1
|
Patel RS, Bhadoriya RJ, Modi KM, Vora MA, Patel MN, Parekh HM. Selective detection of Fe 3+ via fluorescent in real sample using aminoanthraquinone resorcin[4]arene-based receptors with logic gate application. Talanta 2025; 285:127322. [PMID: 39642608 DOI: 10.1016/j.talanta.2024.127322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/19/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Resorcin[4]arene based fluorescent sensors RES-AAQ containing eight anthraquinone groups as binding sites, were developed for very accurate and sensitive detection of Fe3+ metal ion. The motivation for this study lies in the need for advanced sensing techniques for precisely identifying Fe3+ ions. Due to its unique redox properties, Fe3+ plays a crucial role in biological processes, environmental remediation, medical diagnostics, and advanced detection methods. The sensors were extensively characterized using FT-IR, 1H NMR, 13C NMR, and ESI-MS techniques. The absorption spectra revealed significant interactions between RES-AAQ and Fe3+ ions. Fluorescence quenching was observed due to Photoinduced electron transfer (PET). The quenching process was systematically analyzed using Stern-Volmer analysis. Each sensor (L1, L2, L3, L4) demonstrated remarkable detection limits for Fe3+ ions (10.51 nM, 10.48 nM, 10.49 nM, 10.47 nM, respectively) along with substantial binding affinities (binding constants: 9.07x109 M-1, 1.19x109 M-1, 1.49x109 M-1 and 1.03x109 M-1 for L1, L2, L3, and L4, respectively). Traditional, Fe3+ detection methods often suffer from limitations such as complexity, lack of sensitivity, or interference from other metal ions. This research offers highly sensitive fluorescent sensors for Fe3+ detection with potential applications in human blood serum and tap water. Molecular docking, DFT studies, and ESI-MS investigation have been employed to gain insights into the binding interactions between the molecules. The low detection limits, high binding affinity, and real-world applicability highlight the significant advantages of developed sensors compared to existing methods. Additionally, a combinatorial logic gate was constructed to facilitate a proper understanding of the working principle of RES-AAQ.
Collapse
Affiliation(s)
- Ronak S Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat. India
| | - Rubi J Bhadoriya
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat. India
| | - Krunal M Modi
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China; Department of Humanity and Science, School of Engineering, Indrashil University, Mehsana, 382740, Gujarat, India
| | - Manoj A Vora
- Department of Chemical Engineering, Nirma Univesity, Gota, Ahmedabad, 382481, Gujarat, India; Department of Chemistry, Faculty of Science, Gokul Global University, Siddhpur, 384151, Gujarat. India
| | - Mohan N Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat. India
| | - Hitesh M Parekh
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat. India.
| |
Collapse
|
2
|
Karagoz A, Savran T, Yilmaz I. A ″On-Off″ Fluorescent Sensor Based on Coumarin-Furoic Hydrazide for Recognition of Fe 3+: Drinking Water, Test Strip Applications and DFT Calculations. J Fluoresc 2025:10.1007/s10895-025-04212-2. [PMID: 40011367 DOI: 10.1007/s10895-025-04212-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/12/2025] [Indexed: 02/28/2025]
Abstract
A coumarin based fluorescent probe (E)-N'-((7-hydroxy-2-oxo-2H-chromon-3-yl)methylene)furan-2-carbohydrazide (CFHZ) was synthesized for the detection of Fe3+ and its characterizations were carried out using spectroscopic methods such as FT-IR, mass spectrometry1H-NMR, 13C-NMR. The novel probe CFHZ showed a highly selective and sensitive "turn-off" response to Fe3+ ion without any interference from other analytes. Strong fuorescence quenching phenomena of the CFHZ were observed in EtOH:H2O (99/1, v/v) detection system (λem = 470 nm) upon the additions of Fe3+. The binding stoichiometry between CFHZ and Fe3+ was determined by Job's method, FT-IR and MALDI TOF-MS and found to be 2:1. Also, the binding constant was determined to be 1.82 × 105 M-1 and the limits of detection for the analysis of Fe3+ was measured as 25.7 nM. Besides, experimental applications were carried out for real-time monitoring of Fe3+ in water samples using developed sensor. Additionally, fluorescence imaging experiments for Fe3+ detection of CFHZ probe on test papers were successfully performed.
