1
|
Xu Z, Zhang X, Shan Q, Zhu W, Jiang S, Li R, Wu X, Huo M, Ying B, Chen C, Chen X, Zhang K, Chen W, Chen J. Fluorocarbon-Functionalized Polymerization-Induced Self-Assembly Nanoparticles Alleviate Hypoxia to Enhance Sonodynamic Cancer Therapy. Adv Healthc Mater 2024:e2403251. [PMID: 39487634 DOI: 10.1002/adhm.202403251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/11/2024] [Indexed: 11/04/2024]
Abstract
Sonodynamic therapy (SDT) is an ultrasound-based, noninvasive cancer treatment that targets tumor cells by triggering reactive oxygen species production. However, the limited accumulation of sonosensitizers and the insufficient supply of O2 to the hypoxic environment at the tumor site greatly limit the effectiveness of SDT. To address these issues, positively charged porphyrin-containing nanoparticles (NPs) from self-assembling of fluorocarbon/polyethylene glycol amphiphilic block copolymer, which is synthesized through reversible addition-fragmentation chain transfer polymerization, are constructed. The NPs with fluorocarbon core and positively charged hydrophilic shells not only stabilize the sonosensitizer and improve its cellular uptake, but also act as an O2 carrier alleviating the hypoxic tumor environment. In vitro and in vivo experiments demonstrate that the NPs effectively deliver O2 to the tumor and supply sufficient O2 to Renca cells after ultrasound treatment. Consequently, the NPs inhibit hypoxia-induced resistance to SDT and significantly produce reactive oxygen species by activated porphyrin moieties, inducing apoptosis in cancer cells. These oxygen-enhanced sonosensitizer NPs hold promise for cancer therapies such as photodynamic therapy, radiotherapy, and chemotherapy by overcoming hypoxia-induced resistance.
Collapse
Affiliation(s)
- Zhikang Xu
- Department of Ultrasound in Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Xuanxuan Zhang
- Department of Ultrasound in Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Qianyun Shan
- Department of Ultrasound in Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Wei Zhu
- Department of Ultrasound in Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Shangxu Jiang
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Rumei Li
- Department of Ultrasound in Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Xiaojin Wu
- Department of Ultrasound in Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Meng Huo
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Bin Ying
- Department of Ultrasound in Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Chen Chen
- Department of Ultrasound in Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Xiaoting Chen
- Department of Ultrasound in Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Kai Zhang
- Department of Ultrasound in Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Weiyu Chen
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
- Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Jian Chen
- Department of Ultrasound in Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| |
Collapse
|
2
|
Hu J, Yan L, Cao Z, Geng B, Cao X, Liu B, Guo J, Zhu J. Tumor Microenvironment Activated Cu Crosslinked Near-Infrared Sonosensitizers for Visualized Cuproptosis-Enhanced Sonodynamic Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407196. [PMID: 39331855 DOI: 10.1002/advs.202407196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/19/2024] [Indexed: 09/29/2024]
Abstract
Reactive oxygen species (ROS)-mediated sonodynamic therapy (SDT) holds increasing potential in treating deep-seated tumor owing to the high tissue-penetration depth. However, the inevitable accumulation of sonosensitizers in normal tissues not only make it difficult to realize the in situ SDT, but also induces sonodynamic effects in normal tissues. Herein, this work reports the passivation and selective activation strategies for the sonodynamic and near-infrared (NIR) imaging performances of an intelligent antitumor theranostic platform termed Cu-IR783 nanoparticles (NPs). Owing to the ruptured coordination bond between IR783 with Cu ions by responding to tumor microenvironment (TME), the selective activation of IR783 only occurred in tumor tissues to achieve the visualized in-situ SDT. The tumor-specific released Cu ions not only realized the cascade amplification of ROS generation through Cu+-mediated Fenton-like reaction, but also triggered cuproptosis through Cu+-induced DLAT oligomerization and mitochondrial dysfunction. More importantly, the immunosuppressive TME can be reversed by the greatly enhanced ROS levels and high-efficiency cuproptosis, ultimately inducing immunogenic cell death that promotes robust systemic immune responses for the eradication of primary tumors and suppression of distant tumors. This work provides a distinct paradigm of the integration of SDT, CDT, and cuproptosis in a controlled manner to achieve visualized in-situ antitumor therapy.
Collapse
Affiliation(s)
- Jinyan Hu
- Department of Health Toxicology, College of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Lang Yan
- Department of Health Toxicology, College of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Zhi Cao
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Bijiang Geng
- Department of Health Toxicology, College of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Xiqian Cao
- Department of Health Toxicology, College of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Bing Liu
- Department of Urology, The Third Affiliated Hospital, Naval Medical University, Shanghai, 200433, China
| | - Jiaming Guo
- Department of Radiation Medicine, College of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Jiangbo Zhu
- Department of Health Toxicology, College of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
3
|
Wu X, Chen F, Zhang Q, Tu J. What Is the Magical Cavitation Bubble: A Holistic Perspective to Trigger Advanced Bubbles, Nano-Sonocatalysts, and Cellular Sonosensitizers. BME FRONTIERS 2024; 5:0067. [PMID: 39301016 PMCID: PMC11411164 DOI: 10.34133/bmef.0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024] Open
Abstract
Sonodynamic therapy (SDT) has emerged as a novel and highly researched advancement in the medical field. Traditional ultrasound contrast agents and novel bubble-shaped agents are used to stimulate cavitation and enhance SDT efficiency. However, the impact of artificially modified shell structures on the acoustic properties of microbubbles remains to be explored. Alternatively, in the absence of bubble-shaped agents, some clinically available organic sonosensitizers and advanced inorganic materials are also used to enhance the efficacy of SDT. Diagnostic and therapeutic ultrasound can also activate cavitation bubbles, which supply energy to sonosensitive agents, leading to the production of cytotoxic free radicals to achieve therapeutic effects. While inorganic materials often spark controversy in clinical applications, their relatively simple structure enables researchers to gain insight into the mechanism by which SDT produces various free radicals. Some organic-inorganic hybrid sonosensitive systems have also been reported, combining the benefits of inorganic and organic sonosensitive agents. Alternatively, by employing cell surface modification engineering to enable cells to perform functions such as immune escape, drug loading, gas loading, and sonosensitivity, cellular sonosensitizers have also been developed. However, further exploration is needed on the acoustic properties, ability to generate reactive oxygen species (ROS), and potential clinical application of this cellular sonosensitizer. This review offers a comprehensive analysis of vesical microbubbles and nanoscale sonocatalysts, including organic, inorganic, combined organic-inorganic sonosensitizers, and cellular sonosensitizers. This analysis will enhance our understanding of SDT and demonstrate its important potential in transforming medical applications.
Collapse
Affiliation(s)
- Xiaoge Wu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Fulong Chen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Qi Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Juan Tu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| |
Collapse
|
4
|
An J, Zhang Z, Zhang J, Zhang L, Liang G. Research progress in tumor therapy of carrier-free nanodrug. Biomed Pharmacother 2024; 178:117258. [PMID: 39111083 DOI: 10.1016/j.biopha.2024.117258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/24/2024] [Accepted: 08/02/2024] [Indexed: 08/25/2024] Open
Abstract
Carrier-free nanodrugs are a novel type of drug constructed by the self-assembly of drug molecules without carrier involvement. They have the characteristics of small particle size, easy penetration of various barriers, targeting tumors, and efficient release. In recent years, carrier-free nanodrugs have become a hot topic in tumor therapy as they solve the problems of low drug loading, poor biocompatibility, and low uptake efficiency of carrier nanodrugs. A series of recent studies have shown that carrier-free nanodrugs play a vital role in the treatment of various tumors, with similar or better effects than carrier nanodrugs. Based on the literature published in the past decades, this paper first summarizes the recent progress in the assembly modes of carrier-free nanodrugs, then describes common therapeutic modalities of carrier-free nanodrugs in tumor therapy, and finally depicts the existing challenges along with future trends of carrier-free nanodrugs. We hope that this review can guide the design and application of carrier-free nanodrugs in the future.
