1
|
Bobone S, Storti C, Fulci C, Damiani A, Innamorati C, Roversi D, Calligari P, Pannone L, Martinelli S, Tartaglia M, Bocchinfuso G, Formaggio F, Peggion C, Biondi B, Stella L. Fluorescent Labeling Can Significantly Perturb Measured Binding Affinity and Selectivity of Peptide-Protein Interactions. J Phys Chem Lett 2024; 15:10252-10257. [PMID: 39360979 DOI: 10.1021/acs.jpclett.4c01767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Peptide-based drugs are powerful inhibitors of therapeutically relevant protein-protein interactions. Their affinity and selectivity for target proteins are commonly assessed using fluorescence-based assays such as anisotropy/polarization or quantitative microarrays. This study reveals that labeling can perturb peptide/protein binding by more than 1 order of magnitude. We have recently developed inhibitors targeted to the N-terminal Src homology 2 (SH2) domain of oncogenic phosphatase SHP2. Despite their high activity and selectivity, these molecules demonstrated an undesired interaction with the SH2 domain of another protein, known as APS, in a fluorescence microarray assay. Fluorescence anisotropy measurement in solution showed that the dissociation constant was significantly influenced by labeling (∼10 times), and the effect depended on the specific fluorophore and SH2 domain. Notably, displacement assays performed with unlabeled peptides were successfully used to eliminate these artifacts, demonstrating that the inhibitors' affinity for their target is over 1,000 times higher than for APS.
Collapse
Affiliation(s)
- Sara Bobone
- Tor Vergata University of Rome, 00133 Rome, Italy
| | - Claudia Storti
- Tor Vergata University of Rome, 00133 Rome, Italy
- University of Padova, 35131 Padova, Italy
| | - Chiara Fulci
- Tor Vergata University of Rome, 00133 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | - Barbara Biondi
- Institute of Biomolecular Chemistry, Padova Unit, CNR, 35131 Padova, Italy
| | | |
Collapse
|
2
|
Wang W, Lopez McDonald MC, Hariprasad R, Hamilton T, Frank DA. Oncogenic STAT Transcription Factors as Targets for Cancer Therapy: Innovative Strategies and Clinical Translation. Cancers (Basel) 2024; 16:1387. [PMID: 38611065 PMCID: PMC11011165 DOI: 10.3390/cancers16071387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Despite advances in our understanding of molecular aspects of oncogenesis, cancer remains a leading cause of death. The malignant behavior of a cancer cell is driven by the inappropriate activation of transcription factors. In particular, signal transducers and activators of transcription (STATs), which regulate many critical cellular processes such as proliferation, apoptosis, and differentiation, are frequently activated inappropriately in a wide spectrum of human cancers. Multiple signaling pathways converge on the STATs, highlighting their importance in the development and progression of oncogenic diseases. STAT3 and STAT5 are two members of the STAT protein family that are the most frequently activated in cancers and can drive cancer pathogenesis directly. The development of inhibitors targeting STAT3 and STAT5 has been the subject of intense investigations in the last decade, although effective treatment options remain limited. In this review, we investigate the specific roles of STAT3 and STAT5 in normal physiology and cancer biology, discuss the opportunities and challenges in pharmacologically targeting STAT proteins and their upstream activators, and offer insights into novel therapeutic strategies to identify STAT inhibitors as cancer therapeutics.
Collapse
Affiliation(s)
- Weiyuan Wang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA 30322, USA; (W.W.); (M.C.L.M.); (T.H.)
| | - Melanie Cristina Lopez McDonald
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA 30322, USA; (W.W.); (M.C.L.M.); (T.H.)
| | | | - Tiara Hamilton
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA 30322, USA; (W.W.); (M.C.L.M.); (T.H.)
| | - David A. Frank
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA 30322, USA; (W.W.); (M.C.L.M.); (T.H.)
