1
|
Zhu W, Han C, Yang G, Huo X, Zhang W. Pd/Cu-Cocatalyzed Enantio- and Diastereodivergent Wacker-Type Dicarbofunctionalization of Unactivated Alkenes. J Am Chem Soc 2024; 146:26121-26130. [PMID: 39099165 DOI: 10.1021/jacs.4c06788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
The Wacker and Wacker-type reactions are some of the most fundamental and powerful transformations in organic chemistry for their ability to efficiently produce valuable chemicals. Remarkable progress has been achieved in asymmetric oxy/aza-Wacker-type reactions; however, asymmetric Wacker-type dicarbofunctionalization remains underdeveloped, especially for the concurrent construction of two stereocenters. Herein, we report a Pd/Cu-cocatalyzed enantio- and diastereodivergent Wacker-type dicarbofunctionalization of alkene-tethered aryl triflates with imino esters. A series of 2-indanyl motifs bearing adjacent carbon stereocenters could be easily synthesized in moderate to excellent yields and with good to excellent diastereo- and enantioselectivities (up to >20:1 dr and >99% ee). Density functional theory calculations revealed that the origin of diastereoselectivity in this Pd/Cu synergistic catalytic system is jointly determined by both the intermolecular anti-carbopalladation of alkenes and the reductive elimination processes, in accordance with the Curtin-Hammett principle.
Collapse
Affiliation(s)
- Wenzhi Zhu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chongyu Han
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Guoqiang Yang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaohong Huo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
2
|
Yamashita Y, Kobayashi S. Efficient Radical-Mediated Intermolecular α-Alkylation Reactions of Carbonyl Compounds with Nonactivated Alkenes. Chem Asian J 2024; 19:e202400319. [PMID: 38676345 DOI: 10.1002/asia.202400319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Alkylation reactions are fundamental carbon-carbon bond-forming reactions in synthetic organic chemistry. Among them, intermolecular α-alkylation reactions of carbonyl compounds with alkenes are important because they are more atom-economical than the equivalent processes using alkyl halides. However, intermolecular reactions with nonactivated alkenes such as 1-hexene, which can allow the use of a wide range of valuable substrates, have been considered to be very challenging for a long time. In this review, radical-mediated intermolecular α-alkylation reactions of carbonyl compounds with nonactivated alkenes are discussed. The examples are grouped into three types of reactions: peroxide-mediated reactions, metal-oxidant-mediated reactions, and photoactivated reactions. Photoredox-catalyzed alkylation reactions under visible-light irradiation are discussed as a particularly promising recent hot topic. This review provides brief history and new prospects on the α-alkylation process with nonactivated alkenes using α-carbonyl radical species.
Collapse
Affiliation(s)
- Yasuhiro Yamashita
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan, 113-0033
| | - Shū Kobayashi
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan, 113-0033
| |
Collapse
|
3
|
Ballav N, Dana S, Baidya M. Palladium(II)-Catalyzed Regioselective Hydrocarbofunctionalization of N-Alkenyl Amides: Synthesis of Tryptamine Derivatives. Org Lett 2022; 24:9228-9232. [PMID: 36511853 DOI: 10.1021/acs.orglett.2c03753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The hydrocarbofunctionalization of allyl amines connected to the picolinamide directing group is developed under Pd(II) catalysis. The strategy is grounded on a nucleopalladation concept, and a wide range of indoles effectively participated to produce valuable tryptamine derivatives in high yields. Synthetic utilities were showcased through the substrate diversification bearing bioactive core, Pictet-Spengler cyclization, and β-carboline synthesis. A mechanistic study suggested an irreversible nucleopalladation step, while protodepalladation follows a reversible pathway.
Collapse
Affiliation(s)
- Nityananda Ballav
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Suman Dana
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| |
Collapse
|
4
|
Simlandy AK, Rodphon W, Alturaifi TM, Mai BK, Ni HQ, Gurak JA, Liu P, Engle KM. Catalytic Addition of Nitroalkanes to Unactivated Alkenes via Directed Carbopalladation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amit Kumar Simlandy
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Warabhorn Rodphon
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Turki M. Alturaifi
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Hui-Qi Ni
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - John A. Gurak
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Keary M. Engle
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
5
|
Del Vecchio A, Sinibaldi A, Nori V, Giorgianni G, Di Carmine G, Pesciaioli F. Synergistic Strategies in Aminocatalysis. Chemistry 2022; 28:e202200818. [PMID: 35666172 PMCID: PMC9539941 DOI: 10.1002/chem.202200818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Indexed: 12/20/2022]
Abstract
Synergistic catalysis offers the unique possibility of simultaneous activation of both the nucleophile and the electrophile in a reaction. A requirement for this strategy is the stability of the active species towards the reaction conditions and the two concerted catalytic cycles. Since the beginning of the century, aminocatalysis has been established as a platform for the stereoselective activation of carbonyl compounds through HOMO-raising or LUMO-lowering. The burgeoning era of aminocatalysis has been driven by a deep understanding of these activation and stereoinduction modes, thanks to the introduction of versatile and privileged chiral amines. The aim of this review is to cover recent developments in synergistic strategies involving aminocatalysis in combination with organo-, metal-, photo-, and electro-catalysis, focusing on the evolution of privileged aminocatalysts architectures.