Collapse
Affiliation(s)
- Junling An
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, Henan, People's Republic of China.
| | - Zequn Zhang
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, Henan, People's Republic of China.
| | - Jinrui Zhang
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, Henan, People's Republic of China.
| | - Lingyang Zhang
- Institute of Biomedical Research, Henan Academy of Sciences, Zhengzhou, Henan, People's Republic of China.
| | - Gaofeng Liang
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, Henan, People's Republic of China; Institute of Biomedical Research, Henan Academy of Sciences, Zhengzhou, Henan, People's Republic of China.
| |
Collapse
|
5
|
Huang H, Zheng Y, Chang M, Song J, Xia L, Wu C, Jia W, Ren H, Feng W, Chen Y. Ultrasound-Based Micro-/Nanosystems for Biomedical Applications. Chem Rev 2024; 124:8307-8472. [PMID: 38924776 DOI: 10.1021/acs.chemrev.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Due to the intrinsic non-invasive nature, cost-effectiveness, high safety, and real-time capabilities, besides diagnostic imaging, ultrasound as a typical mechanical wave has been extensively developed as a physical tool for versatile biomedical applications. Especially, the prosperity of nanotechnology and nanomedicine invigorates the landscape of ultrasound-based medicine. The unprecedented surge in research enthusiasm and dedicated efforts have led to a mass of multifunctional micro-/nanosystems being applied in ultrasound biomedicine, facilitating precise diagnosis, effective treatment, and personalized theranostics. The effective deployment of versatile ultrasound-based micro-/nanosystems in biomedical applications is rooted in a profound understanding of the relationship among composition, structure, property, bioactivity, application, and performance. In this comprehensive review, we elaborate on the general principles regarding the design, synthesis, functionalization, and optimization of ultrasound-based micro-/nanosystems for abundant biomedical applications. In particular, recent advancements in ultrasound-based micro-/nanosystems for diagnostic imaging are meticulously summarized. Furthermore, we systematically elucidate state-of-the-art studies concerning recent progress in ultrasound-based micro-/nanosystems for therapeutic applications targeting various pathological abnormalities including cancer, bacterial infection, brain diseases, cardiovascular diseases, and metabolic diseases. Finally, we conclude and provide an outlook on this research field with an in-depth discussion of the challenges faced and future developments for further extensive clinical translation and application.
Collapse
Affiliation(s)
- Hui Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yi Zheng
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Jun Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wei Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yu Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
6
|
Zhao RR, Wu JH, Tong LW, Li JY, Lu YS, Shao JW. Multifunctional metal-coordinated Co-assembled carrier-free nanoplatform based on dual-drugs for ferroptosis-mediated cocktail therapy of hepatocellular carcinoma growth and metastasis. J Colloid Interface Sci 2024; 660:257-276. [PMID: 38244494 DOI: 10.1016/j.jcis.2024.01.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/22/2024]
Abstract
The heterogeneity of hepatocellular carcinoma (HCC) and the complexity of the tumor microenvironment (TME) pose challenges to efficient drug delivery and the antitumor efficacy of combined or synergistic therapies. Herein, a metal-coordinated carrier-free nanodrug (named as USFe3+ LA NPs) was developed for ferroptosis-mediated multimodal synergistic anti-HCC. Natural product ursolic acid (UA) was incorporated to enhance the sensitivity of tumor cells to sorafenib (SRF). Surface decoration of cell penetration peptide and epithelial cell adhesion molecule aptamer facilitated the uptake of USFe3+ LA NPs by HepG2 cells. Meanwhile, Fe3+ ions could react with intracellular hydrogen peroxide, generating toxic hydroxyl radical (·OH) for chemodynamical therapy (CDT) and amplified ferroptosis by cystine/glutamate antiporter system (System Xc-), which promoted the consumption of glutathione (GSH) and inhibited the expression of glutathione peroxidase 4 (GPX4). Notably, these all-in-one nanodrugs could inhibit tumor metastasis and induced immunogenic cell death (ICD). Last but not least, the nanodrugs demonstrated favorable biocompatibility, augmenting the immune response against the programmed death-ligand 1 (PD-L1) by increasing cytotoxic T cell infiltration. In vivo studies revealed significant suppression of tumor growth and distant metastasis. Overall, our work introduced a novel strategy for applications of metal-coordinated co-assembled carrier-free nano-delivery system in HCC combination therapy, especially in the realms of cancer metastasis prevention and immunotherapy.
Collapse
Affiliation(s)
- Rui-Rui Zhao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Ju-Hong Wu
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Ling-Wu Tong
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jin-Yu Li
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yu-Sheng Lu
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| | - Jing-Wei Shao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China; Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
7
|
Salvi BV, Kantak M, Kharangate K, Trotta F, Maher T, Shende P. Blind Spots in Development of Nanomedicines. Technol Cancer Res Treat 2024; 23:15330338241245342. [PMID: 38567427 PMCID: PMC10993670 DOI: 10.1177/15330338241245342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/26/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
The field of nanomedicine demonstrates immense advantages and noteworthy expansion compared to conventional drug delivery systems like tablet, capsules, etc. Despite the innumerable advantages, it holds certain shortcomings in the form of blind spots that need to be assessed before the successful clinical translation. This perspective highlights the foremost blind spots in nanomedicine and emphasizes the challenges faced before the entry into the market, including the need for provision of safety and efficacy data by the regulatory agencies like FDA. The significant revolution of nanomedicine in the human life, particularly in patient well-being, necessitates to identify the blind spots and overcome them for effective management and treatment of ailments.
Collapse
Affiliation(s)
- Bhagyashree V. Salvi
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| | - Maithali Kantak
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| | - Kalyani Kharangate
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| | - Francesco Trotta
- Department of Chemistry, IFM, University of Torino, Turin, Italy
| | - Timothy Maher
- Massachusetts College of Pharmacy and Health Sciences (MCPHS University), Boston, USA
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| |
Collapse
|
8
|
Sivasubramanian M, Wang Y, Lo LW, Liao LD. Personalized Cancer Therapeutics Using Photoacoustic Imaging-Guided Sonodynamic Therapy. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:1682-1690. [PMID: 37216240 DOI: 10.1109/tuffc.2023.3277283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Sonodynamic therapy (SDT) is a promising approach for cancer treatment that uses sonosensitizers (SNSs) to generate reactive oxygen species (ROS) in the presence of ultrasound (US). However, SDT is oxygen-dependent and requires an imaging tool to monitor the tumor microenvironment and guide treatment. Photoacoustic imaging (PAI) is a noninvasive and powerful imaging tool that offers high spatial resolution and deep tissue penetration. PAI can quantitatively assess tumor oxygen saturation (sO2) and guide SDT by monitoring time-dependent sO2 changes in the tumor microenvironment. Here, we discuss recent advances in PAI-guided SDT for cancer therapy. We discuss various exogenous contrast agents and nanomaterial-based SNSs developed for PAI-guided SDT. Additionally, combining SDT with other therapies, including photothermal (PTT) therapy, can enhance its therapeutic effect. However, the application of nanomaterial-based contrast agents in PAI-guided SDT for cancer therapy remains challenging due to the lack of simple designs, the need for extensive pharmacokinetic studies, and high production costs. Integrated efforts from researchers, clinicians, and industry consortia are necessary for the successful clinical translation of these agents and SDT for personalized cancer therapy. PAI-guided SDT shows the potential to revolutionize cancer therapy and improve patient outcomes, but further research is necessary to realize its full potential.
Collapse
|
9
|
Zhang X, Hu S, Huang L, Chen X, Wang X, Fu YN, Sun H, Li G, Wang X. Advance Progress in Assembly Mechanisms of Carrier-Free Nanodrugs for Cancer Treatment. Molecules 2023; 28:7065. [PMID: 37894544 PMCID: PMC10608994 DOI: 10.3390/molecules28207065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Nanocarriers have been widely studied and applied in the field of cancer treatment. However, conventional nanocarriers still suffer from complicated preparation processes, low drug loading, and potential toxicity of carriers themselves. To tackle the hindrance, carrier-free nanodrugs with biological activity have received increasing attention in cancer therapy. Extensive efforts have been made to exploit new self-assembly methods and mechanisms to expand the scope of carrier-free nanodrugs with enhanced therapeutic performance. In this review, we summarize the advanced progress and applications of carrier-free nanodrugs based on different types of assembly mechanisms and strategies, which involved noncovalent interactions, a combination of covalent bonds and noncovalent interactions, and metal ions-coordinated self-assembly. These carrier-free nanodrugs are introduced in detail according to their assembly and antitumor applications. Finally, the prospects and existing challenges of carrier-free nanodrugs in future development and clinical application are discussed. We hope that this comprehensive review will provide new insights into the rational design of more effective carrier-free nanodrug systems and advancing clinical cancer and other diseases (e.g., bacterial infections) infection treatment.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuyang Hu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lifei Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiyue Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ya-nan Fu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hui Sun
- Department of Hepatology, Tongliao Infectious Disease Hospital, Tongliao 028000, China
- Department of Interventional Ultrasound, PLA Medical College & Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Guofeng Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xing Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
10
|
Liang Y, Zhang M, Zhang Y, Zhang M. Ultrasound Sonosensitizers for Tumor Sonodynamic Therapy and Imaging: A New Direction with Clinical Translation. Molecules 2023; 28:6484. [PMID: 37764260 PMCID: PMC10537038 DOI: 10.3390/molecules28186484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
With the rapid development of sonodynamic therapy (SDT), sonosensitizers have evolved from traditional treatments to comprehensive diagnostics and therapies. Sonosensitizers play a crucial role in the integration of ultrasound imaging (USI), X-ray computed tomography (CT), and magnetic resonance imaging (MRI) diagnostics while also playing a therapeutic role. This review was based on recent articles on multifunctional sonosensitizers that were used in SDT for the treatment of cancer and have the potential for clinical USI, CT, and MRI applications. Next, some of the shortcomings of the clinical examination and the results of sonosensitizers in animal imaging were described. Finally, this paper attempted to inform the future development of sonosensitizers in the field of integrative diagnostics and therapeutics and to point out current problems and prospects for their application.