Collapse
Affiliation(s)
- Abdurrahman Karagoz
- Department of Chemistry, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, 70100, Karaman, Türkiye
- Department of Chemistry and Chemical Processing Technologies, Vocational School of Technical Sciences, Karamanoglu Mehmetbey University, 70100, Karaman, Türkiye
| | - Tahir Savran
- Department of Chemistry, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, 70100, Karaman, Türkiye.
| | - Ibrahim Yilmaz
- Department of Mathematics and Science Education, Faculty of Education, Bolu Abant Izzet Baysal University, 14030, Bolu, Türkiye.
- Innovative Food Technologies Development Application and Research Centre, Bolu Abant Izzet Baysal University, 14030, Bolu, Türkiye.
| |
Collapse
|
3
|
Algama CH, Basir J, Wijesinghe KM, Dhakal S. Fluorescence-Based Multimodal DNA Logic Gates. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1185. [PMID: 39057862 PMCID: PMC11280116 DOI: 10.3390/nano14141185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024]
Abstract
The use of DNA structures in creating multimodal logic gates bears high potential for building molecular devices and computation systems. However, due to the complex designs or complicated working principles, the implementation of DNA logic gates within molecular devices and circuits is still quite limited. Here, we designed simple four-way DNA logic gates that can serve as multimodal platforms for simple to complex operations. Using the proximity quenching of the fluorophore-quencher pair in combination with the toehold-mediated strand displacement (TMSD) strategy, we have successfully demonstrated that the fluorescence output, which is a result of gate opening, solely relies on the oligonucleotide(s) input. We further demonstrated that this strategy can be used to create multimodal (tunable displacement initiation sites on the four-way platform) logic gates including YES, AND, OR, and the combinations thereof. The four-way DNA logic gates developed here bear high promise for building biological computers and next-generation smart molecular circuits with biosensing capabilities.
Collapse
Affiliation(s)
| | | | | | - Soma Dhakal
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
4
|
Waiker DK, Verma A, Gajendra TA, Namrata, Roy A, Kumar P, Trigun SK, Srikrishna S, Krishnamurthy S, Davisson VJ, Shrivastava SK. Design, synthesis, and biological evaluation of some 2-(3-oxo-5,6-diphenyl-1,2,4-triazin-2(3H)-yl)-N-phenylacetamide hybrids as MTDLs for Alzheimer's disease therapy. Eur J Med Chem 2024; 271:116409. [PMID: 38663285 DOI: 10.1016/j.ejmech.2024.116409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/13/2024]
Abstract
Inspite of established symptomatic relief drug targets, a multi targeting approach is highly in demand to cure Alzheimer's disease (AD). Simultaneous inhibition of cholinesterase (ChE), β secretase-1 (BACE-1) and Dyrk1A could be promising in complete cure of AD. A series of 18 diaryl triazine based molecular hybrids were successfully designed, synthesized, and tested for their hChE, hBACE-1, Dyrk1A and Aβ aggregation inhibitory potentials. Compounds S-11 and S-12 were the representative molecules amongst the series with multi-targeted inhibitory effects. Compound S-12 showed hAChE inhibition (IC50 value = 0.486 ± 0.047 μM), BACE-1 inhibition (IC50 value = 0.542 ± 0.099 μM) along with good anti-Aβ aggregation effects in thioflavin-T assay. Only compound S-02 of the series has shown Dyrk1A inhibition (IC50 value = 2.000 ± 0.360 μM). Compound S-12 has also demonstrated no neurotoxic liabilities against SH-SY5Y as compared to donepezil. The in vivo behavioral studies of the compound S-12 in the scopolamine- and Aβ-induced animal models also demonstrated attanuation of learning and memory functions in rats models having AD-like characteristics. The ex vivo studies, on the rat hippocampal brain demonstrated reduction in certain biochemical markers of the AD brain with a significant increase in ACh level. The Western blot and Immunohistochemistry further revealed lower tau, APP and BACE-1 molecular levels. The drosophilla AD model also revealed improved eyephenotype after treatment with compound S-12. The molecular docking studies of the compounds suggested that compound S-12 was interacting with the ChE-PAS & CAS residues and catalytic dyad residues of the BACE-1 enzymes. The 100 ns molecular dynamics simulation studies of the ligand-protein complexed with hAChE and hBACE-1 also suggested stable ligand-protein confirmation throughout the simulation run.