Collapse
Affiliation(s)
- Antonio Del Vecchio
- Department of Physical and Chemical Sciences Università degli Studidell'Aquilavia Vetoio67100L'AquilaItaly
| | - Arianna Sinibaldi
- Department of Physical and Chemical Sciences Università degli Studidell'Aquilavia Vetoio67100L'AquilaItaly
| | - Valeria Nori
- Department of Physical and Chemical Sciences Università degli Studidell'Aquilavia Vetoio67100L'AquilaItaly
| | - Giuliana Giorgianni
- Department of Physical and Chemical Sciences Università degli Studidell'Aquilavia Vetoio67100L'AquilaItaly
| | - Graziano Di Carmine
- Department of Chemical, Pharmaceutical and Agricultural Sciences Università degli Studi di FerraraVia Fossato di Mortara 1744121FerraraItaly
| | - Fabio Pesciaioli
- Department of Physical and Chemical Sciences Università degli Studidell'Aquilavia Vetoio67100L'AquilaItaly
| |
Collapse
|
6
|
Nair VV, Arunprasath D, Solai P, Sekar G. Synergistic Dual Amine/Transition Metal Catalysis ‐ Recent Advances. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Pandidurai Solai
- IIT Madras: Indian Institute of Technology Madras Department of Chemistry INDIA
| | - Govindasamy Sekar
- Indian Institute of Technology Madras Department of Chemistry IIT Campus 600 036 Chennai INDIA
| |
Collapse
|
7
|
Chakraborty N, Das B, Rajbongshi KK, Patel BK. Combined Power of Organo‐ and Transition Metal Catalysis in Organic Synthesis. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nikita Chakraborty
- Indian Institute of Technology Guwahati Chemistry Indian Institute of Technology GuwahatiDepartment of ChemistryNorth Guwahati 781039 Guwahati INDIA
| | - Bubul Das
- Indian Institute of Technology Guwahati Chemistry Indian Institute of Technology GuwahatiDepartment of ChemistryNorth Guwahati 781039 Guwahati INDIA
| | - Kamal K. Rajbongshi
- Indian Institute of Technology Guwahati Chemistry Indian Institute of Technology GuwahatiDepartment of ChemistryNorth Guwahati 781039 Guwahati INDIA
| | - Bhisma K Patel
- Indian Institute of Technology Guwahati Chemistry North Guwahati-781 039 781 039 Guwahati INDIA
| |
Collapse
|
8
|
Ni HQ, Cooper P, Yang S, Wang F, Sach N, Bedekar PG, Donaldson JS, Tran-Dubé M, McAlpine IJ, Engle KM. Mapping Ambiphile Reactivity Trends in the Anti-(Hetero)annulation of Non-Conjugated Alkenes via Pd II /Pd IV Catalysis. Angew Chem Int Ed Engl 2022; 61:e202114346. [PMID: 35007393 PMCID: PMC8923970 DOI: 10.1002/anie.202114346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Indexed: 12/14/2022]
Abstract
In this study, we systematically evaluate different ambiphilic organohalides for their ability to participate in anti-selective carbo- or heteroannulation with non-conjugated alkenyl amides under PdII /PdIV catalysis. Detailed optimization of the reaction conditions has led to protocols for synthesizing tetrahydropyridines, tetralins, pyrrolidines, and other carbo/heterocyclic cores via [n+2] (n=3-5) (hetero)annulation. Expansion of scope to otherwise unreactive ambiphilic haloketones through PdII /amine co-catalysis is also demonstrated. Compared to other annulation processes, this method proceeds via a distinct PdII /PdIV mechanism involving Wacker-type directed nucleopalladation. This difference results in unique reactivity and selectivity patterns, as revealed through assessment of reaction scope and competition experiments.