| |
Collapse
|
3
|
Ramachandran S, Makukhin N, Haubrich K, Nagala M, Forrester B, Lynch DM, Casement R, Testa A, Bruno E, Gitto R, Ciulli A. Structure-based design of a phosphotyrosine-masked covalent ligand targeting the E3 ligase SOCS2. Nat Commun 2023; 14:6345. [PMID: 37816714 PMCID: PMC10564737 DOI: 10.1038/s41467-023-41894-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 09/14/2023] [Indexed: 10/12/2023] Open
Abstract
The Src homology 2 (SH2) domain recognizes phosphotyrosine (pY) post translational modifications in partner proteins to trigger downstream signaling. Drug discovery efforts targeting the SH2 domains have long been stymied by the poor drug-like properties of phosphate and its mimetics. Here, we use structure-based design to target the SH2 domain of the E3 ligase suppressor of cytokine signaling 2 (SOCS2). Starting from the highly ligand-efficient pY amino acid, a fragment growing approach reveals covalent modification of Cys111 in a co-crystal structure, which we leverage to rationally design a cysteine-directed electrophilic covalent inhibitor MN551. We report the prodrug MN714 containing a pivaloyloxymethyl (POM) protecting group and evidence its cell permeability and capping group unmasking using cellular target engagement and in-cell 19F NMR spectroscopy. Covalent engagement at Cys111 competitively blocks recruitment of cellular SOCS2 protein to its native substrate. The qualified inhibitors of SOCS2 could find attractive applications as chemical probes to understand the biology of SOCS2 and its CRL5 complex, and as E3 ligase handles in proteolysis targeting chimera (PROTACs) to induce targeted protein degradation.
Collapse
Affiliation(s)
- Sarath Ramachandran
- Centre for Targeted Protein Degradation, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee, DD1 5JJ, United Kingdom
| | - Nikolai Makukhin
- Centre for Targeted Protein Degradation, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee, DD1 5JJ, United Kingdom
- Amphista Therapeutics Ltd, Cory Building, Granta Park, Great Abington, Cambridge, CB21 6GQ, United Kingdom
| | - Kevin Haubrich
- Centre for Targeted Protein Degradation, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee, DD1 5JJ, United Kingdom
| | - Manjula Nagala
- Centre for Targeted Protein Degradation, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee, DD1 5JJ, United Kingdom
| | - Beth Forrester
- Centre for Targeted Protein Degradation, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee, DD1 5JJ, United Kingdom
| | - Dylan M Lynch
- Centre for Targeted Protein Degradation, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee, DD1 5JJ, United Kingdom
| | - Ryan Casement
- Centre for Targeted Protein Degradation, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee, DD1 5JJ, United Kingdom
| | - Andrea Testa
- Centre for Targeted Protein Degradation, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee, DD1 5JJ, United Kingdom
- Amphista Therapeutics Ltd, Cory Building, Granta Park, Great Abington, Cambridge, CB21 6GQ, United Kingdom
| | - Elvira Bruno
- Centre for Targeted Protein Degradation, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee, DD1 5JJ, United Kingdom
| | - Rosaria Gitto
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale Stagno D'Alcontres 31, Pole Papardo, 98166, Messina, Italy
| | - Alessio Ciulli
- Centre for Targeted Protein Degradation, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee, DD1 5JJ, United Kingdom.
| |
Collapse
|
4
|
Wang L, Li K, Ye T, Huang L, Wu H, Zhang J, Xie H, Liu Y, Zeng J, Cheng P. Visible-Light-Promoted α-Benzylation of N-Phenyl α-Amino Acids to α-Amino Phenylpropanoids. J Org Chem 2023; 88:11924-11934. [PMID: 37560787 DOI: 10.1021/acs.joc.3c01196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
A new method for the synthesis of α-amino phenylpropanoids under blue light-emitting diode irradiation has been developed through α-C-H benzylation of readily available N-phenyl glycine ester with benzyl oxalates as a coupling partner under mild conditions. A range of N-phenyl glycine esters were successfully converted to α-amino phenylpropanoid products in moderate to good yields. The utility of this methodology is underlined by its application to the late-state modification of natural products.
