Institute of Artificial Intelligence, Henan Finance University, Zhengzhou 450046, China
| | - Shujuan Jiang
- Institute for Computational Materials Science, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China. .,Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China.
| | - Xianwei Han
- Institute for Computational Materials Science, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
| | - Min Wei
- Department of Physics and Electronic Engineering, Jinzhong University, Jinzhong 030619, China
| | - Bing Wang
- Institute for Computational Materials Science, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
| | - Gaofeng Zhao
- Institute for Computational Materials Science, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
| | - Guang-Ping Zheng
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China.
| | - Huabing Yin
- Institute for Computational Materials Science, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
| |
Collapse
|
9
|
Nong H, Wu Q, Tan J, Sun Y, Zheng R, Zhang R, Zhao S, Liu B. Layer-Dependent Raman Spectroscopy and Electronic Applications of Wide-Bandgap 2D Semiconductor β-ZrNCl. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107490. [PMID: 35187848 DOI: 10.1002/smll.202107490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/15/2022] [Indexed: 06/14/2023]
Abstract
In recent years, 2D layered semiconductors have received much attention for their potential in next-generation electronics and optoelectronics. Wide-bandgap 2D semiconductors are especially important in the blue and ultraviolet wavelength region, although there are very few 2D materials in this region. Here, monolayer β-type zirconium nitride chloride (β-ZrNCl) is isolated for the first time, which is an air-stable layered material with a bandgap of ≈3.0 eV in bulk. Systematical investigation of layer-dependent Raman scattering of ZrNCl from monolayer, bilayer, to bulk reveals a blueshift of its out-of-plane A1g peak at ≈189 cm-1 . Importantly, this A1g peak is absent in the monolayer, suggesting that it is a fingerprint to quickly identify the monolayer and for the thickness determination of 2D ZrNCl. The back gate field-effect transistor based on few-layer ZrNCl shows a high on/off ratio of 108 . These results suggest the potential of 2D β-ZrNCl for electronic applications.
Collapse
Affiliation(s)
- Huiyu Nong
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Qinke Wu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Junyang Tan
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Yujie Sun
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Rongxu Zheng
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Rongjie Zhang
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Shilong Zhao
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Bilu Liu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| |
Collapse
|
10
|
Abyaz B, Mahdavifar Z, Schreckenbach G, Gao Y. Prediction of beryllium clusters (Be n; n = 3-25) from first principles. Phys Chem Chem Phys 2021; 23:19716-19728. [PMID: 34524334 DOI: 10.1039/d1cp02513a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Evolutionary searches using the USPEX method (Universal Structure Predictor: Evolutionary Xtallography) combined with density functional theory (DFT) calculations were performed to obtain the global minimum structures of beryllium (Ben, n = 3-25) clusters. The thermodynamic stability, optoelectronic and photocatalytic properties as well as the nature of bonding are considered for the most stable clusters. It is found that the cluster with n = 15 is the transition point at which the configurations change from 3D hollow cages to filled cage structures (with an interior atom appearing in the structure). All the ground state structures are energetically favorable with negative binding energies, suggesting good synthetic feasibility for these structures. The calculated relative stabilities and electronic structure show that the Be4, Be10 and, Be17 clusters are the most stable structures and can be considered as superatoms. The electron configurations of Be4, Be10 and Be17 clusters with 8, 20 and 34 electrons are identified as 1S2 1P6, 1S2 1P6 1D10 2S2, 1S2 1P6 1D10 2S2 1F14, respectively. Theoretical simulations determined that all the ground state structures exhibit excellent thermal stability, where the upper-limit temperature that the structures can tolerate is 900 K. During AIMD simulation of O2 adsorption onto the Be17 cluster an interesting phenomenon was happening in which the pristine Be17 cluster becomes a new stable Be17O16 cluster. Based on ELF (electron localization function) analysis, it can be concluded that the Be-Be bonds in the small clusters are primarily of van der Waals type, while for the larger clusters, the bonds are of metallic nature. The Ben clusters show very strong absorption in the UV and visible regions with absorption coefficients larger than 105 cm-1, which suggests a wide range of potential advanced optoelectronics applications. The Be17 cluster has a suitable band alignment in the visible-light excitation region which will produce enhanced photocatalytic activities (making it a promising material for water splitting).
