1
|
Cyniak J, Kasprzak A. Mechanochemical Synthesis of Molecular Chemoreceptors. ACS OMEGA 2024; 9:48870-48883. [PMID: 39713627 PMCID: PMC11656220 DOI: 10.1021/acsomega.4c06566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/24/2024]
Abstract
The design of environmentally friendly methods for synthesizing molecular receptors is an expanding area within applied organic chemistry. This work systematically summarizes advances in the mechanochemical synthesis of molecular chemoreceptors. It discusses key achievements related to the synthesis of chemoreceptors containing azine, Schiff base, thiosemicarbazone, hydrazone, rhodamine 6G, imide, or amide moieties. Additionally, it highlights the application potential of mechanochemically synthesized molecular chemoreceptors in the recognition of ions and small molecules, along with a discussion of the mechanisms of detection processes.
Collapse
Affiliation(s)
- Jakub
S. Cyniak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664 Warsaw, Poland
| | - Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664 Warsaw, Poland
| |
Collapse
|
2
|
Wani AA, Bhujbal SM, Sherpa D, Kathuria D, Chourasiya SS, Sahoo SC, Bharatam PV. An NNN Pd(II) pincer complex with 1,1-diaminoazine: a versatile catalyst for acceptorless dehydrogenative coupling reactions. Org Biomol Chem 2024. [PMID: 39534965 DOI: 10.1039/d4ob01576b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
An azine-based, non-palindromic, neutral NNN-pincer ligand was synthesised in a single step with an yield of 85%. The palladation of the ligand, using Pd(OAc)2, was performed in acetonitrile at room temperature to obtain the pincer complex in 88% yield through a simple, cost-effective, and straightforward synthetic procedure. The structure of the complex was confirmed by 1H NMR, 13C NMR, FT-IR, and mass spectrometry. The variable temperature NMR spectra revealed the stability of the complex even at higher temperatures, a characteristic feature of pincer complexes. The generated complex proved to be a versatile catalyst for Acceptorless Dehydrogenative Coupling (ADC) to synthesize N-heterocycles: (i) 1,2-disubstituted benzimidazoles, (ii) 2-phenylquinolines, (iii) 2-phenylquinoxalines and (iv) 2-phenylquinazolinones. Since the side products of the reactions are H2O and H2 gas, the catalysis can be considered as a green catalytic process. Quantum chemical calculations indicated the participation of a possible nitrene-imide conversion process during the Metal-Ligand Cooperation (MLC) in ADC reactions.
Collapse
Affiliation(s)
- Aabid A Wani
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab 160062, India.
- Chandigarh College of Pharmacy, Chandigarh Group of Colleges, Landran, Punjab, India
| | - Shivkanya Madhavrao Bhujbal
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab 160062, India.
| | - Deekey Sherpa
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab 160062, India.
| | - Deepika Kathuria
- University Centre for Research and Development, Chandigarh University, Gharuan, Punjab 140413, India
| | - Sumit S Chourasiya
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab 160062, India.
| | - Subash C Sahoo
- Department of Chemistry, Panjab University, Chandigarh, Punjab 160014, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab 160062, India.
| |
Collapse
|
3
|
Sennappan M, Srinivasa Murthy V, Managutti PB, Subhapriya P, Gurushantha K, Ramamurthy PC, Hemavathi B, Anantharaju KS, Thakur A. Facile synthesis of azines by carboxylic acid esters as catalyst and facilitation of intersystem crossing (ISC) in azines by azine chromophore. Sci Rep 2024; 14:24656. [PMID: 39428400 PMCID: PMC11491452 DOI: 10.1038/s41598-024-75561-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024] Open
Abstract
Development of new organic synthetic methods fascinating the researchers which facilitating the increasing demands of the modern society, environmental friendly with high efficiency and low cost. The introduction of chromophores in an organic molecules facilitating intersystem crossing (ISC) to harvest both singlet and triplet excitons is also currently demanding field. We report a facile synthesis of symmetrical azines from carbonyl compounds and hydrazine hydrate with carboxylic acid esters as catalyst in methanol. This reaction presents a condensation of primary amino groups in hydrazine hydrate and carbonyl compounds took place simultaneously in a very short refluxing time. The prepared azines 1-10 were structurally analysed by various analytical techniques such as LC-MS1, H NMR13, C NMR, UV-Vis, FTIR and single crystal X-ray diffraction. Photoluminescence properties of prepared azines were recorded in CCl4 at 1 × 10-3 M and excitation range from 329 to 362 nm. The photoluminescence analysis results revealed that compounds 1-10 (except 8) were showed delayed fluorescence and 8 was showed fluorescence property. The photophysical properties of compounds 1-10 such as electron density and band gap energies was calculated by density function theory. This results revealed that the intra-molecular charge transfer occurs within the azines. The azine function in the azines enabling intersystem crossing hence, it is showing phosphorescence.
Collapse
Affiliation(s)
- M Sennappan
- Department of Chemistry, Dayananda Sagar College of Engineering, Bengaluru, Karnataka, 560111, India.
| | - V Srinivasa Murthy
- Department of Chemistry, Dayananda Sagar University, Bengaluru, Karnataka, 560019, India
| | - Praveen B Managutti
- Chemical Crystallography Laboratory, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - P Subhapriya
- Department of Chemistry, Bannari Amman Institute of technology, Sathyamangalam, 638401, Tamil Nadu, India
| | - K Gurushantha
- Department of Chemistry, M. S. Ramaiah Institute of Technology, Bengaluru, Karnataka, 560054, India
| | - Praveen C Ramamurthy
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, 560012, Karnataka, India
| | - B Hemavathi
- Department of Chemistry, Dayananda Sagar College of Engineering, Bengaluru, Karnataka, 560111, India
| | - K S Anantharaju
- Department of Chemistry, Dayananda Sagar College of Engineering, Bengaluru, Karnataka, 560111, India
| | - Aman Thakur
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, 560012, Karnataka, India
| |
Collapse
|
4
|
Balayan K, Sharma H, Vanka K, Gonnade RG, Sen SS. Uncovering diverse reactivity of NHCs with diazoalkane: C-H activation, C[double bond, length as m-dash]C bond formation, and access to N-heterocyclic methylenehydrazine. Chem Sci 2024:d4sc05740f. [PMID: 39421200 PMCID: PMC11480828 DOI: 10.1039/d4sc05740f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/05/2024] [Indexed: 10/19/2024] Open
Abstract
N-heterocyclic carbenes (NHCs) have attracted significant attention due to their strong σ-donating capabilities, as well as their transition-metal-like reactivity towards small molecules. However, their interaction with diazoalkanes remains understudied. In this manuscript, we explore the reactivity of a series of stable carbenes, encompassing a wide range of electronic properties, with Me3SiCHN2. 5-SIPr activates the C-H bond of Me3SiCHN2, resulting in the formation of a novel diazo derivative (1), while carbenes such as 5-IPr, 6-SIPr, and diamido carbene yield N-heterocyclic methylenehydrazine derivatives (3, 4, and 8). The reaction of Me3SiCHN2 with 5-I t Bu unexpectedly leads to the formation of a triazole ring linked with the imidazole moiety via a C[double bond, length as m-dash]C double bond (6) alongside the azine product (7). Substituting the diazoalkane with diazoester consistently yields azine derivatives (9-12 and 14). Only in the case of 5-I t Bu, an imidazolium salt with tetrazenide anion (13) was obtained as a side product. The reaction of 4 with HCl resulted in the desilylprotonation to form a salt, 5a, which undergoes deprotonation upon using bases such as Et3N and KHMDS to form N-heterocyclic methylene hydrazine, 5. Theoretical calculations have been conducted to elucidate the diverse mechanisms underlying product formation.