Collapse
Affiliation(s)
- Lin Wang
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
- College of Horticulture, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Kang Li
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
- College of Horticulture, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Tian Ye
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Lei Huang
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Huilan Wu
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
- College of Horticulture, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Jingxuan Zhang
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
- College of Horticulture, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Hongqi Xie
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yisong Liu
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Jianguo Zeng
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Pi Cheng
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
| |
Collapse
|
5
|
Wang Q. The role of forkhead-associated (FHA)-domain proteins in plant biology. PLANT MOLECULAR BIOLOGY 2023; 111:455-472. [PMID: 36849846 DOI: 10.1007/s11103-023-01338-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
The forkhead-associated (FHA) domain, a well-characterized small protein module that mediates protein-protein interactions by targeting motifs containing phosphothreonine, is present in many regulatory molecules like protein kinase, phosphatases, transcription factors, and other functional proteins. FHA-domain containing proteins in yeast and human are involved in a large variety of cellular processes such as DNA repair, cell cycle arrest, or pre-mRNA processing. Since the first FHA-domain protein, kinase-associated protein phosphatase (KAPP) was found in plants, the interest in plant FHA-containing proteins has increased dramatically, mainly due to the important role of FHA domain-containing proteins in plant growth and development. In this review, we provide a comprehensive overview of the fundamental properties of FHA domain-containing proteins in plants, and systematically summarized and analyzed the research progress of proteins containing the FHA domain in plants. We also emphasized that AT5G47790 and its homologs may play an important role as the regulatory subunit of protein phosphatase 1 (PP1) in plants.
Collapse
Affiliation(s)
- Qiuling Wang
- Institute of Future Agriculture, State Key Laboratory of Crop Stress Biology for Arid Areas, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
6
|
SH2 Domains: Folding, Binding and Therapeutical Approaches. Int J Mol Sci 2022; 23:ijms232415944. [PMID: 36555586 PMCID: PMC9783222 DOI: 10.3390/ijms232415944] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
SH2 (Src Homology 2) domains are among the best characterized and most studied protein-protein interaction (PPIs) modules able to bind and recognize sequences presenting a phosphorylated tyrosine. This post-translational modification is a key regulator of a plethora of physiological and molecular pathways in the eukaryotic cell, so SH2 domains possess a fundamental role in cell signaling. Consequently, several pathologies arise from the dysregulation of such SH2-domains mediated PPIs. In this review, we recapitulate the current knowledge about the structural, folding stability, and binding properties of SH2 domains and their roles in molecular pathways and pathogenesis. Moreover, we focus attention on the different strategies employed to modulate/inhibit SH2 domains binding. Altogether, the information gathered points to evidence that pharmacological interest in SH2 domains is highly strategic to developing new therapeutics. Moreover, a deeper understanding of the molecular determinants of the thermodynamic stability as well as of the binding properties of SH2 domains appears to be fundamental in order to improve the possibility of preventing their dysregulated interactions.
Collapse
|
7
|
Vesely CH, Reardon PN, Yu Z, Barbar E, Mehl RA, Cooley RB. Accessing isotopically labeled proteins containing genetically encoded phosphoserine for NMR with optimized expression conditions. J Biol Chem 2022; 298:102613. [PMID: 36265582 PMCID: PMC9678770 DOI: 10.1016/j.jbc.2022.102613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
Phosphoserine (pSer) sites are primarily located within disordered protein regions, making it difficult to experimentally ascertain their effects on protein structure and function. Therefore, the production of 15N- (and 13C)-labeled proteins with site-specifically encoded pSer for NMR studies is essential to uncover molecular mechanisms of protein regulation by phosphorylation. While genetic code expansion technologies for the translational installation of pSer in Escherichia coli are well established and offer a powerful strategy to produce site-specifically phosphorylated proteins, methodologies to adapt them to minimal or isotope-enriched media have not been described. This shortcoming exists because pSer genetic code expansion expression hosts require the genomic ΔserB mutation, which increases pSer bioavailability but also imposes serine auxotrophy, preventing growth in minimal media used for isotopic labeling of recombinant proteins. Here, by testing different media supplements, we restored normal BL21(DE3) ΔserB growth in labeling media but subsequently observed an increase of phosphatase activity and mis-incorporation not typically seen in standard rich media. After rounds of optimization and adaption of a high-density culture protocol, we were able to obtain ≥10 mg/L homogenously labeled, phosphorylated superfolder GFP. To demonstrate the utility of this method, we also produced the intrinsically disordered serine/arginine-rich region of the SARS-CoV-2 Nucleocapsid protein labeled with 15N and pSer at the key site S188 and observed the resulting peak shift due to phosphorylation by 2D and 3D heteronuclear single quantum correlation analyses. We propose this cost-effective methodology will pave the way for more routine access to pSer-enriched proteins for 2D and 3D NMR analyses.