Collapse
Affiliation(s)
- Digambar Kumar Waiker
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology - Banaras Hindu University, Varanasi, 221005, India
| | - Akash Verma
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology - Banaras Hindu University, Varanasi, 221005, India
| | - T A Gajendra
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi, 221005, India
| | - Namrata
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anima Roy
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Pradeep Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Surendra Kumar Trigun
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Saripella Srikrishna
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sairam Krishnamurthy
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi, 221005, India
| | - Vincent Jo Davisson
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Sushant Kumar Shrivastava
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology - Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
5
|
Kiran PVR, Waiker DK, Verma A, Saraf P, Bhardwaj B, Kumar H, Singh A, Kumar P, Singh N, Srikrishna S, Trigun SK, Shrivastava SK. Design and development of benzyl piperazine linked 5-phenyl-1,2,4-triazole-3-thione conjugates as potential agents to combat Alzheimer's disease. Bioorg Chem 2023; 139:106749. [PMID: 37517157 DOI: 10.1016/j.bioorg.2023.106749] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/07/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023]
Abstract
Our present work demonstrates the molecular hybridization-assisted design, synthesis, and biological evaluation of 22 benzylpiperazine-linked 1,2,4-triazole compounds (PD1-22) as AD modifying agents. All the compounds were tested for their in vitro hChEs, hBACE-1, and Aβ-aggregation inhibition properties. Among them, compound PD-08 and PD-22 demonstrated good hChE and hBACE-1 inhibition as compared to standards donepezil and rivastigmine. Both compounds displaced PI from PAS at 50 µM concentration which was comparable to donepezil and also demonstrated anti-Aβ aggregation properties in self- and AChE-induced thioflavin T assay. Both compounds have shown excellent BBB permeation via PAMPA-BBB assay and were found to be non-neurotoxic at 80 µM concentration against differentiated SH-SY5Y cell lines. Compound PD-22 demonstrated an increase in rescued eye phenotype in Aβ-phenotypic drosophila AD model and amelioration of behavioral deficits in the Aβ-induced rat model of AD. The in-silico docking studies of compound PD-22 revealed a good binding profile towards CAS and PAS residues of AChE and the catalytic dyad of the BACE-1. The 100 ns molecular dynamics simulation studies of compound PD-22 complexed with AChE and BACE-1 enzymes suggested stable ligand-protein complex throughout the simulation run. Based on our findings compound PD-22 could further be utilized as a lead to design a promising candidate for AD therapy.
Collapse
Affiliation(s)
- Pidugu Venkata Ravi Kiran
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Digambar Kumar Waiker
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Akash Verma
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Poorvi Saraf
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Bhagwati Bhardwaj
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Hansal Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Abhinav Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Pradeep Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Namrata Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Saripella Srikrishna
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Surendra Kumar Trigun
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Sushant Kumar Shrivastava
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
6
|
Development of an ‘OFF-ON-OFF’ colorimetric and fluorometric pH sensor for the study of physiological pH and its bioimaging application. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Yadav P, Kumar R, Srikrishna S, Kumar Pandey A, Choudhury LH, Upadhyay C, Singh VP. A reversible and efficient probe for dual mode recognition of Al 3+ and Cu 2+ with logic gate behaviour: Crystal structure, theoretical and in-vivo bio-imaging investigations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120552. [PMID: 34749109 DOI: 10.1016/j.saa.2021.120552] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
This work presents the synthesis, characterization, crystal structure and spectroscopic investigations of isophthalohydrazide based probe. Among various tested metal ions, the probe selectively detects Al3+ and Cu2+ in aqueous ethanol via fluorometric and colorimetric methods, respectively. It displays a fluorescence "turn-on" response with Al3+ and visual colour change from colourless to yellow with Cu2+. Sensing mechanism is explored with UV-Vis, fluorescence spectroscopy and 1H NMR titration, and confirmed with computational results. Suppression of CN isomerization and photo-induced electron transfer (PET) along with chelation enhanced fluorescence emission (CHEF) result in "turn-on" fluorescence with Al3+ while ligand to metal charge transfer (LMCT) accounts for visual colour change with Cu2+. Job's plot and HRMS confirm 1:2 (L:M) stoichiometry. The probe also exhibits efficient reversibility and reproducibility with EDTA which are successfully mimicked with combinatorial logic gate and truth table. Additionally, solid state applications and bio-imaging investigation on gut tissue of Drosophila 3rd instar larvae are performed.
