1
|
Wu Z, Liu G, Li B, Huang J, Sun J. Broadband and ascendant nonlinear optical properties of the wide bandgap material GaN nanowires. OPTICS EXPRESS 2024; 32:20638-20653. [PMID: 38859441 DOI: 10.1364/oe.524681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/29/2024] [Indexed: 06/12/2024]
Abstract
Gallium nitride (GaN) nanowire, as a type of wide bandgap nanomaterial, has attracted considerable interest because of its outstanding physicochemical properties and applications in energy storage and photoelectric devices. In this study, we prepared GaN nanowires via a facile chemical vapor deposition method and investigated their nonlinear absorption responses ranging from ultraviolet to near-infrared in the z-scan technology under irradiation by picosecond laser pulses. The experiment revealed that GaN nanowires exhibit remarkable nonlinear absorption characteristics attributed to their wide bandgap and nanostructure, including saturable absorption and reverse saturable absorption. When compared to bulk GaN crystals, the nanowires provide a richer and more potent set of nonlinear optical effects. Furthermore, we conducted an analysis of the corresponding electronic transition processes associated with photon absorption. Under high peak power density laser excitation, two-photon absorption or three-photon absorption dominate, with maximum modulation depths of 73.6%, 74.9%, 63.1% and 64.3% at 266 nm, 355 nm, 532 nm, and 1064 nm, respectively, corresponding to absorption coefficients of 0.22 cm/GW, 0.28 cm/GW, 0.08 cm/GW, and 2.82 ×10-4 cm3/GW2. At lower peak energy densities, GaN nanowires demonstrate rare and excellent saturation absorption characteristics at wavelength of 355 nm due to interband transitions, while saturable absorption is also observed at 532 nm and 1064 nm due to band tail absorption. The modulation depths are 85.2%, 41.9%, and 13.7% for 355 nm, 532 nm, and 1064 nm, corresponding to saturation intensities of 3.39 GW/cm2, 5.58 GW/cm2 and 14.13 GW/cm2. This indicates that GaN nanowires can be utilized as broadband optical limiters and high-performance pulse laser modulating devices, particularly for scarce ultraviolet optical limiters, and saturable absorbers for ultraviolet and visible lasers. Furthermore, our study demonstrates the application potential of wide bandgap nanomaterials in nonlinear optical devices.
Collapse
|
2
|
Zhao F, Liao G, Liu M, Wang T, Zhao Y, Xu J, Yin X. Precise Preparation of Triarylboron-Based Graphdiyne Analogues for Gas Separation. Angew Chem Int Ed Engl 2023:e202317294. [PMID: 38087842 DOI: 10.1002/anie.202317294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Indexed: 12/23/2023]
Abstract
A series of triarylboron-based graphdiyne analogues (TAB-GDYs) with tunable pore size were prepared through copper mediated coupling reaction. The elemental composition, chemical bond, morphology of TAB-GDYs were well characterized. The crystallinity was confirmed by selected area electron diffraction (SAED) and stacking modes were studied in combination with high resolution transmission electron microscope (HRTEM) and structure simulation. The absorption and desorption isotherm revealed relatively high specific surface area of these TAB-GDYs up to 788 m2 g-1 for TMTAB-GDY, which decreased as pore size enlarged. TAB-GDYs exhibit certain selectivity for CO2 /N2 (21.9), CO2 /CH4 (5.3), CO2 /H2 (41.8) and C2 H2 /CO2 (2.3). This work has developed a series of boron containing two-dimensional frameworks with clear structures and good stability, and their tunable pore sizes have laid the foundation for future applications in the gas separation field.