Collapse
Affiliation(s)
- Yunlong Liang
- Second Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang 712046, China;
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China;
| | - Yujie Zhang
- School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China;
| | - Mingxin Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi’an Medical University, Xi’an 710077, China
| |
Collapse
|
11
|
Jiang Z, Xiao W, Fu Q. Stimuli responsive nanosonosensitizers for sonodynamic therapy. J Control Release 2023; 361:547-567. [PMID: 37567504 DOI: 10.1016/j.jconrel.2023.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/27/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
Sonodynamic therapy (SDT) has gained significant attention in the treatment of deep tumors and multidrug-resistant (MDR) bacterial infections due to its high tissue penetration depth, high spatiotemporal selectivity, and noninvasive therapeutic method. SDT combines low-intensity ultrasound (US) and sonosensitizers to produce lethal reactive oxygen species (ROS) and external damage, which is the main mechanism behind this therapy. However, traditional organic small-molecule sonosensitizers display poor water solubility, strong phototoxicity, and insufficient targeting ability. Inorganic sonosensitizers, on the other hand, have low ROS yield and poor biocompatibility. These drawbacks have hindered SDT's clinical transformation and application. Hence, designing stimuli-responsive nano-sonosensitizers that make use of the lesion's local microenvironment characteristics and US stimulation is an excellent alternative for achieving efficient, specific, and safe treatment. In this review, we provide a comprehensive overview of the currently accepted mechanisms in SDT and discuss the application of responsive nano-sonosensitizers in the treatment of tumor and bacterial infections. Additionally, we emphasize the significance of the principle and process of response, based on the classification of response patterns. Finally, this review emphasizes the potential limitations and future perspectives of SDT that need to be addressed to promote its clinical transformation.
Collapse
Affiliation(s)
- Zeyu Jiang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China; Department of Cardiovascular Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266003, China
| | - Wenjing Xiao
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
12
|
Gu QS, Yang ZC, Chao JJ, Li L, Mao GJ, Xu F, Li CY. Tumor-Targeting Probe for Dual-Modal Imaging of Cysteine In Vivo. Anal Chem 2023; 95:12478-12486. [PMID: 37555783 DOI: 10.1021/acs.analchem.3c02134] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Cysteine (Cys) is a crucial biological thiol that has a vital function in preserving redox homeostasis in organisms. Studies have shown that Cys is closely related to the development of cancer. Thus, it is necessary to design an efficient method to detect Cys for an effective cancer diagnosis. In this work, a novel tumor-targeting probe (Bio-Cy-S) for dual-modal (NIR fluorescence and photoacoustic) Cys detection is designed. The probe exhibits high selectivity and sensitivity toward Cys. After reaction with Cys, both NIR fluorescence and photoacoustic signals are activated. Bio-Cy-S has been applied for the dual-modal detection of Cys levels in living cells, and it can be used to distinguish normal cells from cancer cells by different Cys levels. In addition, the probe is capable of facilitating dual-modal imaging for monitoring changes in Cys levels in tumor-bearing mice. More importantly, the excellent tumor-targeting ability of the probe greatly improves the signal-to-noise ratio of imaging. To the best of our knowledge, this is the first Cys probe to combine targeting and dual-modal imaging performance for cancer diagnosis.
Collapse
Affiliation(s)
- Qing-Song Gu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Zhi-Chao Yang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Jing-Jing Chao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Li Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Guo-Jiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Fen Xu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Chun-Yan Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| |
Collapse
|
13
|
Yang F, Xu M, Chen X, Luo Y. Spotlight on porphyrins: Classifications, mechanisms and medical applications. Biomed Pharmacother 2023; 164:114933. [PMID: 37236030 DOI: 10.1016/j.biopha.2023.114933] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023] Open
Abstract
Photodynamic therapy (PDT) and sonodynamic therapy (SDT) are non-invasive treatment methods with obvious inhibitory effect on tumors and have few side effects, which have been widely concerned and explored by researchers. Sensitizer is the main factor in determining the therapeutic effect of PDT and SDT. Porphyrins, a group of organic compounds widespread in nature, can be activated by light or ultrasound and produce reactive oxygen species. Therefore, porphyrins as sensitizers in PDT have been widely explored and investigated for many years. Herein, we summarize the classical porphyrin compounds and their applications and mechanisms in PDT and SDT. The application of porphyrin in clinical diagnosis and imaging is also discussed. In conclusion, porphyrins have good application prospects in disease treatment as an important part of PDT or SDT, and in clinical diagnosis and imaging.
Collapse
Affiliation(s)
- Fuyu Yang
- National Health Commission Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin 150001, China
| | - Meiqi Xu
- National Health Commission Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin 150001, China
| | - Xiaoyu Chen
- Department of Neonatal, The Fourth Hospital of Harbin Medical University, Harbin
| | - Yakun Luo
- National Health Commission Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin 150001, China.
| |
Collapse
|
14
|
Xu X, Liu A, Liu S, Ma Y, Zhang X, Zhang M, Zhao J, Sun S, Sun X. Application of molecular dynamics simulation in self-assembled cancer nanomedicine. Biomater Res 2023; 27:39. [PMID: 37143168 PMCID: PMC10161522 DOI: 10.1186/s40824-023-00386-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/21/2023] [Indexed: 05/06/2023] Open
Abstract
Self-assembled nanomedicine holds great potential in cancer theragnostic. The structures and dynamics of nanomedicine can be affected by a variety of non-covalent interactions, so it is essential to ensure the self-assembly process at atomic level. Molecular dynamics (MD) simulation is a key technology to link microcosm and macroscale. Along with the rapid development of computational power and simulation methods, scientists could simulate the specific process of intermolecular interactions. Thus, some experimental observations could be explained at microscopic level and the nanomedicine synthesis process would have traces to follow. This review not only outlines the concept, basic principle, and the parameter setting of MD simulation, but also highlights the recent progress in MD simulation for self-assembled cancer nanomedicine. In addition, the physicochemical parameters of self-assembly structure and interaction between various assembled molecules under MD simulation are also discussed. Therefore, this review will help advanced and novice researchers to quickly zoom in on fundamental information and gather some thought-provoking ideas to advance this subfield of self-assembled cancer nanomedicine.
Collapse
Affiliation(s)
- Xueli Xu
- School of Science, Shandong Jianzhu University, Jinan, 250101, China
| | - Ao Liu
- School of Science, Shandong Jianzhu University, Jinan, 250101, China
| | - Shuangqing Liu
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Yanling Ma
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Xinyu Zhang
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Meng Zhang
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Jinhua Zhao
- School of Science, Shandong Jianzhu University, Jinan, 250101, China
| | - Shuo Sun
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, 02115, USA
| | - Xiao Sun
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China.
| |
Collapse
|
15
|
Li Y, Lin L, Xie J, Wei L, Xiong S, Yu K, Zhang B, Wang S, Li Z, Tang Y, Chen G, Li Z, Yu Z, Wang X. ROS-Triggered Self-Assembled Nanoparticles Based on a Chemo-Sonodynamic Combinational Therapy Strategy for the Noninvasive Elimination of Hypoxic Tumors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15893-15906. [PMID: 36940438 DOI: 10.1021/acsami.3c00990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The hypopermeability and hypoxia in the tumor milieu are important factors that limit multiple treatments. Herein, the reactive oxygen species (ROS)-triggered self-assembled nanoparticles (RP-NPs) was constructed. The natural small molecule Rhein (Rh) was encapsulated into RP-NPs as a sonosensitizer highly accumulated at the tumor site. Then highly tissue-permeable ultrasound (US) irradiation induced apoptosis of tumor cells through the excitation of Rh and acoustic cavitation, which prompted the rapid production of large amounts of ROS in the hypoxic tumor microenvironment. In addition, the thioketal bond structures in the innovatively designed prodrug LA-GEM were triggered and broken by ROS to achieve rapid targeted release of the gemcitabine (GEM). Sonodynamic therapy (SDT) increased the tissue permeability of solid tumors and actively disrupted redox homeostasis via mitochondrial pathways to kill hypoxic tumor cells, and the triggered response mechanism to GEM synergistically amplified the effect of chemotherapy. The chemo-sonodynamic combinational treatment approach is highly effective and noninvasive, with promising applications for hypoxic tumor elimination, such as in cervical cancer (CCa) patients who want to maintain their reproductive function.