Collapse
Affiliation(s)
- Kajal Balayan
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory Dr Homi Bhabha Road, Pashan Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) New Ghaziabad 201002 India
| | - Himanshu Sharma
- Academy of Scientific and Innovative Research (AcSIR) New Ghaziabad 201002 India
- Physical and Material Chemistry Division, CSIR-National Chemical Laboratory Dr Homi Bhabha Road, Pashan Pune 411008 India
| | - Kumar Vanka
- Academy of Scientific and Innovative Research (AcSIR) New Ghaziabad 201002 India
- Physical and Material Chemistry Division, CSIR-National Chemical Laboratory Dr Homi Bhabha Road, Pashan Pune 411008 India
| | - Rajesh G Gonnade
- Academy of Scientific and Innovative Research (AcSIR) New Ghaziabad 201002 India
- Physical and Material Chemistry Division, CSIR-National Chemical Laboratory Dr Homi Bhabha Road, Pashan Pune 411008 India
| | - Sakya S Sen
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory Dr Homi Bhabha Road, Pashan Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) New Ghaziabad 201002 India
| |
Collapse
|
5
|
Ouabane M, Zaki K, Zaki H, Guendouzi A, Sbai A, Sekkate C, Lakhlifi T, Bouachrine M. Inhibition of the Janus kinase protein (JAK1) by the A. Pyrethrum Root Extract for the treatment of Vitiligo pathology. Design, Molecular Docking, ADME-Tox, MD Simulation, and in-silico investigation. Comput Biol Med 2024; 179:108816. [PMID: 38955123 DOI: 10.1016/j.compbiomed.2024.108816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/04/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
This study delves into the therapeutic efficacy of A. pyrethrum in addressing vitiligo, a chronic inflammatory disorder known for inducing psychological distress and elevating susceptibility to autoimmune diseases. Notably, JAK inhibitors have emerged as promising candidates for treating immune dermatoses, including vitiligo. Our investigation primarily focuses on the anti-vitiligo potential of A. pyrethrum root extract, specifically targeting N-alkyl-amides, utilizing computational methodologies. Density Functional Theory (DFT) is deployed to meticulously scrutinize molecular properties, while comprehensive evaluations of ADME-Tox properties for each molecule contribute to a nuanced understanding of their therapeutic viability, showcasing remarkable drug-like characteristics. Molecular docking analysis probes ligand interactions with pivotal site JAK1, with all compounds demonstrating significant interactions; notably, molecule 6 exhibits the most interactions with crucial inhibition residues. Molecular dynamics simulations over 500ns further validate the importance and sustainability of these interactions observed in molecular docking, favoring energetically both molecules 6 and 1; however, in terms of stability, the complex with molecule 6 outperforms others. DFT analyses elucidate the distribution of electron-rich oxygen atoms and electron-poor regions within heteroatoms-linked hydrogens. Remarkably, N-alkyl-amides extracted from A. pyrethrum roots exhibit similar compositions, yielding comparable DFT and Electrostatic Potential (ESP) results with subtle distinctions. These findings underscore the considerable potential of A. pyrethrum root extracts as a natural remedy for vitiligo.
Collapse
Affiliation(s)
- Mohamed Ouabane
- Molecular Chemistry and Natural Substances Laboratory, Department of Chemistry, Faculty of Science, My Ismail University, B.P. 11202, Meknes, 50000, Morocco; Chemistry-Biology Applied to the Environment URL CNRT 13, Department of Chemistry, Faculty of Science, My Ismail University, B.P. 11202, Meknes, 50000, Morocco
| | - Khadija Zaki
- Molecular Chemistry and Natural Substances Laboratory, Department of Chemistry, Faculty of Science, My Ismail University, B.P. 11202, Meknes, 50000, Morocco
| | - Hanane Zaki
- Biotechnology, Bioresources, And Bioinformatics Laboratory at the Higher School of Technology, 54000, Khenifra, Morocco
| | - Abdelkrim Guendouzi
- Laboratory of Chemistry, Synthesis, Properties and Applications, Department of Chemistry, Faculty of Science, University of Saida, Algeria
| | - Abdelouahid Sbai
- Molecular Chemistry and Natural Substances Laboratory, Department of Chemistry, Faculty of Science, My Ismail University, B.P. 11202, Meknes, 50000, Morocco
| | - Chakib Sekkate
- Chemistry-Biology Applied to the Environment URL CNRT 13, Department of Chemistry, Faculty of Science, My Ismail University, B.P. 11202, Meknes, 50000, Morocco
| | - Tahar Lakhlifi
- Molecular Chemistry and Natural Substances Laboratory, Department of Chemistry, Faculty of Science, My Ismail University, B.P. 11202, Meknes, 50000, Morocco
| | - Mohammed Bouachrine
- Molecular Chemistry and Natural Substances Laboratory, Department of Chemistry, Faculty of Science, My Ismail University, B.P. 11202, Meknes, 50000, Morocco.
| |
Collapse
|
6
|
Elgammal WE, Shaban SS, Eliwa EM, Halawa AH, Abd El-Gilil SM, Hassan RA, Abdou AM, Elhagali GA, Reheim MA. Thiazolation of phenylthiosemicarbazone to access new thiazoles: anticancer activity and molecular docking. Future Med Chem 2024; 16:1219-1237. [PMID: 38989988 PMCID: PMC11247539 DOI: 10.1080/17568919.2024.2342668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/04/2024] [Indexed: 07/12/2024] Open
Abstract
Aim: Novel thiazole hybrids were synthesized via thiazolation of 4-phenylthiosemicarbazone (4). Materials & methods: The anticancer activity against the NCI 60 cancer cell line panel. Results: Methyl 2-(2-((1-(naphthalen-2-yl)ethylidene)hydrazineylidene)-4-oxo-3-phenylthiazolidin-5-ylidene)acetate (6a) showed significant anticancer activity at 10 μM with a mean growth inhibition (GI) of 51.18%. It showed the highest cytotoxic activity against the ovarian cancer OVCAR-4 with an IC50 of 1.569 ± 0.06 μM. Compound 6a inhibited PI3Kα with IC50 = 0.225 ± 0.01 μM. Moreover, compound 6a revealed a decrease of Akt and mTOR phosphorylation in OVCAR-4 cells. In addition, antibacterial activity showed that compounds 11 and 12 were the most active against Staphylococcus aureus. Conclusion: Compound 6a is a promising molecule that could be a lead candidate for further studies.