Collapse
Affiliation(s)
- Fenggui Zhao
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 102488, Beijing, P. R. China
| | - Guanming Liao
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 102488, Beijing, P. R. China
| | - Meiyan Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 102488, Beijing, P. R. China
| | - Tao Wang
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 102488, Beijing, P. R. China
| | - Yingjie Zhao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, 266042, Qingdao, P. R. China
| | - Jialiang Xu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, 300350, Tianjin, P. R. China
| | - Xiaodong Yin
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 102488, Beijing, P. R. China
| |
Collapse
|
3
|
Hou N, Fang XH. Influence of Alkali Metal Doping and BN Substitution on the Second-Order Nonlinear Optical Properties of Graphyne: A Theoretical Perspective. Inorg Chem 2022; 61:10756-10767. [PMID: 35794725 DOI: 10.1021/acs.inorgchem.2c00970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electronic and nonlinear optical (NLO) properties of BN-substituted graphynes and the corresponding alkali-doped hybrid systems have been determined using density functional theory. When the carbon atoms in the graphyne are replaced by BN pairs, the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap (Egap) increases to some extent, and the static first hyperpolarizabilities (β0) of the novel systems hardly increase. However, when an alkali atom is introduced on the surface of BN-substituted graphyne, the doping effect can effectively modulate the electronic and NLO properties. Doping the alkali atom can significantly narrow the wide Egap of BN-substituted graphynes in the range of 1.03-2.03 eV. Furthermore, the doping effect brings considerable β0 values to these alkali-doped systems, which are 52-3609 au for Li-doped systems and 3258-211 053 au for Na/K-doped ones. The result reveals that the β0 values of alkali-doped complexes are influenced by the atomic number of alkali metals and the proportion of BN pairs. The nature of the excellent NLO responses of alkali-doped complexes can be understood by the low excitation energy of the crucial excited state and the analysis of the first hyperpolarizability density. Besides, these alkali-doped complexes have a deep-ultraviolet working region. Therefore, the combined effect of alkali metal doping and BN substitution can be an excellent strategy to design novel high-performance NLO materials based on graphyne.
Collapse
Affiliation(s)
- Na Hou
- Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China
| | - Xiao-Hui Fang
- Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China
| |
Collapse
|
4
|
Hou N, Fang XH, Feng R. DFT study of the influence of boron/nitrogen substitution on the electronic and nonlinear optical properties of the benzene-substituted graphdiyne fragment. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Properties, synthesis, and recent advancement in photocatalytic applications of graphdiyne: A review. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119825] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
6
|
Xie Z, Zhang B, Ge Y, Zhu Y, Nie G, Song Y, Lim CK, Zhang H, Prasad PN. Chemistry, Functionalization, and Applications of Recent Monoelemental Two-Dimensional Materials and Their Heterostructures. Chem Rev 2021; 122:1127-1207. [PMID: 34780169 DOI: 10.1021/acs.chemrev.1c00165] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The past decades have witnessed a rapid expansion in investigations of two-dimensional (2D) monoelemental materials (Xenes), which are promising materials in various fields, including applications in optoelectronic devices, biomedicine, catalysis, and energy storage. Apart from graphene and phosphorene, recently emerging 2D Xenes, specifically graphdiyne, borophene, arsenene, antimonene, bismuthene, and tellurene, have attracted considerable interest due to their unique optical, electrical, and catalytic properties, endowing them a broader range of intriguing applications. In this review, the structures and properties of these emerging Xenes are summarized based on theoretical and experimental results. The synthetic approaches for their fabrication, mainly bottom-up and top-down, are presented. Surface modification strategies are also shown. The wide applications of these emerging Xenes in nonlinear optical devices, optoelectronics, catalysis, biomedicine, and energy application are further discussed. Finally, this review concludes with an assessment of the current status, a description of existing scientific and application challenges, and a discussion of possible directions to advance this fertile field.