Collapse
Affiliation(s)
- Yibing Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510630, China
- Department of Obstetrics and Gynecology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong 518028, China
| | - Ling Lin
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523058, China
| | - Jiashan Xie
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510630, China
| | - Lixue Wei
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510630, China
| | - Shuping Xiong
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510630, China
| | - Kunyi Yu
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523058, China
| | - Bingchen Zhang
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523058, China
- Department of Oncology, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523058, China
| | - Shengtao Wang
- Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University (Foshan Maternity & Child Healthcare Hospital), Foshan, 528000, China
| | - Zibo Li
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523058, China
| | - Yan Tang
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523058, China
| | - Guimei Chen
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523058, China
| | - Zhongjun Li
- Department of Obstetrics and Gynecology, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523058, China
- Dongguan Key Laboratory of Major Diseases in Obstetrics and Gynecology, Dongguan, Guangdong 523058, China
| | - Zhiqiang Yu
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523058, China
- Department of Oncology, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523058, China
| | - Xuefeng Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510630, China
| |
Collapse
|
16
|
Liao S, Cai M, Zhu R, Fu T, Du Y, Kong J, Zhang Y, Qu C, Dong X, Ni J, Yin X. Antitumor Effect of Photodynamic Therapy/Sonodynamic Therapy/Sono-Photodynamic Therapy of Chlorin e6 and Other Applications. Mol Pharm 2023; 20:875-885. [PMID: 36689197 DOI: 10.1021/acs.molpharmaceut.2c00824] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Chlorin e6 (Ce6) has been extensively researched and developed as an antitumor therapy. Ce6 is a highly effective photosensitizer and sonosensitizer with promising future applications in photodynamic therapy, dynamic acoustic therapy, and combined acoustic and light therapy for tumors. Ce6 is also being studied for other applications in fluorescence navigation, antibacterials, and plant growth regulation. Here we review the role and research status of Ce6 in tumor therapy and the problems and challenges of its clinical application. Other biomedical effects of Ce6 are also briefly discussed. Despite the difficulties in clinical application, Ce6 has significant advantages in photodynamic therapy (PDT)/sonodynamic therapy (SDT) against cancer and offers several possibilities in clinical utility.
Collapse
Affiliation(s)
- Shilang Liao
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Mengru Cai
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Rongyue Zhu
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Tingting Fu
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yuji Du
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiahui Kong
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yongqiang Zhang
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Changhai Qu
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaoxv Dong
- Beijing University of Chinese Medicine, Beijing 102488, China
| | | | | |
Collapse
|
17
|
Huang L, Hu S, Fu YN, Wan Y, Li G, Wang X. Multicomponent carrier-free nanodrugs for cancer treatment. J Mater Chem B 2022; 10:9735-9754. [PMID: 36444567 DOI: 10.1039/d2tb02025d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nanocarriers can be used to deliver insoluble anticancer drugs to optimize therapeutic efficacy. However, the potential toxicity of nanocarriers cannot be ignored. Carrier-free nanodrugs are emerging safe drug delivery systems, which are composed of multiple components, such as drugs, bioactive molecules and functional ingredients, avoiding the usage of inert carrier materials and offering advantages that include high drug loading, low toxicity, synergistic therapy, versatile design, and easy surface functionalization. Therefore, how to design multicomponent carrier-free nanodrugs is becoming a priority. In this review, the common strategies for rapid construction of multicomponent carrier-free nanodrugs are briefly explored from the perspective of methodology. The properties of organic-organic, organic-inorganic and inorganic-inorganic multiple carrier-free nanosystems are analyzed according to wettability and in-depth understanding is provided. Further advances in the applications of multiple carrier-free nanodrugs are outlined in anticipation of grasping the intrinsic nature for the design and development of carrier-free nanodrugs.
Collapse
Affiliation(s)
- Lifei Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Shuyang Hu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Ya-Nan Fu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yan Wan
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Guofeng Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xing Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
18
|
Canaparo R, Foglietta F, Barbero N, Serpe L. The promising interplay between sonodynamic therapy and nanomedicine. Adv Drug Deliv Rev 2022; 189:114495. [PMID: 35985374 DOI: 10.1016/j.addr.2022.114495] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/06/2022] [Accepted: 08/08/2022] [Indexed: 01/24/2023]
Abstract
Sonodynamic therapy (SDT) is a non-invasive approach for cancer treatment in which chemical compounds, named sonosensitizers, are activated by non-thermal ultrasound (US), able to deeply penetrate into the tissues. Despite increasing interest, the underlying mechanisms by which US triggers the sonosensitizer therapeutic activity are not yet clearly elucidate, slowing down SDT clinical application. In this review we will discuss the main mechanisms involved in SDT with particular attention to the sonosensitizers involved for each described mechanism, in order to highlight how much important are the physicochemical properties of the sonosensitizers and their cellular localization to predict their bioeffects. Moreover, we will also focus our attention on the pivotal role of nanomedicine providing the sonodynamic anticancer approach with the ability to shape US-responsive agents to enhance specific sonodynamic effects as the sonoluminescence-mediated anticancer effects. Indeed, SDT is one of the biomedical fields that has significantly improved in recent years due to the increased knowledge of nanosized materials. The shift of the nanosystem from a delivery system for a therapeutic agent to a therapeutic agent in itself represents a real breakthrough in the development of SDT. In doing so, we have also highlighted potential areas in this field, where substantial improvements may provide a valid SDT implementation as a cancer therapy.
Collapse
Affiliation(s)
- Roberto Canaparo
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy
| | - Federica Foglietta
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy
| | - Nadia Barbero
- Department of Chemistry, NIS Interdepartmental Centre and INSTM Reference Centre, University of Torino, 10125 Torino, Italy
| | - Loredana Serpe
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy.
| |
Collapse
|
19
|
Carrier-free supramolecular nanomedicines assembled by small-molecule therapeutics for cancer treatment. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Long K, Wang Y, Lv W, Yang Y, Xu S, Zhan C, Wang W. Photoresponsive prodrug-dye nanoassembly for in-situ monitorable cancer therapy. Bioeng Transl Med 2022; 7:e10311. [PMID: 36176605 PMCID: PMC9472000 DOI: 10.1002/btm2.10311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/11/2022] Open
Abstract
Photocleavable prodrugs enable controllable drug delivery to target sites modulated by light irradiation. However, the in vivo utility is usually hindered by their insolubility and inefficient delivery. In this study, we report a simple strategy of co-assembling boron-dipyrromethene-chlorambucil prodrug and near-infrared dye IR783 to fabricate photoresponsive nanoassemblies, which achieved both high prodrug loading capacity (~99%) and efficient light-triggered prodrug activation. The incorporated IR783 dye not only stabilized the nanoparticles and contributed tumor targeting as usual, but also exhibited degradation after light irradiation and in-situ monitoring of nanoparticle dissociation by fluorescent imaging. Systemic administration of the nanoparticles and localized light irradiation at tumor sites enabled monitorable and efficient drug release in vivo. Our results demonstrate that such prodrug-dye co-assembled nanomedicine is a promising formulation for photoresponsive drug delivery, which would advance the translation of photoresponsive nanomedicines.
Collapse
Affiliation(s)
- Kaiqi Long
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak‐Sum Research CentreThe University of Hong KongHong KongChina
| | - Yifan Wang
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak‐Sum Research CentreThe University of Hong KongHong KongChina
| | - Wen Lv
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak‐Sum Research CentreThe University of Hong KongHong KongChina
| | - Yang Yang
- Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghaiChina
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of EducationFudan UniversityShanghaiChina
| | - Shuting Xu
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak‐Sum Research CentreThe University of Hong KongHong KongChina
| | - Changyou Zhan
- Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghaiChina
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of EducationFudan UniversityShanghaiChina
| | - Weiping Wang
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak‐Sum Research CentreThe University of Hong KongHong KongChina
| |
Collapse
|
21
|
Hu C, Hou B, Xie S. Application of nanosonosensitizer materials in cancer sono-dynamic therapy. RSC Adv 2022; 12:22722-22747. [PMID: 36105955 PMCID: PMC9376763 DOI: 10.1039/d2ra03786f] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/26/2022] [Indexed: 11/21/2022] Open
Abstract
Sonodynamic therapy (SDT) is a novel non-invasive treatment for cancer combining low-intensity ultrasound and sonosensitizers. SDT activates sonosensitizers through ultrasound, releasing energy and generating reactive oxygen species to kill tumor cells. Compared with traditional photodynamic therapy (PDT), SDT is a promising anti-cancer therapy with the advantages of better targeting, deeper tissue penetration, and higher focusing ability. With the development and broad application of nanomaterials, novel sonosensitizers with tumor-targeting specificity can deliver to deep tumors and enhance the tumor microenvironment. In this review, we first review the mechanisms of sonodynamic therapy. In addition, we also focus on the current types of sonosensitizers and the latest design strategies of nanomaterials in sonosensitizers. Finally, we summarize the combined strategy of sonodynamic therapy.
Collapse
Affiliation(s)
- Chaotao Hu
- Department of Hand and Foot Microsurgery, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China China
| | - Biao Hou
- Department of Hand and Foot Microsurgery, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China China
| | - Songlin Xie
- Department of Hand and Foot Microsurgery, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China China
| |
Collapse
|
22
|
Wang C, Tian Y, Wu B, Cheng W. Recent Progress Toward Imaging Application of Multifunction Sonosensitizers in Sonodynamic Therapy. Int J Nanomedicine 2022; 17:3511-3529. [PMID: 35966148 PMCID: PMC9365495 DOI: 10.2147/ijn.s370767] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/23/2022] [Indexed: 12/13/2022] Open
Abstract
Sonodynamic therapy (SDT) is a rapidly developing non-surgical therapy that initiates sensitizers’ catalytic reaction using ultrasound, showing great potential for cancer treatment due to its high safety and non-invasive nature. In addition, recent research has found that using different diagnostic and therapeutic methods in tandem can lead to better anticancer outcomes. Therefore, as essential components of SDT, sonosensitizers have been extensively explored to optimize their functions and integrate multiple medical fields. The review is based on five years of articles evaluating the combined use of SDT and imaging in treating cancer. By developing multifunctional sonosensitive particles that combine imaging and sonodynamic therapy, we have integrated diagnosis into the treatment of precision medicine applications, improving SDT cell uptake and antitumor efficacy utilizing different tumour models. This paper describes the imaging principle and the results of cellular and animal imaging of the multifunctional sonosensitizers. Efforts are made in this paper to provide data and design references for future SDT combined imaging research and clinical application development and to provide offer suggestions.