Collapse
Affiliation(s)
- Walid E Elgammal
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Safaa S Shaban
- Chemistry Department, Faculty of Science, Ain Shams University, 11566, Cairo, Egypt
| | - Essam M Eliwa
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University, Nasr City, 11884, Cairo, Egypt
- Institute of Chemistry of Strasbourg, UMR 7177-LCSOM, CNRS, Strasbourg University, 4 rue Blaise Pascal, 67000, Strasbourg, France
| | - Ahmed H Halawa
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Shimaa M Abd El-Gilil
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, 11754, Cairo, Egypt
| | - Rasha A Hassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Amr M Abdou
- Department of Microbiology & Immunology, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Gameel Am Elhagali
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Mam Abdel Reheim
- Department of Chemistry, Faculty of Science, Arish University, Arish, 45511, Egypt
| |
Collapse
|
7
|
Mangalagiu V, Danac R, Diaconu D, Zbancioc G, Mangalagiu II. Hybrids Diazine: Recent Advancements in Modern Antimicrobial Therapy. Curr Med Chem 2024; 31:2687-2705. [PMID: 37073649 DOI: 10.2174/0929867330666230418104409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 04/20/2023]
Abstract
Nowadays, antimicrobial therapies have become a very challenging issue because of a large diversity of reasons such as antimicrobial resistance, over consumption and misuse of antimicrobial agents, etc. A modern, actual and very useful approach in antimicrobial therapy is represented by the use of hybrid drugs, especially combined five and six-membered ring azaheterocycles. In this review, we present an overview of the recent advanced data from the last five years in the field of hybrid diazine compounds with antimicrobial activity. In this respect, we highlight here essential data concerning the synthesis and antimicrobial activity of the main classes of diazine hybrids: pyridazine, pyrimidine, pyrazine, and their fused derivatives.
Collapse
Affiliation(s)
- Violeta Mangalagiu
- Institute of Interdisciplinary Research - CERNESIM Center, Alexandru Ioan Cuza University of Iasi, Bd. Carol 11, Iasi, 700506, Romania
| | - Ramona Danac
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, Bd. Carol 11, Iasi, 700506, Romania
| | - Dumitrela Diaconu
- Institute of Interdisciplinary Research - CERNESIM Center, Alexandru Ioan Cuza University of Iasi, Bd. Carol 11, Iasi, 700506, Romania
| | - Gheorghita Zbancioc
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, Bd. Carol 11, Iasi, 700506, Romania
| | - Ionel I Mangalagiu
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, Bd. Carol 11, Iasi, 700506, Romania
- Institute of Interdisciplinary Research - CERNESIM Center, Alexandru Ioan Cuza University of Iasi, Bd. Carol 11, Iasi, 700506, Romania
| |
Collapse
|
8
|
Evans MJ, Anker MD, McMullin CL, Coles MP. Reductive Coupling of a Diazoalkane Derivative Promoted by a Potassium Aluminyl and Elimination of Dinitrogen to Generate a Reactive Aluminium Ketimide. Chemistry 2023; 29:e202302903. [PMID: 37786384 PMCID: PMC10946750 DOI: 10.1002/chem.202302903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023]
Abstract
The reaction of 9-diazo-9H-fluorene (fluN2 ) with the potassium aluminyl K[Al(NON)] ([NON]2- =[O(SiMe2 NDipp)2 ]2- , Dipp=2,6-iPr2 C6 H3 ) affords K[Al(NON)(κN1 ,N3 -{(fluN2 )2 })] (1). Structural analysis shows a near planar 1,4-di(9H-fluoren-9-ylidene)tetraazadiide ligand that chelates to the aluminium. The thermally induced elimination of dinitrogen from 1 affords the neutral aluminium ketimide complex, Al(NON)(N=flu)(THF) (2) and the 1,2-di(9H-fluoren-9-yl)diazene dianion as the potassium salt, [K2 (THF)3 ][fluN=Nflu] (3). The reaction of 2 with N,N'-diisopropylcarbodiimide (iPrN=C=NiPr) affords the aluminium guanidinate complex, Al(NON){N(iPr)C(N=CMe2 )N(CHflu)} (4), showing a rare example of reactivity at a metal ketimide ligand. Density functional theory (DFT) calculations have been used to examine the bonding in the newly formed [(fluN2 )2 ]2- ligand in 1 and the ketimide bonding in 2. The mechanism leading to the formation of 4 has also been studied using this technique.
Collapse
Affiliation(s)
- Matthew J. Evans
- School of Chemical and Physical SciencesVictoria University of WellingtonP.O. Box 600Wellington6012New Zealand
| | - Mathew D. Anker
- School of Chemical and Physical SciencesVictoria University of WellingtonP.O. Box 600Wellington6012New Zealand
| | | | - Martyn P. Coles
- School of Chemical and Physical SciencesVictoria University of WellingtonP.O. Box 600Wellington6012New Zealand
| |
Collapse
|
9
|
Saayman M, Kannigadu C, Aucamp J, Janse van Rensburg HD, Joseph C, Swarts AJ, N'Da DD. Design, synthesis, electrochemistry and anti-trypanosomatid hit/lead identification of nitrofuranylazines. RSC Med Chem 2023; 14:2012-2029. [PMID: 37859713 PMCID: PMC10583827 DOI: 10.1039/d3md00220a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/12/2023] [Indexed: 10/21/2023] Open
Abstract
Chagas disease and leishmaniasis are vector-borne infectious diseases affecting both humans and animals. These neglected tropical diseases can be fatal if not treated. Hundreds to thousands of new Chagas disease and leishmaniasis cases are being reported by the WHO every year, and currently available treatments are insufficient. Severe adverse effects, impractical administrations and increased pathogen resistance against current clinical treatments underscore a serious need for the development of new drugs to curb these ailments. In search for such drugs, we investigated a series of nitrofuran-based azine derivatives. Herein, we report the design, synthesis, electrochemistry, and biological activity of these derivatives against promastigotes and amastigotes of Leishmania major, and L. donovani strains, as well as epimastigotes and trypomastigotes of Trypanosoma cruzi. Two leishmanicidal early leads and one trypanosomacidal hit with submicromolar activity were uncovered and stand for further in vivo investigation in the search for new antitrypanosomatid drugs. Future objective will focus on the identification of involved biological targets with the parasites.