Collapse
Affiliation(s)
- Zhongjian Xie
- Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen 518038, Guangdong, P.R. China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, P.R. China
| | - Bin Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, P.R. China
| | - Yanqi Ge
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, P.R. China
| | - Yao Zhu
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, China
| | - Guohui Nie
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, P.R. China
| | - YuFeng Song
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, P.R. China
| | - Chang-Keun Lim
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan City 010000, Kazakhstan
| | - Han Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, P.R. China
| | - Paras N Prasad
- Institute for Lasers, Photonics, and Biophotonics and Department of Chemistry, University at Buffalo, State University of New York, Buffalo 14260-3000, United States
| |
Collapse
|
7
|
Sun Y, Yuan J, Xin Y, Liu G, Zhang F, Xing F, Fu S. Broadband saturated absorption properties of bismuthene nanosheets. RSC Adv 2021; 11:35046-35050. [PMID: 35494726 PMCID: PMC9043022 DOI: 10.1039/d1ra06046e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/21/2021] [Indexed: 11/25/2022] Open
Abstract
The nonlinear absorption properties of two-dimensional bismuthene nanosheets have great value for application in the photonics field. In this work, bismuthene nanosheets with a thickness of around 4 nm were prepared using the liquid phase exfoliation (LPE) method. The infrared waveband nonlinear absorption properties of bismuthene nanosheets were investigated using the open aperture Z-scan technique with four wavelengths of 950, 1064, 1200, and 1500 nm, respectively. Bismuthene nanosheets exhibited broadband saturated absorption (SA) properties at the infrared band. The lower saturated intensity indicated the advantages of bismuthene as a saturated absorber in the application of ultra-fast lasers in the infrared band.
Collapse
Affiliation(s)
- Yan Sun
- School of Physics and Optoelectronic Engineering, Shandong University of Technology Zibo 255000 China
| | - Junjie Yuan
- School of Physics and Optoelectronic Engineering, Shandong University of Technology Zibo 255000 China
| | - Yi Xin
- School of Physics and Optoelectronic Engineering, Shandong University of Technology Zibo 255000 China
| | - Guowei Liu
- School of Physics and Optoelectronic Engineering, Shandong University of Technology Zibo 255000 China
| | - Fang Zhang
- School of Physics and Optoelectronic Engineering, Shandong University of Technology Zibo 255000 China
| | - Fei Xing
- School of Physics and Optoelectronic Engineering, Shandong University of Technology Zibo 255000 China
| | - Shenggui Fu
- School of Physics and Optoelectronic Engineering, Shandong University of Technology Zibo 255000 China
| |
Collapse
|
8
|
Xu L, Sun J, Tang T, Zhang H, Sun M, Zhang J, Li J, Huang B, Wang Z, Xie Z, Wong WY. Metallated Graphynes as a New Class of Photofunctional 2D Organometallic Nanosheets. Angew Chem Int Ed Engl 2021; 60:11326-11334. [PMID: 33626224 DOI: 10.1002/anie.202014835] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/31/2021] [Indexed: 11/11/2022]
Abstract
Two-dimensional (2D) nanomaterials are attracting much attention due to their excellent electronic and optical properties. Here, we report the first experimental preparation of two free-standing mercurated graphyne nanosheets via the interface-assisted bottom-up method, which integrates both the advantages of metal center and graphyne. The continuous large-area nanosheets derived from the chemical growth show the layered molecular structural arrangement, controllable thickness and enhanced π-conjugation, which result in their stable and outstanding broadband nonlinear saturable absorption (SA) properties (at both 532 and 1064 nm). The passively Q-switched (PQS) performances of these two nanosheets as the saturable absorbers are comparable to or higher than those of the state-of-the-art 2D nanomaterials (such as graphene, black phosphorus, MoS2 , γ-graphyne, etc.). Our results illustrate that the two metallated graphynes could act not only as a new class of 2D carbon-rich materials, but also as inexpensive and easily available optoelectronic materials for device fabrication.