Collapse
Affiliation(s)
- Pranjalee Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Rohit Kumar
- Department of Biochemistry, Banaras Hindu University, Varanasi 221005, India
| | - S Srikrishna
- Department of Biochemistry, Banaras Hindu University, Varanasi 221005, India
| | - Anoop Kumar Pandey
- Department of Chemistry, Indian Institute of Technology, Patna 801106, India
| | - Lokman H Choudhury
- Department of Chemistry, Indian Institute of Technology, Patna 801106, India
| | - Chandan Upadhyay
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Vinod P Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
8
|
Liu L, Liu P, Ga L, Ai J. Advances in Applications of Molecular Logic Gates. ACS OMEGA 2021; 6:30189-30204. [PMID: 34805654 PMCID: PMC8600522 DOI: 10.1021/acsomega.1c02912] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/05/2021] [Indexed: 05/21/2023]
Abstract
Logic gates are devices that can perform Boolean logic operations and are the basic components of integrated circuits for information processing and storage. In recent years, molecular logic gates are gradually replacing traditional silicon-based electronic computers with their significant advantages and are used in research in water quality monitoring, heavy metal ion detection, disease diagnosis and treatment, food safety detection, and biological sensors. Logic gates at the molecular level have broad development prospects and huge development potential. In this review, the development and application of logic gates in various fields are used as the entry point to discuss the research progress of logic gates and logic circuits. At the same time, the application of logic gates in quite a few emerging fields is briefly summarized and predicted.
Collapse
Affiliation(s)
- Lijun Liu
- College
of Chemistry and Environmental Science, Inner Mongolian Key Laboratory
for Enviromental Chemistry, Inner Mongolia
Normal University, 81 Zhaowudalu, Hohhot 010022, People’s Republic of China
| | - Pingping Liu
- College
of Chemistry and Environmental Science, Inner Mongolian Key Laboratory
for Enviromental Chemistry, Inner Mongolia
Normal University, 81 Zhaowudalu, Hohhot 010022, People’s Republic of China
| | - Lu Ga
- College
of Pharmacy, Inner Mongolia Medical University, Jinchuankaifaqu, Hohhot 010110, People’s Republic of China
| | - Jun Ai
- College
of Chemistry and Environmental Science, Inner Mongolian Key Laboratory
for Enviromental Chemistry, Inner Mongolia
Normal University, 81 Zhaowudalu, Hohhot 010022, People’s Republic of China
| |
Collapse
|
9
|
Bozkurt S, Halay E, Durmaz M, Topkafa M, Ceylan Ö. A novel turn‐on fluorometric “reporter‐spacer‐receptor” chemosensor based on calix[4]arene scaffold for detection of cyanate anion. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Selahattin Bozkurt
- Scientific Analysis Technological Application and Research Center Usak University Usak Turkey
- Vocational School of Health Services Usak University Usak Turkey
| | - Erkan Halay
- Scientific Analysis Technological Application and Research Center Usak University Usak Turkey
- Department of Chemistry and Chemical Processing Technologies, Banaz Vocational School Usak University Usak Turkey
| | - Mustafa Durmaz
- Department of Chemistry Education, Ahmet Kelesoglu Education Faculty Necmettin Erbakan University Konya Turkey
| | - Mustafa Topkafa
- Department of Chemistry and Chemical Processing Technologies, Vocational School of Technical Sciences Konya Technical University Konya Turkey
| | - Özgür Ceylan
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational Scholl Mugla Sitki Kocman University Mugla Turkey
| |
Collapse
|
10
|
Rahimi H, Hosseinzadeh R, Tajbakhsh M. A new and efficient pyridine-2,6-dicarboxamide-based fluorescent and colorimetric chemosensor for sensitive and selective recognition of Pb2+ and Cu2+. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.113049] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Li B, Liu Z, Li L, Xing Y, Liu Y, Yang X, Pei M, Zhang G. A Schiff base sensor for relay monitoring of In3+ and Fe3+ through “off–on–off” fluorescent signals. NEW J CHEM 2021. [DOI: 10.1039/d1nj00929j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Schiff base N′-(3-ethoxy-2-hydroxybenzylidene)-4,5-dihydronaphtho[1,2-b]thiophene-2-carbohydrazide (LB2) was designed and synthesized and could be used as a sensor to identify In3+ and Fe3+ through fluorescence ‘off–on–off’ behavior.