Collapse
Affiliation(s)
- Chunyue Wang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Yuhang Tian
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Bolin Wu
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Wen Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
- Correspondence: Wen Cheng; Bolin Wu, Department of Ultrasound, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, Harbin, 150081, People’s Republic of China, Tel +86 13313677182; +86 15663615088, Fax +86 451 85718392; +86 451 86298651, Email ;
| |
Collapse
|
23
|
Wang J, Tian C, Cao Z. One-Pot Synthesis Bodipy Nano-Precipitations for Prostate Cancer Treatment. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Here in this study, we proposed a polystyrene maleic anhydride (PSMA) stabilized Bodipy nanoparticles (PB NPs) in a one-pot approach for the photodynamic therapy (PDT) of prostate cancer. The nanoparticle formed by precipitation method was then employed to treat PC-3 cells and PC-3
tumor bearing nude mice model. It was shown that this platform showed promising anticancer performance than free bodipy with reduced side effects.
Collapse
Affiliation(s)
- Jianan Wang
- Department of Urology, Yuebei People’s Hospital, Wujiang District, 512000, Shaoguan, Guangdong Province, 51200, China
| | - Chao Tian
- Department of Urology, Yuebei People’s Hospital, Wujiang District, 512000, Shaoguan, Guangdong Province, 51200, China
| | - Zhengguo Cao
- Department of Urology, Yuebei People’s Hospital, Wujiang District, 512000, Shaoguan, Guangdong Province, 51200, China
| |
Collapse
|
24
|
Chen Y, Yin B, Liu Z, Wang H, Fu Z, Ji X, Tang W, Ni D, Peng W. Dual-modality magnetic resonance/optical imaging-guided sonodynamic therapy of pancreatic cancer with metal—organic nanosonosensitizer. NANO RESEARCH 2022; 15:6340-6347. [DOI: 10.1007/s12274-022-4284-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 01/05/2025]
|
25
|
Optical Resolution Photoacoustic Microscopy Imaging in the Detection of Early Oral Cancer under Image Reconstruction Algorithm. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:6077748. [PMID: 35756418 PMCID: PMC9232320 DOI: 10.1155/2022/6077748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022]
Abstract
This research was intended to explore the application value of photoacoustic imaging technology based on image intelligent iterative reconstruction algorithm in the detection and diagnosis of early oral cancer. An iterative algorithm model was constructed and systematically analyzed. The algorithm was used to debug the detection of B-scan images on the diameter of the imaging area. The results showed that the sensitivity of line-focused ultrasound detector was 86.72% and the specificity was 80.79%, while the sensitivity of the flat-field ultrasound detector was 63.15% and the specificity was 71.79%. The photoacoustic microscopy imaging technology can clearly observe the rich capillary network on human lips. A part of the vascular network at the depth of 100 μm, 500 μm, and 1000 μm grew out of the reticular capillaries and extended out of the loop-like capillaries, and the diameter gradually expanded. The imaging experiment of the sublingual capillary network in the human body showed that loop-like capillaries were observed, but there were some large blood vessels, which corresponded to the densely distributed blood vessel network under the tongue. The morphological changes of loop-like capillaries can be well observed by photoacoustic microscopy. In conclusion, the reconstructed photoacoustic microscopy imaging technology can realize high-resolution imaging of human oral capillaries and observe the morphological changes of loop-like capillaries, which had a certain application value for the early detection of oral cancer.
Collapse
|
26
|
Zheng Y, Li Z, Yang Y, Shi H, Chen H, Gao Y. A nanosensitizer self-assembled from oleanolic acid and chlorin e6 for synergistic chemo/sono-photodynamic cancer therapy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153788. [PMID: 34634745 DOI: 10.1016/j.phymed.2021.153788] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/25/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Sono-photodynamic therapy (SPDT) which is the combination of photodynamic therapy (PDT) and sonodynamic therapy (SDT), could exert much better anti-cancer effects than monotherapy. The combination of chemotherapy and PDT or SDT has shown great potential for cancer treatment. However, the combination of SPDT and chemotherapy for cancer treatment is rarely explored. PURPOSE We utilized a natural hydrophobic anti-cancer drug oleanolic acid (OA) and a photosensitizer chlorin e6 (Ce6) through self-assembly technology to form a carrier-free nanosensitizer OC for combined chemotherapy and SPDT for cancer treatment. No studies involving using carrier-free nanomedicine for combined chemotherapy/SPDT have been reported yet. STUDY DESIGN After fully characterization of OC, the in vitro and in vivo anti-cancer activities of OC were investigated and the mechanisms of the synergistic therapeutic effects were studied. METHODS OC were synthesized through self-assembly technology and characterized by dynamic light scattering (DLS) and an atomic force microscope (AFM). Confocal microscope was used to investigate the intracellular uptake efficiency and the penetration ability of OC. The cell viability of PC9 and 4T1 cells treated with OC under laser and ultrasound (US) irradiation was determined by MTT assay. Furthermore, flow cytometry was performed to detect the reactive oxygen species (ROS) generation, loss of mitochondrial membrane potential (MMP), cell apoptosis and cell cycle arrest. Finally, the anti-tumor therapeutic efficacy of OC was investigated in orthotopic 4T1 breast tumor-bearing mouse model. RESULTS OC showed an average particle size of around 100 nm with excellent light stability. OC increased more than 23 times accumulation of Ce6 in cancer cells and had strong tumor penetration ability in three-dimensional (3D) multicellular tumor spheroids (MCTSs). Compared with other therapeutic options, OC showed obvious synergistic inhibitory effects under light and US irradiation in PC9 and 4T1 cells with a significant decrease in IC50 values. Mechanism studies showed that OC could generate high ROS, induce MMP loss, and cause apoptosis and cell cycle arrest. In vivo studies also approved the synergistic therapeutic effects of OC in 4T1 mouse models. CONCLUSION Self-assembled carrier-free nanosensitizer OC could be a promising therapeutic agent for synergistic chemo/sono-photodynamic therapy for cancer treatment.
Collapse
Affiliation(s)
- Yilin Zheng
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Ziying Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Ya Yang
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Huifang Shi
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Haijun Chen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China.
| |
Collapse
|
27
|
Li D, Yang Y, Li D, Pan J, Chu C, Liu G. Organic Sonosensitizers for Sonodynamic Therapy: From Small Molecules and Nanoparticles toward Clinical Development. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101976. [PMID: 34350690 DOI: 10.1002/smll.202101976] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/17/2021] [Indexed: 06/13/2023]
Abstract
Sonodynamic therapy (SDT) is a novel noninvasive therapeutic modality that combines low-intensity ultrasound and sonosensitizers. Versus photo-mediated therapy, SDT has the advantages of deeper tissue penetration, high accuracy, and less side effects. Sonosensitizers are critical for therapeutic efficacy during SDT and organic sonosensitizers are important because of their clear structure, easy monitoring, evaluation of drug metabolism, and clinical transformation. Notably, nanotechnology can be used in the field of sonosensitizers and SDT to overcome the inherent obstacles and achieve sustainable innovation. This review introduces organic small molecule sonosensitizers, nano organic sonosensitizers, and their clinical translation by providing ideas and references for the design of sonosensitizers and SDT so as to promote its transformation to clinical applications in the future.
Collapse
Affiliation(s)
- Dong Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yang Yang
- Department of Cardiovascular, Xiang'an Hospital of Xiamen University, Xiamen, 361102, China
| | - Dengfeng Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jie Pan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Chengchao Chu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, China
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Engineering Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
28
|
Abstract
Low-intensity ultrasound-triggered sonodynamic therapy (SDT) is a promising noninvasive therapeutic modality due to its strong tissue penetration ability. In recent years, with the development of nanotechnology, nanoparticle-based sonosensitizer-mediated SDT has been widely investigated. With the increasing demand for precise and personalized treatment, abundant novel sonosensitizers with imaging capabilities have been developed for determining the optimal therapeutic window, thus significantly enhancing treatment efficacy. In this review, we focus on the molecular imaging-guided SDT. The prevalent mechanisms of SDT are discussed, including ultrasonic cavitation, sonoluminescence, reactive oxygen species, and mechanical damage. In addition, we introduce the major molecular imaging techniques and the design principles based on nanoparticles to achieve efficient imaging. Furthermore, the imaging-guided SDT for the treatment of cancer, bacterial infections, and vascular diseases is summarized. The ultimate goal is to design more effective imaging-guided SDT modalities and provide novel ideas for clinical translation of SDT.