Collapse
Affiliation(s)
- Cat Hoang Vesely
- GCE4All Research Center, Oregon State University, Corvallis, Oregon, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA
| | - Patrick N Reardon
- Oregon State University NMR Facility, Oregon State University, Corvallis, Oregon, USA
| | - Zhen Yu
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA
| | - Elisar Barbar
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA
| | - Ryan A Mehl
- GCE4All Research Center, Oregon State University, Corvallis, Oregon, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA
| | - Richard B Cooley
- GCE4All Research Center, Oregon State University, Corvallis, Oregon, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA.
| |
Collapse
|
8
|
Zhu P, Franklin R, Vogel A, Stanisheuski S, Reardon P, Sluchanko NN, Beckman JS, Karplus PA, Mehl RA, Cooley RB. PermaPhos Ser : autonomous synthesis of functional, permanently phosphorylated proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.10.22.465468. [PMID: 34931187 PMCID: PMC8687462 DOI: 10.1101/2021.10.22.465468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Installing stable, functional mimics of phosphorylated amino acids into proteins offers a powerful strategy to study protein regulation. Previously, a genetic code expansion (GCE) system was developed to translationally install non-hydrolyzable phosphoserine (nhpSer), with the γ-oxygen replaced with carbon, but it has seen limited usage. Here, we achieve a 40-fold improvement in this system by engineering into Escherichia coli a biosynthetic pathway that produces nhpSer from the central metabolite phosphoenolpyruvate. Using this "PermaPhos Ser " system - an autonomous 21-amino acid E. coli expression system for incorporating nhpSer into target proteins - we show that nhpSer faithfully mimics the effects of phosphoserine in three stringent test cases: promoting 14-3-3/client complexation, disrupting 14-3-3 dimers, and activating GSK3β phosphorylation of the SARS-CoV-2 nucleocapsid protein. This facile access to nhpSer containing proteins should allow nhpSer to replace Asp and Glu as the go-to pSer phosphomimetic for proteins produced in E. coli .
Collapse
Affiliation(s)
- Phillip Zhu
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331
| | - Rachel Franklin
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331
| | - Amber Vogel
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331
| | - Stanislau Stanisheuski
- Oregon State University, Department of Chemistry, 153 Gilbert Hall, Oregon State University, Corvallis, Oregon 97331
| | - Patrick Reardon
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331
| | - Nikolai N. Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| | - Joseph S. Beckman
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331
- e-MSion Inc., 2121 NE Jack London St, Corvallis, Oregon 97330
| | - P. Andrew Karplus
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331
| | - Ryan A. Mehl
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331
| | - Richard B. Cooley
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331
| |
Collapse
|
9
|
Bobone S, Pannone L, Biondi B, Solman M, Flex E, Canale VC, Calligari P, De Faveri C, Gandini T, Quercioli A, Torini G, Venditti M, Lauri A, Fasano G, Hoeksma J, Santucci V, Cattani G, Bocedi A, Carpentieri G, Tirelli V, Sanchez M, Peggion C, Formaggio F, den Hertog J, Martinelli S, Bocchinfuso G, Tartaglia M, Stella L. Targeting Oncogenic Src Homology 2 Domain-Containing Phosphatase 2 (SHP2) by Inhibiting Its Protein-Protein Interactions. J Med Chem 2021; 64:15973-15990. [PMID: 34714648 PMCID: PMC8591604 DOI: 10.1021/acs.jmedchem.1c01371] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We developed a new class of inhibitors of protein-protein interactions of the SHP2 phosphatase, which is pivotal in cell signaling and represents a central target in the therapy of cancer and rare diseases. Currently available SHP2 inhibitors target the catalytic site or an allosteric pocket but lack specificity or are ineffective for disease-associated SHP2 mutants. Considering that pathogenic lesions cause signaling hyperactivation due to increased levels of SHP2 association with cognate proteins, we developed peptide-based molecules with nanomolar affinity for the N-terminal Src homology domain of SHP2, good selectivity, stability to degradation, and an affinity for pathogenic variants of SHP2 that is 2-20 times higher than for the wild-type protein. The best peptide reverted the effects of a pathogenic variant (D61G) in zebrafish embryos. Our results provide a novel route for SHP2-targeted therapies and a tool for investigating the role of protein-protein interactions in the function of SHP2.