Collapse
Affiliation(s)
- Bing Li
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
- China
| | - Zhihua Liu
- Henan Sanmenxia Aoke Chemical Industry Co. Ltd
- Sanmenxia
- China
| | - Linlin Li
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
- China
| | - Yujing Xing
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
- China
| | - Yuanying Liu
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
- China
| | - Xiaofeng Yang
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
- China
| | - Meishan Pei
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
- China
| | - Guangyou Zhang
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
- China
| |
Collapse
|
12
|
Meng X, You L, Li S, Sun Q, Luo X, He H, Wang J, Zhao F. An ICT-based fluorescence enhancement probe for detection of Sn 2+ in cancer cells. RSC Adv 2020; 10:37735-37742. [PMID: 35515174 PMCID: PMC9057222 DOI: 10.1039/d0ra07330j] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/07/2020] [Indexed: 11/21/2022] Open
Abstract
Development of a novel fluorescence enhancement probe for detection of Sn2+ in organisms, with high selectivity and sensitivity, is of great interest but remains a great challenge. Herein, an ICT-based fluorescence probe TPPB was rationally developed to act as an ‘enhancement’ luminescent and “naked-eye” indicator for Sn2+ detection. Importantly, spectroscopic studies indicated that TPPB was a fluorescence enhancement sensor for Sn2+ with rapid response, low detection limit (0.116 μM) and excellent binding constant (1.6 × 104 M−1). The mechanism of TPPB response to Sn2+ was further proved by 1H NMR titration, and enhancement calculations. Furthermore, TPPB is applied as a fluorescence probe for imaging in Hela cells, indicated that it can be potentially applied for Sn2+ sensing in biological fields. Development of a novel fluorescence enhancement probe for detection of Sn2+ in organisms, with high selectivity and sensitivity, is of great interest but remains a great challenge.![]()
Collapse
Affiliation(s)
- Xiangying Meng
- Jiangxi Engineering Laboratory of Waterborne Coating, School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University Nanchang 330013 People's Republic of China
| | - Lai You
- Jiangxi Engineering Laboratory of Waterborne Coating, School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University Nanchang 330013 People's Republic of China
| | - Siyuan Li
- Jiangxi Engineering Laboratory of Waterborne Coating, School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University Nanchang 330013 People's Republic of China
| | - Qi Sun
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology Wuhan 430205 PR China
| | - Xiaogang Luo
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology Wuhan 430205 PR China.,School of Materials Science and Engineering, Zhengzhou University No. 100 Science Avenue Zhengzhou City 450001 Henan Province PR China
| | - Haifeng He
- Jiangxi Engineering Laboratory of Waterborne Coating, School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University Nanchang 330013 People's Republic of China
| | - Jinglan Wang
- Jiangxi Engineering Laboratory of Waterborne Coating, School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University Nanchang 330013 People's Republic of China
| | - Feng Zhao
- Jiangxi Engineering Laboratory of Waterborne Coating, School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University Nanchang 330013 People's Republic of China
| |
Collapse
|
13
|
Tripathy M, Subuddhi U, Patel S. An Azo Dye Based D‐π‐A Chromogenic Probe for Selective Naked‐Eye Detection of Hg
2+
Ion: Application in Logic Gate Operation. ChemistrySelect 2020. [DOI: 10.1002/slct.202000659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Madhusmita Tripathy
- Department of ChemistryNational Institute of Technology Rourkela Odisha India- 769008 Phone: +91-6612462660
| | - Usharani Subuddhi
- Department of ChemistryNational Institute of Technology Rourkela Odisha India- 769008 Phone: +91-6612462660
| | - Sabita Patel
- Department of ChemistryNational Institute of Technology Rourkela Odisha India- 769008 Phone: +91-6612462660
| |
Collapse
|
14
|
Han A, Su H, Xu G, Khan MA, Li H. Synthesis, crystal structures, and luminescent properties of Zn(ii), Cd(ii), Eu(iii) complexes and detection of Fe(iii) ions based on a diacylhydrazone Schiff base. RSC Adv 2020; 10:23372-23378. [PMID: 35520313 PMCID: PMC9054632 DOI: 10.1039/d0ra03642k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/13/2020] [Indexed: 11/21/2022] Open
Abstract
Acylhydrazone Schiff bases are rich in N and O atoms to coordinate with metal ions to form multidentate complexes.
Collapse
Affiliation(s)
- Aiying Han
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Hao Su
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Guohong Xu
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Maroof Ahmad Khan
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Hui Li
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| |
Collapse
|