Collapse
Affiliation(s)
- Hui-Qi Ni
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Phillippa Cooper
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Shouliang Yang
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Fen Wang
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Neal Sach
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Pranali G Bedekar
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Joyann S Donaldson
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Michelle Tran-Dubé
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Indrawan J McAlpine
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Keary M Engle
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
9
|
Chen J, Zhou Q, Fang H, Lu P. Dancing on Ropes ‐ Enantioselective Functionalization of Preformed Four‐membered Carbocycles. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jun Chen
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu Shanghai 200433 China
| | - Qiang Zhou
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu Shanghai 200433 China
| | - Huayi Fang
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, No 38 Tongyan Road Tianjin 300350 China
| | - Ping Lu
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu Shanghai 200433 China
| |
Collapse
|
10
|
Ni HQ, Cooper P, Yang S, Wang F, Sach N, Bedekar PG, Donaldson JS, Tran-Dubé M, McAlpine IJ, Engle KM. Mapping Ambiphile Reactivity Trends in the Anti‐(Hetero)annulation of Non‐Conjugated Alkenes via Pd(II)/Pd(IV) Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hui-Qi Ni
- The Scripps Research Institute Chemistry 10550 N. Torrey Pines Rd. 92037 La Jolla UNITED STATES
| | | | - Shouliang Yang
- Pfizer Inc Oncology Medicinal Chemistry 10770 Science Center Drive 92121 San Diego UNITED STATES
| | - Fen Wang
- Pfizer Inc Oncology Medicinal Chemistry UNITED STATES
| | - Neal Sach
- Pfizer Inc Oncology Medicinal Chemistry UNITED STATES
| | | | | | | | | | - Keary Mark Engle
- The Scripps Research Institute Department of Chemistry 10550 N. Torrey Pines Rd. 92037 La Jolla UNITED STATES
| |
Collapse
|
11
|
Ni HQ, Li ZQ, Tran VT, Engle KM. Modular synthesis of non-conjugated N-(quinolin-8-yl) alkenyl amides via cross-metathesis. Tetrahedron 2021; 93:132279. [PMID: 34393281 PMCID: PMC8360400 DOI: 10.1016/j.tet.2021.132279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We report a direct and modular method to access non-conjugated alkenyl amides containing the 8-aminoquinoline (AQ) directing auxiliary and related groups via cross-metathesis. In this way, readily available, AQ-containing, terminal β,γ-unsaturated amides can be coupled with various terminal alkenes to furnish internal alkene products that are otherwise difficult to prepare. The value of this family of products stems from their ability to participate in a number of directed alkene functionalization reactions.
Collapse
Affiliation(s)
- Hui-Qi Ni
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Zi-Qi Li
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Van T Tran
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Keary M Engle
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
12
|
Koudelka J, Tobrman T. Synthesis of 2‐Substituted Cyclobutanones by a Suzuki Reaction and Dephosphorylation Sequence. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jakub Koudelka
- Department of Organic Chemistry University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Tomáš Tobrman
- Department of Organic Chemistry University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| |
Collapse
|
13
|
Zhang H, Lv X, Yu H, Bai Z, Chen G, He G. β-Lactam Synthesis via Copper-Catalyzed Directed Aminoalkylation of Unactivated Alkenes with Cyclobutanone O-Benzoyloximes. Org Lett 2021; 23:3620-3625. [DOI: 10.1021/acs.orglett.1c01007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Heng Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaoyan Lv
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hanrui Yu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zibo Bai
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
14
|
Shukla RK, Chaturvedi AK, Pal S, Volla CMR. Catalytic, Regioselective Hydrocarbofunctionalization of Unactivated Alkenes Triggered by trans-Acetoxypalladation of Alkynes. Org Lett 2021; 23:1440-1444. [DOI: 10.1021/acs.orglett.1c00118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rahul K. Shukla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Atul K. Chaturvedi
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Subir Pal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Chandra M. R. Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
15
|
Bai Z, Zhang H, Wang H, Yu H, Chen G, He G. Enantioselective Alkylamination of Unactivated Alkenes under Copper Catalysis. J Am Chem Soc 2020; 143:1195-1202. [PMID: 33378201 DOI: 10.1021/jacs.0c12333] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An enantioselective addition reaction of various alkyl groups to unactivated internal alkenes under Cu catalysis has been developed. The reaction uses amide-linked aminoquinoline as the directing group, 4-alkyl Hantzsch esters as the donor of alkyl radicals, and rarely used biaryl diphosphine oxide as a chiral ligand. β-lactams featuring two contiguous stereocenters at Cβ and the β substituent can be obtained in good yield with excellent enantioselectivity. Mechanistic studies indicate that a nucleophilic addition of the alkyl radical to CuII-coordinated alkene is the enantio-determining step.