Collapse
Affiliation(s)
- Sara Bobone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 00133, Italy
| | - Luca Pannone
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy.,Dipartimento di Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Barbara Biondi
- Institute of Biomolecular Chemistry, Padova Unit, CNR, Padova 35131, Italy
| | - Maja Solman
- Hubrecht institute-KNAW and University Medical Center Utrecht, Utrecht 3584 CT, The Netherlands
| | - Elisabetta Flex
- Dipartimento di Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Viviana Claudia Canale
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 00133, Italy
| | - Paolo Calligari
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 00133, Italy
| | - Chiara De Faveri
- Department of Chemical Sciences, University of Padova, Padova 35131, Italy
| | - Tommaso Gandini
- Department of Chemical Sciences, University of Padova, Padova 35131, Italy
| | - Andrea Quercioli
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 00133, Italy
| | - Giuseppe Torini
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 00133, Italy
| | - Martina Venditti
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy
| | - Antonella Lauri
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy
| | - Giulia Fasano
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy
| | - Jelmer Hoeksma
- Hubrecht institute-KNAW and University Medical Center Utrecht, Utrecht 3584 CT, The Netherlands
| | - Valerio Santucci
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 00133, Italy
| | - Giada Cattani
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 00133, Italy
| | - Alessio Bocedi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 00133, Italy
| | - Giovanna Carpentieri
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy.,Dipartimento di Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Valentina Tirelli
- Centre of Core Facilities, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Massimo Sanchez
- Centre of Core Facilities, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Cristina Peggion
- Department of Chemical Sciences, University of Padova, Padova 35131, Italy
| | - Fernando Formaggio
- Institute of Biomolecular Chemistry, Padova Unit, CNR, Padova 35131, Italy.,Department of Chemical Sciences, University of Padova, Padova 35131, Italy
| | - Jeroen den Hertog
- Institute of Biomolecular Chemistry, Padova Unit, CNR, Padova 35131, Italy.,Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
| | - Simone Martinelli
- Dipartimento di Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Gianfranco Bocchinfuso
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 00133, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy
| | - Lorenzo Stella
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 00133, Italy
| |
Collapse
|
10
|
Chen H, Mao R, Brzozowski M, Nguyen NH, Sleebs BE. Late Stage Phosphotyrosine Mimetic Functionalization of Peptides Employing Metallaphotoredox Catalysis. Org Lett 2021; 23:4244-4249. [PMID: 34029466 DOI: 10.1021/acs.orglett.1c01200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Access to phosphotyrosine (pTyr) mimetics requires multistep syntheses, and therefore late stage incorporation of these mimetics into peptides is not feasible. Here, we develop and employ metallaphotoredox catalysis using 4-halogenated phenylalanine to afford a variety of protected pTyr mimetics in one step. This methodology was shown to be tolerant of common protecting groups and applicable to the late stage pTyr mimetic modification of protected and unprotected peptides, and peptides of biological relevance.