Collapse
Affiliation(s)
- Linli Xu
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University (PolyU), Hung Hom, Hong Kong, P. R. China.,PolyU Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Jibin Sun
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing, 100190, P. R. China
| | - Tianhong Tang
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Hongyang Zhang
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University (PolyU), Hung Hom, Hong Kong, P. R. China.,PolyU Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University (PolyU), Hung Hom, Hong Kong, P. R. China.,PolyU Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Jianqi Zhang
- National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Jiahua Li
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University (PolyU), Hung Hom, Hong Kong, P. R. China.,PolyU Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University (PolyU), Hung Hom, Hong Kong, P. R. China.,PolyU Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Zhengping Wang
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Zheng Xie
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing, 100190, P. R. China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University (PolyU), Hung Hom, Hong Kong, P. R. China.,PolyU Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| |
Collapse
|
9
|
Xu L, Sun J, Tang T, Zhang H, Sun M, Zhang J, Li J, Huang B, Wang Z, Xie Z, Wong W. Metallated Graphynes as a New Class of Photofunctional 2D Organometallic Nanosheets. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Linli Xu
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy The Hong Kong Polytechnic University (PolyU) Hung Hom Hong Kong P. R. China
- PolyU Shenzhen Research Institute Shenzhen 518057 P. R. China
| | - Jibin Sun
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences 29 Zhongguancun East Road, Haidian District Beijing 100190 P. R. China
| | - Tianhong Tang
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials Shandong University Jinan 250100 P. R. China
| | - Hongyang Zhang
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy The Hong Kong Polytechnic University (PolyU) Hung Hom Hong Kong P. R. China
- PolyU Shenzhen Research Institute Shenzhen 518057 P. R. China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy The Hong Kong Polytechnic University (PolyU) Hung Hom Hong Kong P. R. China
- PolyU Shenzhen Research Institute Shenzhen 518057 P. R. China
| | - Jianqi Zhang
- National Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Jiahua Li
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy The Hong Kong Polytechnic University (PolyU) Hung Hom Hong Kong P. R. China
- PolyU Shenzhen Research Institute Shenzhen 518057 P. R. China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy The Hong Kong Polytechnic University (PolyU) Hung Hom Hong Kong P. R. China
- PolyU Shenzhen Research Institute Shenzhen 518057 P. R. China
| | - Zhengping Wang
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials Shandong University Jinan 250100 P. R. China
| | - Zheng Xie
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences 29 Zhongguancun East Road, Haidian District Beijing 100190 P. R. China
| | - Wai‐Yeung Wong
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy The Hong Kong Polytechnic University (PolyU) Hung Hom Hong Kong P. R. China
- PolyU Shenzhen Research Institute Shenzhen 518057 P. R. China
| |
Collapse
|
10
|
Li J, Wang C, Zhang B, Wang Z, Yu W, Chen Y, Liu X, Guo Z, Zhang H. Artificial Carbon Graphdiyne: Status and Challenges in Nonlinear Photonic and Optoelectronic Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49281-49296. [PMID: 33100013 DOI: 10.1021/acsami.0c13030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The creative integration of sp-hybridized carbon atoms into artificial carbon graphdiyne has led to graphdiyne with superior properties in terms of uniformly distributed pores, ambipolar carrier transport, natural bandgap, and broadband absorption. Consequently, graphdiyne, regarded as a promising carbon material, has garnered particular attention in light-matter interactions. Light-matter interactions play an important role in optical information technology and meet the increasing demand for various energy sources. Herein, the status and challenges in nonlinear photonic and optoelectronic applications of graphdiyne, which are still in the infancy stage, are summarized. Furthermore, the bottleneck and perspective of graphdiyne in these aspects are discussed. It is therefore anticipated that this review could promote the development of graphdiyne in photonic and optoelectronic fields.
Collapse
Affiliation(s)
- Jiaofu Li
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Cong Wang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Bin Zhang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Zhenhong Wang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Wenjie Yu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, CAS, 865 Chang Ning Road, Shanghai 200050, P. R. China
| | - Yong Chen
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Xinke Liu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Zhongyi Guo
- School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan 523808, China
| | - Han Zhang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
11
|
Hao Q, Guo J, Yin L, Ning T, Ge Y, Liu J. Watt-level ultrafast bulk laser with a graphdiyne saturable absorber mirror. OPTICS LETTERS 2020; 45:5554-5557. [PMID: 33001945 DOI: 10.1364/ol.404540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
Few-layered graphdiyne (GDY) was successfully fabricated and applied as a saturable absorber to generate a watt-level ultrafast solid-state bulk laser. The maximum output power of up to 1.27 W was obtained with a pulse width of 23 ps and a repetition rate of 92.9 MHz, using Nd:YVO4 crystal as a gain medium. To the best of our knowledge, this is the first application of GDY as a mode locker in all-solid-state bulk lasers. These results indicate the promising potential of GDY for producing high-power ultrafast lasers.
Collapse
|