Collapse
Affiliation(s)
- Juan Guo
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Xueting Pan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Chaohui Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Huiyu Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| |
Collapse
|
29
|
Chen Y, Xu C, Cheng Y, Cheng Q. Photostability enhancement of silica-coated gold nanostars for photoacoustic imaging guided photothermal therapy. PHOTOACOUSTICS 2021; 23:100284. [PMID: 34354923 PMCID: PMC8322131 DOI: 10.1016/j.pacs.2021.100284] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 05/25/2021] [Accepted: 07/13/2021] [Indexed: 05/14/2023]
Abstract
Gold nanostars (GNSs) are promising contrast agents for simultaneous photothermal therapy and photoacoustic imaging (PAI) owing to their excellent photothermal conversion efficiency. However, GNSs are easily reshaped under transient high-intensity laser pulses, which can cause a rapid shift in the light absorption peak, resulting in a decrease in both therapeutic and monitoring effects. In this work, we synthesized GNSs without toxic surfactants and coated them with a silica shell to retain their shape, thus maintaining their photostability. The excellent performance of these silica-coated GNSs was verified through both in vitro and in vivo PAI experiments. The silica-coated GNSs exhibited a threefold improvement in photoacoustic stability, as compared with the non-coated GNSs. The proposed silica coating method for GNSs was found to improve the photostability of GNSs, making them efficient, safe, and reliable nanoparticles for PAI.
Collapse
Affiliation(s)
- Yingna Chen
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, PR China
| | - Chang Xu
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, PR China
| | - Yu Cheng
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, PR China
| | - Qian Cheng
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, PR China
- The Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, PR China
| |
Collapse
|
30
|
Zhao P, Deng Y, Xiang G, Liu Y. Nanoparticle-Assisted Sonosensitizers and Their Biomedical Applications. Int J Nanomedicine 2021; 16:4615-4630. [PMID: 34262272 PMCID: PMC8275046 DOI: 10.2147/ijn.s307885] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022] Open
Abstract
As a non-invasive strategy, sonodynamic therapy (SDT) which utilizes sonosensitizers to generate reactive oxygen species (ROS) has received significant interest over recent years due to its ability to break depth barrier. However, intrinsic limitations of traditional sonosensitizers hinder the widespread application of SDT. With the development of nanotechnology, various nanoparticles (NPs) have been designed and used to assist sonosensitizers for SDT. This review first summarizes the possible mechanisms of SDT, then classifies the NPs-assisted sonosensitizers and discusses their biomedical applications in ultrasonography, drug delivery, high intensity focused ultrasound and SDT-based combination treatment. Finally, some challenges and future perspectives of NPs-assisted SDT has also been discussed.
Collapse
Affiliation(s)
- Pengxuan Zhao
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Youbin Deng
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Guangya Xiang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yani Liu
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| |
Collapse
|
31
|
Tan X, Huang J, Wang Y, He S, Jia L, Zhu Y, Pu K, Zhang Y, Yang X. Transformable Nanosensitizer with Tumor Microenvironment-Activated Sonodynamic Process and Calcium Release for Enhanced Cancer Immunotherapy. Angew Chem Int Ed Engl 2021; 60:14051-14059. [PMID: 33797161 DOI: 10.1002/anie.202102703] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/31/2021] [Indexed: 12/15/2022]
Abstract
Despite the promise of sonodynamic processes in cancer therapy, existing sonosensitizers often fail to regulate the generation of reactive oxygen species (ROS) against tumors, potentially leading to off-target toxicity to normal tissues. We report a transformable core-shell nanosonosensitizer (TiO2 @CaP) that reinvigorates ROS generation and dissolves its CaP shell to release Ca2+ in an acidic tumor microenvironment (TME) under ultrasound activation. Thus, TiO2 @CaP acts as a smart nanosonosensitizer that specifically induces mitochondrial dysfunction via overloading intracellular Ca2+ ions to synergize with the sonodynamic process in the TME. TiO2 @CaP substantially enhances immunogenic cell death, resulting in enhanced T-cell recruitment and infiltration into the immunogenic cold tumor (4T1). In conjunction with checkpoint blockade therapy (anti-PD 1), TiO2 @CaP-mediated sonodynamic therapy elicits systemic antitumor immunity, leading to regression of non-treated distant tumors and inhibition of lung metastasis. This work paves the way to development of "smart" TME-activatable sonosensitizers with temporospatial control over antitumor responses.
Collapse
Affiliation(s)
- Xuan Tan
- National Engineering Research Centre for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Jingzhao Huang
- National Engineering Research Centre for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Yiqian Wang
- National Engineering Research Centre for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Shasha He
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Le Jia
- National Engineering Research Centre for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Yanhong Zhu
- National Engineering Research Centre for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Yan Zhang
- National Engineering Research Centre for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Xiangliang Yang
- National Engineering Research Centre for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, P. R. China
| |
Collapse
|
32
|
Tan X, Huang J, Wang Y, He S, Jia L, Zhu Y, Pu K, Zhang Y, Yang X. Transformable Nanosensitizer with Tumor Microenvironment‐Activated Sonodynamic Process and Calcium Release for Enhanced Cancer Immunotherapy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102703] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Xuan Tan
- National Engineering Research Centre for Nanomedicine College of Life Science and Technology Huazhong University of Science and Technology 1037 Luoyu Road Wuhan 430074 P. R. China
| | - Jingzhao Huang
- National Engineering Research Centre for Nanomedicine College of Life Science and Technology Huazhong University of Science and Technology 1037 Luoyu Road Wuhan 430074 P. R. China
| | - Yiqian Wang
- National Engineering Research Centre for Nanomedicine College of Life Science and Technology Huazhong University of Science and Technology 1037 Luoyu Road Wuhan 430074 P. R. China
| | - Shasha He
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Le Jia
- National Engineering Research Centre for Nanomedicine College of Life Science and Technology Huazhong University of Science and Technology 1037 Luoyu Road Wuhan 430074 P. R. China
| | - Yanhong Zhu
- National Engineering Research Centre for Nanomedicine College of Life Science and Technology Huazhong University of Science and Technology 1037 Luoyu Road Wuhan 430074 P. R. China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Yan Zhang
- National Engineering Research Centre for Nanomedicine College of Life Science and Technology Huazhong University of Science and Technology 1037 Luoyu Road Wuhan 430074 P. R. China
| | - Xiangliang Yang
- National Engineering Research Centre for Nanomedicine College of Life Science and Technology Huazhong University of Science and Technology 1037 Luoyu Road Wuhan 430074 P. R. China
| |
Collapse
|
33
|
Dong C, Hu H, Sun L, Chen Y. Inorganic chemoreactive nanosonosensitzers with unique physiochemical properties and structural features for versatile sonodynamic nanotherapies. Biomed Mater 2021; 16. [PMID: 33725684 DOI: 10.1088/1748-605x/abef58] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/16/2021] [Indexed: 01/24/2023]
Abstract
The fast development of nanomedicine and nanobiotechnology has enabled the emerging of versatile therapeutic modalities with high therapeutic efficiency and biosafety, among which nanosonosensitizer-involved sonodynamic therapy (SDT) employs ultrasound (US) as the exogenous activation source for inducing the production of reactive oxygen species (ROS) and disease therapy. The chemoreactive nanosonosensitizers are the critical components participating in the SDT process, which generally determine the SDT efficiency and therapeutic outcome. Compared to the traditional and mostly explored organic sonosensitizers, the recently developed inorganic chemoreactive nanosonosensitizers feature the distinct high stability, multifunctionality and significantly different SDT mechanism. This review dominantly discusses and highlights two types of inorganic nanosensitizers in sonodynamic treatments of various diseases and their underlying therapeutic mechanism, including US-activated generation of electrons (e-) and holes (h+) for facilitating the following ROS production and delivery of organic molecular sonosensitizers. Especially, this review proposes four strategies aiming for augmenting the SDT efficiency on antitumor and antibacterial applications based on inorganic sonosensitizers, including defect engineering, novel metal coupling, increasing electric conductivity and alleviating tumor hypoxia. The encountered challenges and critical issues facing these inorganic nanosonosensitzers are also highlighted and discussed for advancing their clinical translations.