Collapse
Affiliation(s)
- Behnaz Abyaz
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Zabiollah Mahdavifar
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Georg Schreckenbach
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Yang Gao
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.,Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| |
Collapse
|
11
|
Mahdavifar Z. Prediction of unexpected B n P n structures: promising materials for non-linear optical devices and photocatalytic activities. NANOSCALE ADVANCES 2021; 3:2846-2861. [PMID: 36134180 PMCID: PMC9417267 DOI: 10.1039/d0na01040e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/26/2021] [Indexed: 06/16/2023]
Abstract
In the present work, a modern method of crystal structure prediction, namely USPEX conjugated with density functional theory (DFT) calculations, was used to predict the new stable structures of B n P n (n = 12, 24) clusters. Since B12N12 and B24N24 fullerenes have been synthesized experimentally, it motivated us to explore the structural prediction of B12P12 and B24P24 clusters. All new structures were predicted to be energetically favorable with negative binding energy in the range from -4.7 to -4.8 eV per atom, suggesting good experimental feasibility for the synthesis of these structures. Our search for the most stable structure of B n P n clusters led us to classify the predicted structures into two completely distinct structures such as α-B n P n and β-B n P n phases. In α-B n P n , each phosphorus atom is doped into a boron atom, whereas B atoms form a B n unit. On the other hand, each boron atom in the β-phase was bonded to a phosphorus atom to make a fullerene-like cage structure. Besides, theoretical simulations determined that α-B n P n structures, especially α-B24P24, show superior oxidation resistance and also, both α-B n P n and β-B n P n exhibit better thermal stability; the upper limit temperature that structures can tolerance is 900 K. The electronic properties of new compounds illustrate a higher degree of absorption in the UV and visible-region with the absorption coefficient larger than 105 cm-1, which suggests a wide range of opportunities for advanced optoelectronic applications. The β-B n P n phase has suitable band alignments in the visible-light excitation region, which will produce enhanced photocatalytic activities. On the other hand, α-B n P n structures with modest band gap exhibit large second hyperpolarizability, which are anticipated to have excellent potential as second-order non-linear optical (NLO) materials.
Collapse
Affiliation(s)
- Zabiollah Mahdavifar
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz Ahvaz Iran +98-611-3331042
| |
Collapse
|
12
|
Shi X, Yin H, Jiang S, Chen W, Zheng GP, Ren F, Wang B, Zhao G, Liu B. Janus 2D titanium nitride halide TiNX0.5Y0.5 (X, Y = F, Cl, or Br, and X ≠ Y) monolayers with giant out-of-plane piezoelectricity and high carrier mobility. Phys Chem Chem Phys 2021; 23:3637-3645. [DOI: 10.1039/d0cp06116f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have proposed a series of Janus 2D titanium nitride halide TiNX0.5Y0.5 (X, Y = F, Cl, or Br, and X ≠ Y) monolayers, which have considerable out-of-plane piezoelectricity and high carrier mobility.
Collapse
Affiliation(s)
- Xiaobo Shi
- Institute for Computational Materials Science, School of Physics and Electronics
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province
- Henan University
- Kaifeng 475004
- China
| | - Huabing Yin
- Institute for Computational Materials Science, School of Physics and Electronics
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province
- Henan University
- Kaifeng 475004
- China
| | - Shujuan Jiang
- Institute for Computational Materials Science, School of Physics and Electronics
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province
- Henan University
- Kaifeng 475004
- China
| | - Weizhen Chen
- Institute for Computational Materials Science, School of Physics and Electronics
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province
- Henan University
- Kaifeng 475004
- China
| | - Guang-Ping Zheng
- Department of Mechanical Engineering
- The Hong Kong Polytechnic University
- Hung Hom
- Kowloon
- China
| | - Fengzhu Ren
- Institute for Computational Materials Science, School of Physics and Electronics
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province
- Henan University
- Kaifeng 475004
- China
| | - Bing Wang
- Institute for Computational Materials Science, School of Physics and Electronics
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province
- Henan University
- Kaifeng 475004
- China
| | - Gaofeng Zhao
- Institute for Computational Materials Science, School of Physics and Electronics
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province
- Henan University
- Kaifeng 475004
- China
| | - Bo Liu
- Laboratory of Functional Molecules and Materials
- School of Physics and Optoelectronic Engineering
- Shandong University of Technology
- China
| |
Collapse
|
13
|
Jiang S, Yin H, Zheng GP, Wang B, Guan S, Yao BJ. Computational prediction of a novel 1D InSeI nanochain with high stability and promising wide-bandgap properties. Phys Chem Chem Phys 2020; 22:27441-27449. [PMID: 33232408 DOI: 10.1039/d0cp04922k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Low-dimensional materials have aroused widespread interest for their novel and fascinating properties. Based on first-principles calculations, we predict the one-dimensional (1D) InSeI nanochains with van der Waals (vdW) interchain interactions, which could be exfoliated mechanically and kept at steady states at room temperature. Compared with bulk InSeI, the single nanochain InSeI has a larger direct bandgap of 3.15 eV. Its calculated carrier mobility is as high as 54.17 and 27.49 cm2 V-1 s-1 for holes and electrons, respectively, comparable with those of other 1D materials. In addition, a direct-to-indirect bandgap transition is implemented under a small applied strain (∼6%). More importantly, the nanochains are found to be promising candidates for optoelectronic devices since they possess a high absorption coefficient of ∼105 cm-1 in the ultraviolet region. The results thus pave a novel avenue for the applications of InSeI nanochains with excellent thermal stability in nanoelectronic and optoelectronic devices.
Collapse
Affiliation(s)
- Shujuan Jiang
- Institute for Computational Materials Science, School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China.
| | | | | | | | | | | |
Collapse
|