Collapse
Affiliation(s)
- Zibo Bai
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Heng Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hao Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hanrui Yu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
16
|
Ni HQ, Kevlishvili I, Bedekar PG, Barber JS, Yang S, Tran-Dubé M, Romine AM, Lu HX, McAlpine IJ, Liu P, Engle KM. Anti-selective [3+2] (Hetero)annulation of non-conjugated alkenes via directed nucleopalladation. Nat Commun 2020; 11:6432. [PMID: 33353940 PMCID: PMC7755910 DOI: 10.1038/s41467-020-20182-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/04/2020] [Indexed: 11/08/2022] Open
Abstract
2,3-Dihydrobenzofurans and indolines are common substructures in medicines and natural products. Herein, we describe a method that enables direct access to these core structures from non-conjugated alkenyl amides and ortho-iodoanilines/phenols. Under palladium(II) catalysis this [3 + 2] heteroannulation proceeds in an anti-selective fashion and tolerates a wide variety of functional groups. N-Acetyl, -tosyl, and -alkyl substituted ortho-iodoanilines, as well as free -NH2 variants, are all effective. Preliminary results with carbon-based coupling partners also demonstrate the viability of forming indane core structures using this approach. Experimental and computational studies on reactions with phenols support a mechanism involving turnover-limiting, endergonic directed oxypalladation, followed by intramolecular oxidative addition and reductive elimination.
Collapse
Affiliation(s)
- Hui-Qi Ni
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Ilia Kevlishvili
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Pranali G Bedekar
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Joyann S Barber
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, CA, 92121, USA
| | - Shouliang Yang
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, CA, 92121, USA
| | - Michelle Tran-Dubé
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, CA, 92121, USA
| | - Andrew M Romine
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Hou-Xiang Lu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Indrawan J McAlpine
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, CA, 92121, USA.
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA.
| | - Keary M Engle
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
17
|
Wang X, Li ZQ, Mai BK, Gurak JA, Xu JE, Tran VT, Ni HQ, Liu Z, Liu Z, Yang KS, Xiang R, Liu P, Engle KM. Controlling cyclization pathways in palladium(ii)-catalyzed intramolecular alkene hydro-functionalization via substrate directivity. Chem Sci 2020; 11:11307-11314. [PMID: 35382446 PMCID: PMC8914520 DOI: 10.1039/d0sc03409f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/16/2020] [Indexed: 11/21/2022] Open
Abstract
We report a series of palladium(ii)-catalyzed, intramolecular alkene hydrofunctionalization reactions with carbon, nitrogen, and oxygen nucleophiles to form five- and six-membered carbo- and heterocycles. In these reactions, the presence of a proximal bidentate directing group controls the cyclization pathway, dictating the ring size that is generated, even in cases that are disfavored based on Baldwin's rules and in cases where there is an inherent preference for an alternative pathway. DFT studies shed light on the origins of pathway selectivity in these processes.
Collapse
Affiliation(s)
- Xin Wang
- Department of Chemistry, The Scripps Research Institute 10550 North Torrey Pines Road La Jolla California 92037 USA
- Department of Medicinal Chemistry, School of Medicine, Nankai University 94 Weijin Road Tianjin 300071 China
| | - Zi-Qi Li
- Department of Chemistry, The Scripps Research Institute 10550 North Torrey Pines Road La Jolla California 92037 USA
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburg Pittsburgh Pennsylvania 15260 USA
| | - John A Gurak
- Department of Chemistry, The Scripps Research Institute 10550 North Torrey Pines Road La Jolla California 92037 USA
| | - Jessica E Xu
- Department of Chemistry, The Scripps Research Institute 10550 North Torrey Pines Road La Jolla California 92037 USA
| | - Van T Tran
- Department of Chemistry, The Scripps Research Institute 10550 North Torrey Pines Road La Jolla California 92037 USA
| | - Hui-Qi Ni
- Department of Chemistry, The Scripps Research Institute 10550 North Torrey Pines Road La Jolla California 92037 USA
| | - Zhen Liu
- Department of Chemistry, The Scripps Research Institute 10550 North Torrey Pines Road La Jolla California 92037 USA
| | - Zhonglin Liu
- Department of Chemistry, The Scripps Research Institute 10550 North Torrey Pines Road La Jolla California 92037 USA
| | - Kin S Yang
- Department of Chemistry, The Scripps Research Institute 10550 North Torrey Pines Road La Jolla California 92037 USA
| | - Rong Xiang
- Department of Medicinal Chemistry, School of Medicine, Nankai University 94 Weijin Road Tianjin 300071 China
| | - Peng Liu
- Department of Chemistry, University of Pittsburg Pittsburgh Pennsylvania 15260 USA
| | - Keary M Engle