Collapse
Affiliation(s)
- Caihong Dong
- Department of Ultrasound, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai 200032, People's Republic of China
| | - Hui Hu
- Medmaterial Research Center, Jiangsu University Affiliated People's Hospital, Zhenjiang 212002, People's Republic of China
| | - Liping Sun
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, People's Republic of China
| |
Collapse
|
34
|
Mitochondria-targeted high-load sound-sensitive micelles for sonodynamic therapy to treat triple-negative breast cancer and inhibit metastasis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112054. [PMID: 33947548 DOI: 10.1016/j.msec.2021.112054] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/24/2022]
Abstract
Breast cancer is the most common cancer among women worldwide, of which 10-20% accounts for triple-negative breast cancer (TNBC). TNBC is more aggressive, lacks an effective treatment target, and has a higher metastasis rate compared to other types of breast cancers. These characteristics result in poor therapeutic and prognostic outcomes in patients with TNBC. Sonodynamic therapy (SDT) is an emerging non-invasive procedure with high-tissue penetration properties to treat cancer. Therefore, we designed a new sonosensitizer, PEG-IR780@Ce6 for SDT, which showed excellent performance in inhibiting cancer cells and in simultaneously suppressing the migration and invasion of cancer cells. In vitro and in vivo experiments showed that PEG-IR780@Ce6 as a sonosensitizer could generate higher levels of reactive oxygen species (ROS) than IR780 and free Ce6 alone, thereby resulting in better anti-cancer effects. Besides, PEG-IR780@Ce6 inhibited the migration and invasion of MDA-MB-231 cells, both in vitro and in vivo, which indicated that it could suppress the metastasis of TNBC. Moreover, the long circulation time and the mitochondria-targeting ability of PEG-IR780@Ce6 guaranteed its accumulation in the tumor. In addition, both in vitro and in vivo experiments indicated the biocompatibility and biosafety of PEG-IR780@Ce6. In conclusion, our results collectively suggested that the newly designed sonosensitizer, PEG-IR780@Ce6, is a promising treatment option for TNBC with excellent therapeutic effects and low side effects.
Collapse
|
35
|
Tian Y, Jiang WL, Wang WX, Mao GJ, Li Y, Li CY. NAD(P)H-triggered probe for dual-modal imaging during energy metabolism and novel strategy of enhanced photothermal therapy in tumor. Biomaterials 2021; 271:120736. [PMID: 33662745 DOI: 10.1016/j.biomaterials.2021.120736] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/24/2022]
Abstract
The reduced coenzymes (NADH and NADPH) are an important product in energy metabolism and closely related to the occurrence and development of cancer. So it is necessary to use a powerful detection tool to visualize NAD(P)H in energy metabolism of tumor cells and find a new strategy to improve cancer treatment based on NAD(P)H. Herein, a novel multifunctional probe (Cy-N) is synthesized with good near-infrared fluorescence (NIRF) response to NAD(P)H and the photoacoustic (PA) and photothermal properties are successfully activated by NAD(P)H. The probe is successfully applied in visualizing NAD(P)H in energy metabolism of tumor cells and imaging NAD(P)H in bacteria. Moreover, the probe can be used to image NAD(P)H in energy metabolism of tumor-bearing mice by dual-modal imaging (NIRF and PA). More importantly, in terms of the role of NAD(P)H in energy metabolism, the photothermal therapy (PTT) is activated by NAD(P)H and a novel strategy of enhanced PTT is proposed by injecting glucose. As far as we know, this is the first probe to detect NAD(P)H in energy metabolism through dual-modal imaging, and also the first probe to activate PTT based on NAD(P)H, which will provide important information of the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Yang Tian
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Wen-Li Jiang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Wen-Xin Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Guo-Jiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, PR China
| | - Yongfei Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China; College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, PR China
| | - Chun-Yan Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China.
| |
Collapse
|
36
|
Yang H, Jing H, Han X, Tan H, Cheng W. Synergistic Anticancer Strategy of Sonodynamic Therapy Combined with PI-103 Against Hepatocellular Carcinoma. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:531-542. [PMID: 33603343 PMCID: PMC7886098 DOI: 10.2147/dddt.s296880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/20/2021] [Indexed: 01/15/2023]
Abstract
Purpose Sonodynamic therapy (SDT) is considered a promising therapeutic strategy for the effective elimination of cancer cells. However, developing novel sonosensitizers with potentially high SDT efficacy remains a considerable challenge. Herein, we utilized near-infrared dye IR820 nanobubbles (NBs) combined with a dual PI3K/mTOR inhibitor PI-103 for the SDT treatment of hepatocellular carcinoma (HCC) in vitro. Methods The generated reactive oxygen species (ROS) were quantified using 2,7-dichlorodihydrofluorescein diacetate to determine the feasibility of using IR820 NBs as a potential sonosensitizer. The inhibition effects of the synergistic therapy was examined using the cell counting Kit 8 assay and apoptosis assay. JC-1 staining was performed to study mitochondrial membrane depolarization, and the transwell assay was used for cell migration analysis. Results The particle size and zeta potential of IR820 NBs were 545.5±93.1 nm and −5.19±1.73 mV, respectively. ROS accumulation was observed after HepG2 cells were treated with IR820 NBs under ultrasound irradiation. The SDT combined with PI-103 group inhibited cell viability and migration more strongly than the other groups (P < 0.01). The apoptosis assay also demonstrated a relatively high anti-HCC efficacy with the synergistic therapy, while JC-1 staining showed a decrease in the mitochondrial membrane potential after the combined treatment. Conclusion The combination of SDT and PI-103 was very effective in suppressing HCC proliferation, which might help develop new minimally invasive cancer treatment strategies.
Collapse
Affiliation(s)
- Huajing Yang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Hui Jing
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Xue Han
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Haoyan Tan
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Wen Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, 150081, People's Republic of China
| |
Collapse
|
37
|
Choi W, Kim C. Synergistic agents for tumor-specific therapy mediated by focused ultrasound treatment. Biomater Sci 2021; 9:422-436. [PMID: 33211030 DOI: 10.1039/d0bm01364a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This minireview highlights the recent advances in the therapeutic agents that aim to provide synergistic enhancements of focused ultrasound treatment of tumors. Even though focused ultrasound therapy itself can bring therapeutic effects in cancers, many biochemical agents have been reported in the literature to enhance the treatment efficacy significantly. Until now, many mechanisms have been researched to advance the therapy, such as sonodynamic-plus-chemo-therapy, microbubble-aided therapy, localized release or delivery of nanomaterials, and multimodal image-guided therapy. Here, the novel materials adopted in each mechanism are briefly reviewed to provide a trend in the field and encourage future research towards the successful deployment of focused ultrasound therapy in real clinical environments.
Collapse
Affiliation(s)
- Wonseok Choi
- Departments of Electrical Engineering, Creative IT Engineering, Mechanical Engineering, Interdisciplinary Bioscience and Bioengineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), 37673 Republic of Korea.
| | | |
Collapse
|
38
|
Rai A, Noor S, Ahmad SI, Alajmi MF, Hussain A, Abbas H, Hasan GM. Recent Advances and Implication of Bioengineered Nanomaterials in Cancer Theranostics. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:91. [PMID: 33494239 PMCID: PMC7909769 DOI: 10.3390/medicina57020091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023]
Abstract
Cancer is one of the most common causes of death and affects millions of lives every year. In addition to non-infectious carcinogens, infectious agents contribute significantly to increased incidence of several cancers. Several therapeutic techniques have been used for the treatment of such cancers. Recently, nanotechnology has emerged to advance the diagnosis, imaging, and therapeutics of various cancer types. Nanomaterials have multiple advantages over other materials due to their small size and high surface area, which allow retention and controlled drug release to improve the anti-cancer property. Most cancer therapies have been known to damage healthy cells due to poor specificity, which can be avoided by using nanosized particles. Nanomaterials can be combined with various types of biomaterials to make it less toxic and improve its biocompatibility. Based on these properties, several nanomaterials have been developed which possess excellent anti-cancer efficacy potential and improved diagnosis. This review presents the latest update on novel nanomaterials used to improve the diagnostic and therapeutic of pathogen-associated and non-pathogenic cancers. We further highlighted mechanistic insights into their mode of action, improved features, and limitations.
Collapse
Affiliation(s)
- Ayushi Rai
- Department of Nanoscience, Central University of Gujarat, Sector 29, Gandhinagar 382030, India;
| | - Saba Noor
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India;
| | - Syed Ishraque Ahmad
- Department of Chemistry, Zakir Husain Delhi College, University of Delhi, New Delhi 110002, India;
| | - Mohamed F. Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.F.A.); (A.H.)
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.F.A.); (A.H.)
| | - Hashim Abbas
- Department of Medicine, Nottingham University Hospitals, NHS Trust, Nottingham NG7 2UH, UK;
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
39
|
Faustova M, Nikolskaya E, Sokol M, Fomicheva M, Petrov R, Yabbarov N. Metalloporphyrins in Medicine: From History to Recent Trends. ACS APPLIED BIO MATERIALS 2020; 3:8146-8171. [PMID: 35019597 DOI: 10.1021/acsabm.0c00941] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The history of metalloporphyrins dates back more than 200 years ago. Metalloporphyrins are excellent catalysts, capable of forming supramolecular systems, participate in oxygen photosynthesis, transport, and used as contrast agents or superoxide dismutase mimetics. Today, metalloporphyrins represent complexes of conjugated π-electron system and metals from the entire periodic system. However, the effect of these compounds on living systems has not been fully understood, and researchers are exploring the properties of metalloporphyrins thereby extending their further application. This review provides an overview of the variety of metalloporphyrins that are currently used in different medicine fields and how metalloporphyrins became the subject of scientists' interest. Currently, metalloporphyrins utilization has expanded significantly, which gave us an opprotunuty to summarize recent progress in metalloporphyrins derivatives and prospects of their application in the treatment and diagnosis of different diseases.