Collapse
Affiliation(s)
- Hao Chen
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Runyu Mao
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Martin Brzozowski
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nghi H Nguyen
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Brad E Sleebs
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
11
|
Hariri M, Darvish F, Mengue Me Ndong KP, Sechet N, Chacktas G, Boosaliki H, Tran Do ML, Mwande-Maguene G, Lebibi J, Burilov AR, Ayad T, Virieux D, Pirat JL. Gold-Catalyzed Access to Isophosphinoline 2-Oxides. J Org Chem 2021; 86:7813-7824. [PMID: 34009995 DOI: 10.1021/acs.joc.1c00648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Gold(I)-catalyzed reactions of electron-poor alkynes are still a challenging process. A straightforward synthesis of phosphorus-based heterocycles, namely, 2-phenyl 1H-isophosphinoline 2-oxides 1, is reported. The reaction used PPh3AuCl precatalyst in combination with triflic acid under microwave activation and afforded isophosphinoline 2-oxides 1 in moderate to quantitative yields through a fully regioselective 6-endo-dig hydroarylation cyclization, paving the way toward an effective synthesis of phosphorus heterocycles.
Collapse
Affiliation(s)
- Mina Hariri
- ICGM, Univ. Montpellier, ENSCM, CNRS, Montpellier, France.,Department of Chemistry, K. N. Toosi University of Technology, P.O. Box, 15875-4416 Tehran, Iran
| | - Fatemeh Darvish
- Department of Chemistry, K. N. Toosi University of Technology, P.O. Box, 15875-4416 Tehran, Iran
| | - Karen-Pacelye Mengue Me Ndong
- ICGM, Univ. Montpellier, ENSCM, CNRS, Montpellier, France.,Université des Sciences et Techniques de Masuku, Franceville, Gabon
| | - Nora Sechet
- ICGM, Univ. Montpellier, ENSCM, CNRS, Montpellier, France
| | | | - Hooriye Boosaliki
- ICGM, Univ. Montpellier, ENSCM, CNRS, Montpellier, France.,Department of Chemistry, K. N. Toosi University of Technology, P.O. Box, 15875-4416 Tehran, Iran
| | | | | | - Jacques Lebibi
- Université des Sciences et Techniques de Masuku, Franceville, Gabon
| | - Alexander R Burilov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str. 8, Kazan 420088, Russian Federation
| | - Tahar Ayad
- ICGM, Univ. Montpellier, ENSCM, CNRS, Montpellier, France
| | - David Virieux
- ICGM, Univ. Montpellier, ENSCM, CNRS, Montpellier, France
| | - Jean-Luc Pirat
- ICGM, Univ. Montpellier, ENSCM, CNRS, Montpellier, France
| |
Collapse
|
12
|
Nian Q, Zeng J, He L, Chen Y, Zhang Z, Rodrigues-Lima F, Zhao L, Feng X, Shi J. A small molecule inhibitor targeting SHP2 mutations for the lung carcinoma. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Bunsueb S, Lapyuneyong N, Tongpan S, Arun S, Iamsaard S. Chronic stress increases the tyrosine phosphorylation in female reproductive organs: An experimental study. Int J Reprod Biomed 2021; 19:87-96. [PMID: 33554006 PMCID: PMC7851478 DOI: 10.18502/ijrm.v19i1.8183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 06/25/2020] [Accepted: 07/25/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Changes in tyrosine-phosphorylated (TyrPho) protein expressions have demonstrated stress in males. In females, chronic stress (CS) is a major cause of infertility, especially anovulation. However, the tyrosine phosphorylation in the female reproductive system under stress conditions has never been reported. OBJECTIVE To investigate the alteration of TyrPho protein expression in ovary, oviduct, and uterus of CS rats. MATERIALS AND METHODS In this experimental study, 16 female Sprague-Dawley rats (5 wk: 220-250 gr) were divided into control and CS groups (n = 8/group). Every day, the CS animals were immobilized within a restraint cage and individually forced to swim in cold water for 60 consecutive days. Following the stress induction, the ovary, oviduct, and uterus of all rats were observed for their morphologies. The total protein profiles of all tissues were revealed by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) before detecting TyrPho proteins using western blot. Intensity analysis was used to compare the expression of proteins between groups. RESULTS The results showed that the morphology and weights of ovary and oviduct in the CS group were not different from control. In contrast, the CS significantly increased the uterine weight as compared to control. Moreover, the expressions of TyrPho proteins in the ovary (72, 43, and 28 kDas), oviduct (170, 55, and 43 kDas), and uterus (55, 54, and 43 kDas) were increased in CS group as compared to those of control. CONCLUSION The increased expressions of TyrPho proteins in ovary, oviduct, and uterus could be potential markers used to explain some machanisms of female infertility caused from chronic stress.