Collapse
Affiliation(s)
- Maryna Saayman
- Centre of Excellence for Pharmaceutical Sciences, North-West University Potchefstroom 2520 South Africa +27 18 299 4243 +27 18 299 2256
| | - Christina Kannigadu
- Centre of Excellence for Pharmaceutical Sciences, North-West University Potchefstroom 2520 South Africa +27 18 299 4243 +27 18 299 2256
| | - Janine Aucamp
- Centre of Excellence for Pharmaceutical Sciences, North-West University Potchefstroom 2520 South Africa +27 18 299 4243 +27 18 299 2256
| | - Helena D Janse van Rensburg
- Centre of Excellence for Pharmaceutical Sciences, North-West University Potchefstroom 2520 South Africa +27 18 299 4243 +27 18 299 2256
| | - Cassiem Joseph
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand Johannesburg-Braamfontein 2050 South Africa
| | - Andrew J Swarts
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand Johannesburg-Braamfontein 2050 South Africa
| | - David D N'Da
- Centre of Excellence for Pharmaceutical Sciences, North-West University Potchefstroom 2520 South Africa +27 18 299 4243 +27 18 299 2256
| |
Collapse
|
10
|
Synthesis of Schiff Bases Containing Phenol Rings and Investigation of Their Antioxidant Capacity, Anticholinesterase, Butyrylcholinesterase, and Carbonic Anhydrase Inhibition Properties. Pharmaceutics 2023; 15:pharmaceutics15030779. [PMID: 36986640 PMCID: PMC10051454 DOI: 10.3390/pharmaceutics15030779] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
The widespread usage of Schiff bases in chemistry, industry, medicine, and pharmacy has increased interest in these compounds. Schiff bases and derivative compounds have important bioactive properties. Heterocyclic compounds containing phenol derivative groups in their structure have the potential to capture free radicals that can cause diseases. In this study, we designed and synthesized eight Schiff bases (10–15) and hydrazineylidene derivatives (16–17), which contain phenol moieties and have the potential to be used as synthetic antioxidants, for the first time using microwave energy. Additionally, the antioxidant effects of Schiff bases (10–15) and hydrazineylidene derivatives (16–17) were studied using by the bioanalytical methods of 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) cation radical (ABTS•+) and 1,1-diphenyl-2-picrylhydrazyl (DPPH•) scavenging activities, and Fe3+, Cu2+, and Fe3+-TPTZ complex reducing capacities. In the context of studies on antioxidants, Schiff bases (10–15) and hydrazineylidene derivatives (16–17) were found to be as powerful DPPH (IC50: 12.15–99.01 μg/mL) and ABTS•+ (IC50: 4.30–34.65 μg/mL). Additionally, the inhibition abilities of Schiff bases (10–15) and hydrazineylidene derivatives (16–17) were determined towards some metabolic enzymes including acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and human carbonic anhydrase I and II (hCAs I and II), enzymes that are linked to some global disorders including Alzheimer’s disease (AD), epilepsy, and glaucoma. In the context of studies on enzyme inhibition, it was observed that the synthesized Schiff bases (10–15) and hydrazineylidene derivatives (16–17) inhibited AChE, BChE, hCAs I, and hCA II enzymes with IC50 values in ranges of 16.11–57.75 nM, 19.80–53.31 nM, 26.08 ± 8.53 nM, and 85.79 ± 24.80 nM, respectively. In addition, in light of the results obtained, we hope that this study will be useful and guiding for the evaluation of biological activities in the fields of the food, medical, and pharmaceutical industries in the future.
Collapse
|
11
|
Synthesis, spectra, crystal, DFT, molecular docking and in vitro cholinesterase inhibition evaluation on two novel symmetrical Azine Schiff Bases. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
12
|
The crystal structure of 3-(1-(2-(4-hydroxy-3,5-dimethoxybenzylidene)hydrazinyl)ethylidene)chroman-2,4-dione dihydrate, C 20H 22N 2O 8. Z KRIST-NEW CRYST ST 2023. [DOI: 10.1515/ncrs-2022-0594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Abstract
C20H22N2O8, monoclinic, P21/c (no. 14), a = 8.7634(8) Å, b = 17.9290(18) Å, c = 12.8437(9) Å, β = 100.013(8)°, V = 1987.3(3) Å3, Z = 4, R
gt(F) = 0.0401, wR
ref(F
2) = 0.1026, T = 170 K.
Collapse
|
13
|
Wagay SA, Ali R. Unraveling the Potential Role of Deep Eutectic Solvents (DESs): Synthesis of Ketazines & Pyrazolines. ChemistrySelect 2023. [DOI: 10.1002/slct.202202779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Shafieq Ahmad Wagay
- Organic and Supramolecular Functional Materials Research Laboratory Department of Chemistry, Jamia Millia Islamia, Okhla New Delhi 110025 India
| | - Rashid Ali
- Organic and Supramolecular Functional Materials Research Laboratory Department of Chemistry, Jamia Millia Islamia, Okhla New Delhi 110025 India
| |
Collapse
|
14
|
Bhattu M, Verma M, Wani AA, Bharatam PV, Sareen S, Kathuria D. Tuning of (E)-(4-fluorophenyl)-1,1-diamino-2,3-diazabuta-1,3-diene nanostructures for the selective detection of imidacloprid. ENVIRONMENTAL RESEARCH 2023; 216:114494. [PMID: 36209786 DOI: 10.1016/j.envres.2022.114494] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/27/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
The present work demonstrates a facile route for synthesizing the organic nanoparticles (ONPs) and the blue fluorescent Quantum Dots (QDs) based on an organic molecule named (E)-(4-fluorophenyl)-1,1-diamino-2,3-diazabuta-1,3-diene. The synthesis process possesses advantages viz green synthesis, non-toxic degraded products, and amount of organic compound. Initially, the ONPs were prepared using the nanoprecipitation method and were screened for their recognition potential against various pesticides, however, no selectivity has been observed. This motivated us to tune the ONPs into QDs. The QDs were prepared using the hydrothermal method and a color change was observed in the QDs solution under daylight and under a UV lamp. The emission wavelength was observed at 400 nm (λexcitation = 278 nm). The synthesized QDs exhibited selective sensing potential towards imidacloprid via a quenching mechanism. A normalised decrement in the luminescence intensity of QDs was observed on raising the concentration of imidacloprid and a good linear response was noticed over a concentration varies from 1 μM to 100 μM with a regression coefficient of 0.99. The detection limit was estimated to be 4.53 nM and quantification limit was calculated to be and 13.72 nM.