Collapse
Affiliation(s)
- Mariia Faustova
- MIREA-Russian Technological University, Lomonosov Institute of Fine Chemical Technologies, 119454 Moscow, Russia.,N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena Nikolskaya
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Maria Sokol
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow Russia
| | - Margarita Fomicheva
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow Russia
| | - Rem Petrov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Nikita Yabbarov
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow Russia
| |
Collapse
|
40
|
Liang S, Deng X, Ma P, Cheng Z, Lin J. Recent Advances in Nanomaterial-Assisted Combinational Sonodynamic Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003214. [PMID: 33064322 DOI: 10.1002/adma.202003214] [Citation(s) in RCA: 293] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/13/2020] [Indexed: 05/18/2023]
Abstract
Ultrasound (US)-triggered sonodynamic therapy (SDT), as a promising noninvasive therapeutic modality, has received ever-increasing attention in recent years. Its specialized chemical agents, named sonosensitizers, are activated by low-intensity US to produce lethal reactive oxygen species (ROS) for oncotherapy. Compared with phototherapeutic strategies, SDT provides many noteworthy opportunities and benefits, such as deeper penetration depth, absence of phototoxicity, and fewer side effects. Nevertheless, previous studies have also demonstrated its intrinsic limitations. Thanks to the facile engineering nature of nanotechnology, numerous novel nanoplatforms are being applied in this emerging field to tackle these intrinsic barriers and achieve continuous innovations. In particular, the combination of SDT with other treatment strategies has demonstrated a superior efficacy in improving anticancer activity relative to that of monotherapies alone. Therefore, it is necessary to summarize the nanomaterial-assisted combinational sonodynamic cancer therapy applications. Herein, the design principles in achieving synergistic therapeutic effects based on nanomaterial engineering methods are highlighted. The ultimate goals are to stimulate the design of better-quality combined sonodynamic treatment schemes and provide innovative ideas for the perspectives of SDT in promoting its future transformation to clinical application.
Collapse
Affiliation(s)
- Shuang Liang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Xiaoran Deng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Ziyong Cheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
41
|
Cheng J, Zhao H, Wang J, Han Y, Yang X. Bioactive Natural Small Molecule-Tuned Coassembly of Photosensitive Drugs for Highly Efficient Synergistic and Enhanced Type I Photochemotherapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:43488-43500. [PMID: 32870657 DOI: 10.1021/acsami.0c13164] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Self-assembling natural small molecules (NSMs) with favorable anticancer activity are of increasing interest as novel drug delivery platforms without structural modification for biomedical applications. However, a lack of knowledge and practicability of NSMs as drug carriers limited their current biomedical application. Here, via a green and facile supramolecular coassembly strategy, we report and develop a series of carrier-free terpenoid natural small molecule-mediated coassembled photosensitive drugs for enhanced and synergistic chemo/photodynamic therapy. After screening 17 terpenoid NSMs, we identified 11 compounds that could form coassembled NSMs-Ce6 NPs with regulatable drug sizes. Analysis of the representative betulonic acid (BC)-mediated nano-coassemblies (BC-Ce6 NPs) reveals the high efficiency of the coassembly strategy and highlights the tremendous potential of NSMs as novel drug delivery platforms. Through molecular dynamics simulation and theoretical calculations, we elucidate the mystery of the coassembly process, indicating that the linear coplanar arrangement of BC dimeric units is primarily responsible for the formation of rod-like or spherical morphology. Meanwhile, we demonstrated that the reduced energy gap between the singlet and triplet excited states (ΔEST) facilitates efficient reactive oxygen species generation by promoting ·OH generation via a type I photoreaction mechanism. The assembled nanodrugs exhibit multiple favorable therapeutic features, ensuring a remarkably enhanced, synergistic, and secure combinatorial anticancer efficacy of 93.6% with highly efficient tumor ablation. This work not only expands the possibility of natural biodegradable materials for wide biological applications but also provides a new perspective for the construction of NSM-mediated nano-coassemblies for precision therapy.
Collapse
Affiliation(s)
- Jianjun Cheng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92, West Dazhi Street, Nangang District, Harbin 150001, China
| | - Haitian Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92, West Dazhi Street, Nangang District, Harbin 150001, China
| | - Jiacheng Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92, West Dazhi Street, Nangang District, Harbin 150001, China
| | - Ying Han
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92, West Dazhi Street, Nangang District, Harbin 150001, China
| | - Xin Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92, West Dazhi Street, Nangang District, Harbin 150001, China
| |
Collapse
|
42
|
Dong L, Li W, Sun L, Yu L, Chen Y, Hong G. Energy-converting biomaterials for cancer therapy: Category, efficiency, and biosafety. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1663. [PMID: 32808464 DOI: 10.1002/wnan.1663] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/24/2022]
Abstract
Energy-converting biomaterials (ECBs)-mediated cancer-therapeutic modalities have been extensively explored, which have achieved remarkable benefits to overwhelm the obstacles of traditional cancer-treatment modalities. Energy-driven cancer-therapeutic modalities feature their distinctive merits, including noninvasiveness, low mammalian toxicity, adequate therapeutic outcome, and optimistical synergistic therapeutics. In this advanced review, the prevailing mainstream ECBs can be divided into two sections: Reactive oxygen species (ROS)-associated energy-converting biomaterials (ROS-ECBs) and hyperthermia-related energy-converting biomaterials (H-ECBs). On the one hand, ROS-ECBs can transfer exogenous or endogenous energy (such as light, radiation, ultrasound, or chemical) to generate and release highly toxic ROS for inducing tumor cell apoptosis/necrosis, including photo-driven ROS-ECBs for photodynamic therapy, radiation-driven ROS-ECBs for radiotherapy, ultrasound-driven ROS-ECBs for sonodynamic therapy, and chemical-driven ROS-ECBs for chemodynamic therapy. On the other hand, H-ECBs could translate the external energy (such as light and magnetic) into heat for killing tumor cells, including photo-converted H-ECBs for photothermal therapy and magnetic-converted H-ECBs for magnetic hyperthermia therapy. Additionally, the biosafety issues of ECBs are expounded preliminarily, guaranteeing the ever-stringent requirements of clinical translation. Finally, we discussed the prospects and facing challenges for constructing the new-generation ECBs for establishing intriguing energy-driven cancer-therapeutic modalities. This article is categorized under: Nanotechnology Approaches to Biology >Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Lile Dong
- Department of Radiology, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Wenjuan Li
- Department of Radiology, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Lining Sun
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai, China
| | - Luodan Yu
- School of Life Sciences, Shanghai University, Shanghai, China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Yu Chen
- School of Life Sciences, Shanghai University, Shanghai, China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Guobin Hong
- Department of Radiology, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| |
Collapse
|
43
|
Zhong R, Wang R, Hou X, Song L, Zhang Y. Polydopamine-doped virus-like structured nanoparticles for photoacoustic imaging guided synergistic chemo-/photothermal therapy. RSC Adv 2020; 10:18016-18024. [PMID: 35517193 PMCID: PMC9059141 DOI: 10.1039/d0ra02915g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/28/2020] [Indexed: 11/30/2022] Open
Abstract
The therapeutic diagnosis effect of cancer commonly depends on the cellular uptake efficiency of nanomaterials. However, the morphology of nanomaterials significantly affects cellular uptake capability. Herein, we designed a polydopamine-doped virus-like structured nanoparticle (GNR@HPMO@PVMSN) composed of a gold nanorod (GNR) core, hollow periodic mesoporous organosilica (HPMO) shell and polydopamine-doped virus-like mesoporous silica nanoparticle (PVMSN) outer shell. Compared with conventional gold nanorod@hollow periodic mesoporous organosilica core–shell nanoparticles (GNR@HPMO), GNR@HPMO@PVMSN with its virus-like structure was proved to enhance the efficiency of cellular uptake. GNR@HPMO@PVMSN with the virtues of high photothermal conversion efficiency and good photoacoustic imaging (PAI) ability was expected to be a promising nanotheranostic agent for imaging guided cancer treatment. The experiments in vitro and in vivo proved that GNR@HPMO@PVMSN had good biocompatibility as well as photothermal conversion ability. In addition, DOX loading and pH-/NIR-response DOX release abilities of GNR@HPMO@PVMSN were also verified in vitro. Therefore, the GNR@HPMO@PVMSN offers a promising strategy for PAI directed synergistic chemo-/photothermal therapy, which improves the therapeutic effect of the nanomaterial on tumors. This work explores the effects of rough surfaces on cellular uptake and provides a versatile theranostic platform for biomedical applications. The therapeutic diagnosis effect of cancer commonly depends on the cellular uptake efficiency of nanomaterials.![]()
Collapse
Affiliation(s)
- Rong Zhong
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures
- Fujian Provincial Key Laboratory of Nanomaterials
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
| | - Ruoping Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures
- Fujian Provincial Key Laboratory of Nanomaterials
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
| | - Xuemei Hou
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures
- Fujian Provincial Key Laboratory of Nanomaterials
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
| | - Liang Song
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures
- Fujian Provincial Key Laboratory of Nanomaterials
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
| | - Yun Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures
- Fujian Provincial Key Laboratory of Nanomaterials
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
| |
Collapse
|