Collapse
Affiliation(s)
- Sudtida Bunsueb
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Natthapol Lapyuneyong
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Saranya Tongpan
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Supatcharee Arun
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sitthichai Iamsaard
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research Institute for Human High Performance and Health Promotion (HHP & HP), Khon Kaen, Thailand
| |
Collapse
|
14
|
Makukhin N, Ciulli A. Recent advances in synthetic and medicinal chemistry of phosphotyrosine and phosphonate-based phosphotyrosine analogues. RSC Med Chem 2020; 12:8-23. [PMID: 34041480 PMCID: PMC8130623 DOI: 10.1039/d0md00272k] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/30/2020] [Indexed: 11/21/2022] Open
Abstract
Phosphotyrosine-containing compounds attract significant attention due to their potential to modulate signalling pathways by binding to phospho-writers, erasers and readers such as SH2 and PTB domain containing proteins. Phosphotyrosine derivatives provide useful chemical tools to study protein phosphorylation/dephosphorylation, and as such represent attractive starting points for the development of binding ligands and chemical probes to study biology, and for inhibitor and degrader drug design. To overcome enzymatic lability of the phosphate group, physiologically stable phosphonate-based phosphotyrosine analogues find utility in a wide range of applications. This review covers advances over the last decade in the design of phosphotyrosine and its phosphonate-based derivatives, highlights the improved and expanded synthetic toolbox, and illustrates applications in medicinal chemistry.
Collapse
Affiliation(s)
- Nikolai Makukhin
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee Dow Street DD1 5EH Dundee UK
| | - Alessio Ciulli
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee Dow Street DD1 5EH Dundee UK
| |
Collapse
|
15
|
Kousaxidis A, Petrou A, Lavrentaki V, Fesatidou M, Nicolaou I, Geronikaki A. Aldose reductase and protein tyrosine phosphatase 1B inhibitors as a promising therapeutic approach for diabetes mellitus. Eur J Med Chem 2020; 207:112742. [PMID: 32871344 DOI: 10.1016/j.ejmech.2020.112742] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus is a metabolic disease characterized by high blood glucose levels and usually associated with several chronic pathologies. Aldose reductase and protein tyrosine phosphatase 1B enzymes have identified as two novel molecular targets associated with the onset and progression of type II diabetes and related comorbidities. Although many inhibitors against these enzymes have already found in the field of diabetic mellitus, the research for discovering more effective and selective agents with optimal pharmacokinetic properties continues. In addition, dual inhibition of these target proteins has proved as a promising therapeutic approach. A variety of diverse scaffolds are presented in this review for the future design of potent and selective inhibitors of aldose reductase and protein tyrosine phosphatase 1B based on the most important structural features of both enzymes. The discovery of novel dual aldose reductase and protein tyrosine phosphatase 1B inhibitors could be effective therapeutic molecules for the treatment of insulin-resistant type II diabetes mellitus. The methods used comprise a literature survey and X-ray crystal structures derived from Protein Databank (PDB). Despite the available therapeutic options for type II diabetes mellitus, the inhibitors of aldose reductase and protein tyrosine phosphatase 1B could be two promising approaches for the effective treatment of hyperglycemia and diabetes-associated pathologies. Due to the poor pharmacokinetic profile and low in vivo efficacy of existing inhibitors of both targets, the research turned to more selective and cell-permeable agents as well as multi-target molecules.