Collapse
Affiliation(s)
- Monika Bhattu
- University Center for Research and Development, Chandigarh University, Gharuan, Punjab, 140413, India
| | - Meenakshi Verma
- University Center for Research and Development, Chandigarh University, Gharuan, Punjab, 140413, India
| | - Aabid A Wani
- National Institute of Pharmaceutical Education and Research, Mohali, Punjab, 160062, India
| | - P V Bharatam
- National Institute of Pharmaceutical Education and Research, Mohali, Punjab, 160062, India
| | - Shweta Sareen
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, India
| | - Deepika Kathuria
- University Center for Research and Development, Chandigarh University, Gharuan, Punjab, 140413, India.
| |
Collapse
|
15
|
Bhattu M, Wani AA, Verma M, Bharatam P, Kathuria D, Simal-Gandara J. A Selective Turn-On Fluorescent Chemosensor 1,1-diaminoazine For Azinphos-methyl. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Ovais Dar M, Kapse RY, Dubey G, Singh T, Thiruvenkatam V, Bharatam PV. Electronic Structure Analysis and Synthesis of Nitroso
N
‐Heterocyclic Imines. ChemistrySelect 2022. [DOI: 10.1002/slct.202203613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Mohammad Ovais Dar
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research Sector 67, S.A.S. Nagar 160062 Punjab India
| | - Rahul Y. Kapse
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research Sector 67, S.A.S. Nagar 160062 Punjab India
| | - Gurudutt Dubey
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research Sector 67, S.A.S. Nagar 160062 Punjab India
- Current address Discipline of Chemistry Indian Institute of Technology Gandhinagar Palaj Gandhinagar 382355 Gujarat India
| | - Tejender Singh
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research Sector 67, S.A.S. Nagar 160062 Punjab India
- Current address Tata Institute of Fundamental Research (TIFR) Hyderabad Gopanpally Hyderabad 500046 Telangana India
| | - Vijay Thiruvenkatam
- Discipline of Biological Engineering Indian Institute of Technology Gandhinagar Palaj Gandhinagar 382355 Gujarat India
| | - Prasad V. Bharatam
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research Sector 67, S.A.S. Nagar 160062 Punjab India
| |
Collapse
|
17
|
Radulović NS, Sejmanović DM, Ristić MN, Dekić VS, Krüger B, Kahlenberg V, Rodić MV. The crystal structure of 3-(1-(2-((5-methylthiophen-2-yl)methylene)hydrazinyl)ethylidene)chroman-2,4-dione, C 17H 14N 2O 3S. Z KRIST-NEW CRYST ST 2022. [DOI: 10.1515/ncrs-2022-0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C17H14N2O3S, monoclinic, P21/c (no. 14), a = 9.8966(5) Å, b = 9.4360(4) Å, c = 16.7115(7) Å, β = 92.245(4)°, V = 1559.39(12) Å3, Z = 4, R
gt(F) = 0.0358, wR
ref(F
2) = 0.1013, T = 170 K.
Collapse
Affiliation(s)
- Niko S. Radulović
- Department of Chemistry, Faculty of Science and Mathematics , University of Niš Višegradska , 33 18000 Niš , Serbia
| | - Dragana M. Sejmanović
- Faculty of Sciences , University of Priština in Kosovska Mitrovica Lole Ribara , 29 38220 Kosovska Mitrovica , Serbia
| | - Milenko N. Ristić
- Faculty of Sciences , University of Priština in Kosovska Mitrovica Lole Ribara , 29 38220 Kosovska Mitrovica , Serbia
| | - Vidoslav S. Dekić
- Faculty of Sciences , University of Priština in Kosovska Mitrovica Lole Ribara , 29 38220 Kosovska Mitrovica , Serbia
| | - Biljana Krüger
- Institute of Mineralogy and Petrography Innrain , University of Innsbruck , 52 6020 Innsbruck , Austria
| | - Volker Kahlenberg
- Institute of Mineralogy and Petrography Innrain , University of Innsbruck , 52 6020 Innsbruck , Austria
| | - Marko V. Rodić
- Faculty of Sciences Trg Dositeja Obradovića , University of Novi Sad , 3 21000 Novi Sad , Serbia
| |
Collapse
|
18
|
Selective Formation of Unsymmetric Multidentate Azine-Based Ligands in Nickel(II) Complexes. Molecules 2022; 27:molecules27206788. [PMID: 36296383 PMCID: PMC9608849 DOI: 10.3390/molecules27206788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 12/02/2022] Open
Abstract
A mixture of 2-pyridine carboxaldehyde, 4-formylimidazole (or 2-methyl-4-formylimidazole), and NiCl2·6H2O in a molar ratio of 2:2:1 was reacted with two equivalents of hydrazine monohydrate in methanol, followed by the addition of aqueous NH4PF6 solution, afforded a NiII complex with two unsymmetric azine-based ligands, [Ni(HLH)2](PF6)2 (1) or [Ni(HLMe)2](PF6)2 (2), in a high yield, where HLH denotes 2-pyridylmethylidenehydrazono-(4-imidazolyl)methane and HLMe is its 2-methyl-4-imidazolyl derivative. The spectroscopic measurements and elemental analysis confirmed the phase purity of the bulk products, and the single-crystal X-ray analysis revealed the molecular and crystal structures of the NiII complexes bearing an unsymmetric HLH or HLMe azines in a tridentate κ3N, N’, N” coordination mode. The HLH complex with a methanol solvent, 1·MeOH, crystallizes in the orthorhombic non-centrosymmetric space group P212121 with Z = 4, affording conglomerate crystals, while the HLMe complex, 2·H2O·Et2O, crystallizes in the monoclinic and centrosymmetric space group P21/n with Z = 4. In the crystal of 2·H2O·Et2O, there is intermolecular hydrogen-bonding interaction between the imidazole N–H and the neighboring uncoordinated azine-N atom, forming a one-dimensional polymeric structure, but there is no obvious magnetic interaction among the intra- and interchain paramagnetic NiII ions.