- Department of Chemistry, The Scripps Research Institute 10550 North Torrey Pines Road La Jolla California 92037 USA
| |
Collapse
|
18
|
Mukherjee S, Biswas B. Organo‐Cascade Catalysis: Application of Merged Iminium‐Enamine Activation Technique and Related Cascade Reactivities. ChemistrySelect 2020. [DOI: 10.1002/slct.202003070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Shirshendu Mukherjee
- Department of Chemistry Hooghly Mohsin Govt. College Hooghly 712101, West Bengal India
| | - Bhaskar Biswas
- Department of Chemistry University of North Bengal Siliguri Darjeeling 734013, West Bengal India
| |
Collapse
|
19
|
Wei C, He Y, Wang J, Ye X, Wojtas L, Shi X. Hexafluoroisopropanol-Promoted Disulfidation and Diselenation of Alkyne, Alkene, and Allene. Org Lett 2020; 22:5462-5465. [PMID: 32588633 PMCID: PMC10264211 DOI: 10.1021/acs.orglett.0c01834] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hexafluoroisopropanol (HFIP)-promoted disulfidation and diselenation of C-C unsaturated bonds is reported. Reactions of unactivated alkyne, alkene, and allene, respectively, with disulfides or diselenides in HFIP led to desired products in good to excellent yields (up to 96%). In contrast, other solvents, such as isopropanol and dichloroethane, could not promote the same reaction. This method revealed an example of HFIP-promoted transformations under the mild conditions, which greatly highlighted the unique reactivity of this special solvent.
Collapse
Affiliation(s)
- Chiyu Wei
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Ying He
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Jin Wang
- College of Chemistry, Chemical Engineering and Material Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Xiaohan Ye
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Lukasz Wojtas
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Xiaodong Shi
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
20
|
Liu T, Yang Y, Wang C. Manganese‐Catalyzed Hydroarylation of Unactivated Alkenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003830] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ting Liu
- Beijing National Laboratory for Molecular Sciences CAS key Laboratory of Molecular Recognition and Function CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yunhui Yang
- Beijing National Laboratory for Molecular Sciences CAS key Laboratory of Molecular Recognition and Function CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Physical Science Laboratory, Huairou National Comprehensive Science Center Beijing 101400 China
| | - Congyang Wang
- Beijing National Laboratory for Molecular Sciences CAS key Laboratory of Molecular Recognition and Function CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Physical Science Laboratory, Huairou National Comprehensive Science Center Beijing 101400 China
| |
Collapse
|
21
|
Liu T, Yang Y, Wang C. Manganese‐Catalyzed Hydroarylation of Unactivated Alkenes. Angew Chem Int Ed Engl 2020; 59:14256-14260. [DOI: 10.1002/anie.202003830] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/22/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Ting Liu
- Beijing National Laboratory for Molecular Sciences CAS key Laboratory of Molecular Recognition and Function CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yunhui Yang
- Beijing National Laboratory for Molecular Sciences CAS key Laboratory of Molecular Recognition and Function CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Physical Science Laboratory, Huairou National Comprehensive Science Center Beijing 101400 China
| | - Congyang Wang
- Beijing National Laboratory for Molecular Sciences CAS key Laboratory of Molecular Recognition and Function CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Physical Science Laboratory, Huairou National Comprehensive Science Center Beijing 101400 China
| |
Collapse
|
22
|
Sun D, Yang S, Fang X. Asymmetric catalytic construction of fully substituted carbon stereocenters using acyclic α-branched β-ketocarbonyls: the “Methyl Rule” widely exists. Org Chem Front 2020. [DOI: 10.1039/d0qo00673d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review illustrates the recent advances in catalytic asymmetric α-functionalization of acyclic β-ketocarbonyls. A thorough survey of all these reactions indicates the existance of a general principle which is called the “Methyl Rule”.
Collapse
Affiliation(s)
- Deqian Sun
- State Key Laboratory of Structural Chemistry
- and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- Fujian Institute of Research on the Structure of Matter (FJIRSM)
- University of Chinese Academy of Sciences
- Fuzhou 350100
| | - Shuang Yang
- State Key Laboratory of Structural Chemistry
- and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- Fujian Institute of Research on the Structure of Matter (FJIRSM)
- University of Chinese Academy of Sciences
- Fuzhou 350100
| | - Xinqiang Fang
- State Key Laboratory of Structural Chemistry
- and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- Fujian Institute of Research on the Structure of Matter (FJIRSM)
- University of Chinese Academy of Sciences
- Fuzhou 350100
| |
Collapse
|