Collapse
Affiliation(s)
- Antonios Kousaxidis
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Anthi Petrou
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Vasiliki Lavrentaki
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Maria Fesatidou
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Ioannis Nicolaou
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Athina Geronikaki
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece.
| |
Collapse
|
16
|
Kafarski P. Phosphonopeptides containing free phosphonic groups: recent advances. RSC Adv 2020; 10:25898-25910. [PMID: 35518575 PMCID: PMC9055344 DOI: 10.1039/d0ra04655h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/02/2020] [Indexed: 11/21/2022] Open
Abstract
Phosphonopeptides are mimetics of peptides in which phosphonic acid or related (phosphinic, phosphonous etc.) group replaces either carboxylic acid group present at C-terminus, is located in the peptidyl side chain, or phosphonamidate or phosphinic acid mimics peptide bond. Acting as inhibitors of key enzymes related to variable pathological states they display interesting and useful physiologic activities with potential applications in medicine and agriculture. Since the synthesis and biological properties of peptides containing C-terminal diaryl phosphonates and those with phosphonic fragment replacing peptide bond were comprehensively reviewed, this review concentrate on peptides holding free, unsubstituted phosphonic acid moiety. There are two groups of such mimetics: (i) peptides in which aminophosphonic acid is located at C-terminus of the peptide chain with most of them (including antibiotics isolated from bacteria and fungi) exhibiting antimicrobial activity; (ii) non-hydrolysable analogues of phosphonoamino acids, which are useful tools to study physiologic effects of phosphorylations.
Collapse
Affiliation(s)
- Paweł Kafarski
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology Wybrzeże Wyspiańskiego 27 50-305 Wrocław Poland
| |
Collapse
|
17
|
Cerulli RA, Shehaj L, Tosic I, Jiang K, Wang J, Frank DA, Kritzer JA. Cytosolic delivery of peptidic STAT3 SH2 domain inhibitors. Bioorg Med Chem 2020; 28:115542. [PMID: 32503696 PMCID: PMC7294595 DOI: 10.1016/j.bmc.2020.115542] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 01/08/2023]
Abstract
The signal transducer and activator of transcription 3 (STAT3) protein is constitutively activated in several cancers. STAT3 activity can be blocked by inhibiting its Src Homology 2 (SH2) domain, but phosphotyrosine and its isosteres have poor bioavailability. In this work, we develop peptide-based inhibitors of STAT3-SH2 by combining chemical strategies that have proven effective for targeting other SH2 domains. These strategies include a STAT3-specific selectivity sequence, non-hydrolyzable phosphotyrosine isosteres, and a high-efficiency cell-penetrating peptide. Peptides that combined these three strategies had substantial biological stability and cytosolic delivery, as measured using highly quantitative cell-based assays. However, these peptides did not inhibit STAT3 activity in cells. By comparing in vitro binding affinity, cell penetration, and proteolytic stability, this work explores the delicate balance of factors that contribute to biological activity for peptidic inhibitors of STAT3.
Collapse
Affiliation(s)
- Robert A Cerulli
- Cell, Molecular and Developmental Biology Program, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, United States
| | - Livia Shehaj
- Department of Chemistry, Tufts University, Medford, MA 02155, United States
| | - Isidora Tosic
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia; Dana Farber Cancer Institute, Department of Medical Oncology, Boston, MA 02215, United States
| | - Kevin Jiang
- Dana Farber Cancer Institute, Department of Medical Oncology, Boston, MA 02215, United States
| | - Jing Wang
- Department of Chemistry, Tufts University, Medford, MA 02155, United States
| | - David A Frank
- Dana Farber Cancer Institute, Department of Medical Oncology, Boston, MA 02215, United States; Brigham and Women's Hospital, Department of Medicine, Boston, MA 02115, United States; Harvard Medical School, Boston, MA 02111, United States
| | - Joshua A Kritzer
- Department of Chemistry, Tufts University, Medford, MA 02155, United States.
| |
Collapse
|