Collapse
|
19
|
Rozentsveig IB, Nikonova VS, Manuilov VV, Ushakov IA, Borodina TN, Smirnov VI, Korchevin NA. Heterocyclization of Bis(2-chloroprop-2-en-1-yl)sulfide in Hydrazine Hydrate–KOH: Synthesis of Thiophene and Pyrrole Derivatives. Molecules 2022; 27:molecules27206785. [PMID: 36296380 PMCID: PMC9609936 DOI: 10.3390/molecules27206785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022] Open
Abstract
The article is devoted to heterocyclization of bis(2-chloroprop-2-en-1-yl)sulfide which proceeds in hydrazine hydrate–alkali medium and leads to formation of thiophene and pyrrole derivatives: previously described 4,5,9,10-tetrahydrocycloocta[1,2-c;5,8-c’]dithiophene, as well as unknown hydrazone of 5-methylidene-3-methyldihydrothiophen-2-one and 1-amino-2-(propynylsulfanylpropenylsulfanyl)-3,5-dimethylpyrrole. Tentative mechanisms for the formation of the heterocyclic products are discussed. Obtained hydrazone of 5-methylidene-3-methyldihydrothiophen-2-one was used for the synthesis of a range of azine derivatives and in oxidation process with SeO2. The found reactions open up expedient approaches to the formation of various hardly accessible thiophene and pyrrole compounds from 2,3-dichloropropene and elemental sulfur as starting reagents.
Collapse
Affiliation(s)
- Igor B. Rozentsveig
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia
- Chemistry Department, Irkutsk State University, Karl Marx Str., 1, 664003 Irkutsk, Russia
- Correspondence:
| | - Valentina S. Nikonova
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia
| | - Victor V. Manuilov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia
| | - Igor A. Ushakov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia
| | - Tatyana N. Borodina
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia
| | - Vladimir I. Smirnov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia
| | - Nikolay A. Korchevin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia
| |
Collapse
|
20
|
Diaza-1,3-butadienes as Useful Intermediate in Heterocycles Synthesis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196708. [PMID: 36235245 PMCID: PMC9573662 DOI: 10.3390/molecules27196708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/05/2022]
Abstract
Many heterocyclic compounds can be synthetized using diaza-1,3-butadienes (DADs) as key structural precursors. Isolated and in situ diaza-1,3-butadienes, produced from their respective precursors (typically imines and hydrazones) under a variety of conditions, can both react with a wide range of substrates in many kinds of reactions. Most of these reactions discussed here include nucleophilic additions, Michael-type reactions, cycloadditions, Diels–Alder, inverse electron demand Diels–Alder, and aza-Diels–Alder reactions. This review focuses on the reports during the last 10 years employing 1,2-diaza-, 1,3-diaza-, 2,3-diaza-, and 1,4-diaza-1,3-butadienes as intermediates to synthesize heterocycles such as indole, pyrazole, 1,2,3-triazole, imidazoline, pyrimidinone, pyrazoline, -lactam, and imidazolidine, among others. Fused heterocycles, such as quinazoline, isoquinoline, and dihydroquinoxaline derivatives, are also included in the review.
Collapse
|
21
|
Hybrid Azine Derivatives: A Useful Approach for Antimicrobial Therapy. Pharmaceutics 2022; 14:pharmaceutics14102026. [PMID: 36297461 PMCID: PMC9610418 DOI: 10.3390/pharmaceutics14102026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Nowadays, infectious diseases caused by microorganisms are a major threat to human health, mostly because of drug resistance, multi-drug resistance and extensive-drug-resistance phenomena to microbial pathogens. During the last few years, obtaining hybrid azaheterocyclic drugs represents a powerful and attractive approach in modern antimicrobial therapy with very promising results including overcoming microbial drug resistance. The emphasis of this review is to notify the scientific community about the latest recent advances from the last five years in the field of hybrid azine derivatives with antimicrobial activity. The review is divided according to the main series of six-member ring azaheterocycles with one nitrogen atom and their fused analogs. In each case, the main essential data concerning synthesis and antimicrobial activity are presented.
Collapse
|
22
|
Bhoday H, Lewis M, Kelley SP, Glaser R. Perfect Polar Alignment of Parallel Beloamphiphile Monolayers: Synthesis, Characterization, and Crystal Architectures of Unsymmetrical Phenoxy-Substituted Acetophenone Azines. Chempluschem 2022; 87:e202200224. [PMID: 36125229 DOI: 10.1002/cplu.202200224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/30/2022] [Indexed: 11/11/2022]
Abstract
It remains a great challenge to achieve polar order in organic molecular crystals because anti-parallel alignment of side-by-side molecules is intrinsically preferred. We have addressed this problem with a rational design that focuses on the polar stacking of parallel beloamphiphile monolayers (PBAMs) with strong lateral quadrupole-quadrupole attractions. We employ arene-arene interactions as lateral synthons. The first successes were achieved with unsymmetrical donor (X), acceptor (Y) substituted acetophenone azines which form polar PBAMs with double T-contacts between the azines. Near-perfect alignment was achieved with the methoxy series of (MeO, Y)-azines with Y=Cl, Br, I. Here, we report on the synthesis, the characterization (GC/MS, 1 H NMR, 13 C NMR, FTIR), the crystallization, and the single-crystal X-ray analyses of the phenoxy series of (PhO, Y)-acetophenone azines with Y=F, Cl, Br, I. Properties of (RO, Y) azines were computed at the APFD/6-311G* level and are discussed with reference to p-nitroaniline (PNA). This (PhO, Y) series embodies an improved PBAM design based on triple T-contacts which is shown to facilitate faster crystallization and to produce larger crystals. Perfect polar-alignment has been achieved for the phenoxy series of (PhO, Y)-azines with Y=Cl, Br, I and the (PhO, F)-azine also features near-perfect dipole alignment.
Collapse
Affiliation(s)
- Harmeet Bhoday
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Michael Lewis
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| | - Steven P Kelley
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| | - Rainer Glaser
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| |
Collapse
|
23
|
Dascalu AE, Halgreen L, Torres-Huerta A, Valkenier H. Dynamic covalent chemistry with azines. Chem Commun (Camb) 2022; 58:11103-11106. [PMID: 36102679 DOI: 10.1039/d2cc03523e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dynamic covalent chemistry is used in many applications that require both the stability of covalent bonds and the possibility to exchange building blocks. Here we present azines as a dynamic covalent functional group that combines the best characteristics of imines and acylhydrazones. We show that azines are stable in the presence of water and that dynamic combinatorial libraries of azines and aldehydes equilibrate in less than an hour.
Collapse
Affiliation(s)
- Anca-Elena Dascalu
- Université libre de Bruxelles (ULB), Ecole polytechnique de Bruxelles, Engineering Molecular NanoSystems, Avenue Franklin Roosevelt 50, 1050, Brussels, Belgium.
| | - Lau Halgreen
- Université libre de Bruxelles (ULB), Ecole polytechnique de Bruxelles, Engineering Molecular NanoSystems, Avenue Franklin Roosevelt 50, 1050, Brussels, Belgium.
| | - Aaron Torres-Huerta
- Université libre de Bruxelles (ULB), Ecole polytechnique de Bruxelles, Engineering Molecular NanoSystems, Avenue Franklin Roosevelt 50, 1050, Brussels, Belgium.
| | - Hennie Valkenier
- Université libre de Bruxelles (ULB), Ecole polytechnique de Bruxelles, Engineering Molecular NanoSystems, Avenue Franklin Roosevelt 50, 1050, Brussels, Belgium.
| |
Collapse
|
24
|
Lettieri M, Scarano S, Palladino P, Minunni M. Colorimetric determination of carbidopa in anti-Parkinson drugs based on 4-hydroxy-3-methoxybenzaldazine formation by reaction with vanillin. Anal Bioanal Chem 2022; 414:6911-6918. [PMID: 35927364 PMCID: PMC9436860 DOI: 10.1007/s00216-022-04256-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/28/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022]
Abstract
In this paper is reported the selective colorimetric detection and quantification of carbidopa, an inhibitor of aromatic amino acid decarboxylase, in the co-presence of levodopa as dopamine precursor in pharmaceutical formulations for the treatment of Parkinson's disease. The method is based on the selective condensation reaction between the hydrazine group from carbidopa and the formyl functional group of vanillin, a natural flavoring agent, in acidified alcoholic solution. The yellow color development (λmax ~ 420 nm) due to the formation of 4-hydroxy-3-methoxybenzaldazine (HMOB) was observed for carbidopa only, whereas levodopa, lacking the hydrazine group, did not color the solution, as expected. The calibration curves for two tablet formulations of levodopa in combination with carbidopa (4:1) were superimposable with levodopa/carbidopa (4:1), as well as carbidopa alone, in standard solution, i.e., the excipients and additives did not interfere with carbidopa determination, corresponding to a mean recovery about 105%. The linear dynamic range was between 5.00 and 50.0 mg L-1 with very good reproducibility within this range (CVav% about 3-4%) and very good sensitivity, with limits of quantification of about 1 mg L-1. The colorimetric method developed here is very simple, inexpensive, and effective for drug estimation and quality control of pharmaceutical formulations.
Collapse
Affiliation(s)
- Mariagrazia Lettieri
- Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Simona Scarano
- Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Pasquale Palladino
- Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy.
| | - Maria Minunni
- Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
25
|
Qayed WS, Hassan MA, El-Sayed WM, Rogério A Silva J, Aboul-Fadl T. Novel Azine Linked Hybrids of 2-Indolinone and Thiazolodinone Scaffolds as CDK2 Inhibitors with Potential Anticancer Activity: In Silico Design, Synthesis, Biological, Molecular Dynamics and Binding Free Energy Studies. Bioorg Chem 2022; 126:105884. [PMID: 35623140 DOI: 10.1016/j.bioorg.2022.105884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/28/2022] [Accepted: 05/17/2022] [Indexed: 11/23/2022]
Abstract
Molecular hybrid of 2-indolinone-thiazolidinone is a well known scaffold for variable biological activities including anticancer activity. Accordingly, in the current work aided with structure-based molecular modeling studies, a library of novel twenty-six hybrids, 4(a-z), was designed and synthesized. Docking studies in the active site of CDK2, one of the key checkpoints enzymes, revealed that the binding scores of the designed molecules are comparable to the reference enzyme's inhibitors Sunitinib, Nintedanib, and Semaxanib. Variable antiproliferative activities are shown for these molecules against human liver (HepG2), breast (MCF7), and colon (HCT-29) cell lines considering Doxrubacin as a refrence drug. Compared to cytotoxic activities on the normal fibroblasts (WI-38), the tested molecules had better selectivity against the cancerous cells, expressed by their selectivity index (SI), than Doxrubacin and compound 4i was the safest compound. CDK2 inhibitory results of compounds 4f, 4g, 4h, and 4w showed IC50 at 59.43, 143.6, 27.42, and 61.63 nM respectively, while that of Sunitinib was 23.8 nM. To clarify the obtained biological activities of these molecules, broad docking and molecular dynamic simulations studies were undertaken and confirmed the consistency between the computational and the in vitro CDK2 inhibitory activities. Furthermore, in silico ADME/Tox profiles were done for the most active molecules using SwissADME and pkCSM-pharmacokinetics web-based methods predicted good pharmacokinetics, bioavailability, and toxicity profiles for the tested compounds.
Collapse
Affiliation(s)
- Wesam S Qayed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Assuit University, Assuit 71526, Egypt.
| | - Mostafa A Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Assuit University, Assuit 71526, Egypt
| | - Wael M El-Sayed
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia 11566, Cairo, Egypt
| | - José Rogério A Silva
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém 66075-110, Pará, Brazil.
| | - Tarek Aboul-Fadl
- Department of Medicinal Chemistry, Faculty of Pharmacy, Assuit University, Assuit 71526, Egypt.
| |
Collapse
|
26
|
Eliwa EM, Elgammal WE, Belal A, Abourehab MAS, Abd El-Gilil SM, Mehany ABM, Elhagali GAM. Cu(II)-Promoted the Chemical Synthesis of New Azines-Based Naphthalene Scaffold as In Vitro Potent Mushroom Tyrosinase Inhibitors and Evaluation of Their Antiproliferative Activity. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2112704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Essam M. Eliwa
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University, Nasr City, Egypt
| | - Walid E. Elgammal
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University, Nasr City, Egypt
| | - Amany Belal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Mohammed A. S. Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Minia University, Minia, Egypt
| | - Shimaa M. Abd El-Gilil
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Egypt
| | - Ahmed B. M. Mehany
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Nasr City, Egypt
| | - Gameel A. M. Elhagali
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University, Nasr City, Egypt
| |
Collapse
|
27
|
Gayathri S, Viswanathamurthi P, Naveen K, Murugan K. Convenient synthesis of symmetrical azines from alcohols and hydrazine catalyzed by ruthenium(II) hydrazone complex in air. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Mondal R, Guin AK, Chakraborty S, Paul ND. Iron-Catalyzed Metal–Ligand Cooperative Approach toward Sustainable Synthesis of Azines and N-Acylhydrazones in Air. J Org Chem 2022; 87:2921-2934. [DOI: 10.1021/acs.joc.1c02787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rakesh Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhajit Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Nanda D. Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|
29
|
Valle-Amores MA, Blanco M, Agnoli S, Fraile A, Alemán J. Oxidized Multiwalled Nanotubes as Efficient Carbocatalyst for the General Synthesis of Azines. J Catal 2022. [DOI: 10.1016/j.jcat.2022.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
30
|
Wani AA, Chourasiya SS, Kathuria D, Bharatam PV. 1,1-Diaminoazines as organocatalysts in phospha-Michael addition reactions. Chem Commun (Camb) 2021; 57:11717-11720. [PMID: 34697617 DOI: 10.1039/d1cc04657h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
1,1-Diaminoazines can act as effective organocatalysts for the formation of phosphorus-carbon bonds between biphenylphosphine oxide and an activated alkene (Michael acceptor). These catalysts provide the P-C adducts at a faster rate and with relatively better yields in comparison to the organocatalysts employed earlier. The notable advantage is that 1,1-diaminoazines catalyse the reaction even in an aqueous medium with very good yields. Organocatalysis using 1,1-diaminoazines was also successfully carried out between dimethylphosphite and benzylidenemalononitrile under multicomponent conditions.
Collapse
Affiliation(s)
- Aabid A Wani
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab, 160062, India.
| | - Sumit S Chourasiya
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab, 160062, India.
| | - Deepika Kathuria
- University Center for Research and Development, Department of Chemistry, Chandigarh University, Gharuan, Punjab 140413, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab, 160062, India.
| |
Collapse
|
31
|
Pradhan S, Thiyagarajan S, Gunanathan C. Ruthenium(ii)-catalysed 1,2-selective hydroboration of aldazines. Org Biomol Chem 2021; 19:7147-7151. [PMID: 34369947 DOI: 10.1039/d1ob01218e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, an efficient and simple catalytic method for the selective and partial reduction of aldazines using ruthenium catalyst [Ru(p-cymene)Cl2]2 (1) has been accomplished. Under mild conditions, aldazines undergo the addition of pinacolborane in the presence of a ruthenium catalyst, which delivered N-boryl-N-benzyl hydrazone products. Notably, the reaction is highly selective, and results in exclusive mono-hydroboration and desymmetrization of symmetrical aldazines. Mechanistic studies indicate the involvement of in situ formed intermediate [{(η6-p-cymene)RuCl}2(μ-H-μ-Cl)] (1a) in this selective hydroboration.
Collapse
Affiliation(s)
- Subham Pradhan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Khurda-752050, India.
| | | | | |
Collapse
|
32
|
Rekowski SP, Kroener BK, Kathuria D, Wani AA, Chourasiya SS, Conrad J, Bharatam PV, Frey W, Beifuss U. A novel copper-catalyzed, hydrazine-free synthesis of N-1 unsubstituted 1H-indazoles using stable guanylhydrazone salts as substrates. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Wani AA, Chourasiya SS, Kathuria D, Sahoo SC, Beifuss U, Bharatam PV. Iodine Catalyzed Oxidative Coupling of Diaminoazines and Amines for the Synthesis of 3,5-Disubstituted-1,2,4-Triazoles. J Org Chem 2021; 86:7659-7671. [PMID: 34003643 DOI: 10.1021/acs.joc.1c00704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A simple, convenient, transition metal-free one pot synthesis of 3,5-disubstituted-1,2,4-triazoles has been established. The innovation in this reaction is the use of easily available 1,1-diaminoazines as substrates. This method provides the products with wider substrate scope, at an expedited rate, and with relatively better yields in comparison to the reported methods. The reaction mechanism involves an initial intermolecular nucleophilic addition (facilitated by I2) followed by intramolecular nucleophilic cyclization.
Collapse
Affiliation(s)
- Aabid A Wani
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab 160062, India
| | - Sumit S Chourasiya
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab 160062, India
| | - Deepika Kathuria
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab 160062, India.,University Center for Research and Development, Chandigarh University, Gharuan, Punjab 140413, India
| | - Subash C Sahoo
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Uwe Beifuss
- Bioorganische Chemie, Institut für Chemie, Universität Hohenheim, Garbenstraße 30, D-70599 Stuttgart, Germany
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab 160062, India
| |
Collapse
|
34
|
Saranya S, Ramesh R, Sémeril D. Non-Pincer-Type Arene Ru(II) Catalysts for the Direct Synthesis of Azines from Alcohols and Hydrazine under Aerobic Conditions. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00367] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sundar Saranya
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu India
| | - Rengan Ramesh
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu India
| | - David Sémeril
- Université de Strasbourg, Equipe Synthèse Organométallique et Catalysee, UMR- CNRS 7177, 4 Rue Blaise Pascal, 67008 Strasbourg, France
| |
Collapse
|
35
|
Amariucai-Mantu D, Mangalagiu V, Danac R, Mangalagiu II. Microwave Assisted Reactions of Azaheterocycles Formedicinal Chemistry Applications. Molecules 2020; 25:molecules25030716. [PMID: 32046020 PMCID: PMC7038048 DOI: 10.3390/molecules25030716] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/29/2020] [Accepted: 02/06/2020] [Indexed: 12/16/2022] Open
Abstract
Microwave (MW) assisted reactions have became a powerful tool in azaheterocycles chemistry during the last decades. Five and six membered ring azaheterocycles are privileged scaffolds in modern medicinal chemistry possessing a large variety of biological activity. This review is focused on the recent relevant advances in the MW assisted reactions applied to azaheterocyclic derivatives and their medicinal chemistry applications from the last five years. The review is divided according to the main series of azaheterocycles, more precisely 5- and 6-membered ring azaheterocycles (with one, two, and more heteroatoms) and their fused analogues. In each case, the reaction pathways, the advantages of using MW, and considerations concerning biological activity of the obtained products were briefly presented.
Collapse
Affiliation(s)
- Dorina Amariucai-Mantu
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I, Iasi 700506, Romania; (D.A.-M.); (R.D.)
| | - Violeta Mangalagiu
- Institute of Interdisciplinary Research-CERNESIM Center, Alexandru Ioan Cuza University of Iasi, 11 Carol I, Iasi 700506, Romania;
| | - Ramona Danac
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I, Iasi 700506, Romania; (D.A.-M.); (R.D.)
| | - Ionel I. Mangalagiu
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I, Iasi 700506, Romania; (D.A.-M.); (R.D.)
- Institute of Interdisciplinary Research-CERNESIM Center, Alexandru Ioan Cuza University of Iasi, 11 Carol I, Iasi 700506, Romania;
- Correspondence: ; Tel.: +40-232201343
| |
Collapse
|