1
|
Gharpure SJ, Raut DS, Pal J. Harnessing Gold(I)-Catalyzed Hydroamination/1,3-Sulfonyl Migration Cascade for Divergent Synthesis of Isoxazolidine and Isoxazoline from O-Alkynyl Hydroxylamine. Org Lett 2024; 26:6497-6501. [PMID: 39047181 DOI: 10.1021/acs.orglett.4c02405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Gold-catalyzed 5-exo-dig hydroamination on O-homopropargylic hydroxylamine gave expeditious access to methylene isoxazolidine. Excess catalyst loading led to facile 1,3-sulfonyl migration in a cascade fashion to furnish the isoxazoline. Mechanistic studies using react-IR and NMR as well as crossover experiments indicated that 1,3-sulfonyl group migration is an intramolecular concerted process. The ene-hydroxylamine moiety also underwent dipolar cycloaddition reactions with nitrile oxide and nitrones leading to the first examples of spirocyclic bis-isoxazolidine derivatives.
Collapse
Affiliation(s)
- Santosh J Gharpure
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai - 400076, India
| | - Dhanyakumar S Raut
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai - 400076, India
- BASF Chemical India Pvt. Ltd., Innovation campus, Thane Belapur Rd, Navi Mumbai - 400705, India
| | - Juhi Pal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai - 400076, India
| |
Collapse
|
2
|
Galibert-Guijarro A, Tronc J, Mouysset D, Siri D, Gastaldi S, Bertrand MP, Feray L. Investigation of UV Light-Promoted Synthesis of α-Sulfonyl Amides from N-Sulfonyl Ynamides. J Org Chem 2024; 89:9695-9699. [PMID: 38965935 DOI: 10.1021/acs.joc.4c01013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
UV light-promoted synthesis of α-sulfonyl amides from N-sulfonyl ynamides without any additives is reported. The reaction proceeds through a radical chain mechanism involving the photoinduced cleavage of the nitrogen-sulfur bond and addition of an electrophilic sulfonyl radical to the triple bond of the ynamide followed by β-fragmentation of the sulfonyl group leading to a ketenimine hydrated upon workup. This highly efficient rearrangement leads, after acidic treatment, to a wide range of α-sulfonyl amides in high yields.
Collapse
Affiliation(s)
| | - Jérémy Tronc
- Aix Marseille Univ, CNRS, ICR, Marseille, 13013, France
| | | | - Didier Siri
- Aix Marseille Univ, CNRS, ICR, Marseille, 13013, France
| | | | | | | |
Collapse
|
3
|
Singh G, Marupalli SS, Arockiaraj M, Rajeshkumar V. I 2-Cs 2CO 3 Mediated Intramolecular C2-Amination and Oxidative Rearrangement Cascade of C-3 Phenylthio Indoles: A Route to Synthesize Thiosulfonate-Embedded 2-Iminoindolin-3-ones. J Org Chem 2024; 89:5861-5870. [PMID: 38552213 DOI: 10.1021/acs.joc.4c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
An efficient, transition-metal-free protocol employing I2/Cs2CO3 for the synthesis of thiosulfonate containing 2-iminoindolin-3-ones motifs has been developed from C-3 phenylthio indoles. The reaction proceeded through intramolecular cyclization involving C-N bond formation, leading to the formation of indole-fused benzothiazines as a key intermediate. Remarkably, Cs2CO3 played a crucial role in the reaction as an oxygen source, enabling oxidative rearrangement with [1,4]-sulfonyl migration to furnish the final products with the formation of multiple functional groups such as C═O, C═N, and S-SO2.
Collapse
Affiliation(s)
- Gargi Singh
- Organic Synthesis & Catalysis Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda - 506004, Telangana, India
| | - Sasi Sree Marupalli
- Organic Synthesis & Catalysis Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda - 506004, Telangana, India
| | - Mariyaraj Arockiaraj
- Organic Synthesis & Catalysis Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda - 506004, Telangana, India
| | - Venkatachalam Rajeshkumar
- Organic Synthesis & Catalysis Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda - 506004, Telangana, India
| |
Collapse
|
4
|
Ametsetor E, Fobi K, Bunce RA. Synthesis and Elimination Pathways of 1-Methanesulfonyl-1,2-dihydroquinoline Sulfonamides. Molecules 2023; 28:molecules28073256. [PMID: 37050020 PMCID: PMC10096818 DOI: 10.3390/molecules28073256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
A series of new Morita–Baylis–Hillman acetates were prepared and reacted with methanesulfonamide (K2CO3, DMF, 23 °C) to produce tertiary dihydroquinoline sulfonamides in high yields. Subsequent efforts to eliminate the methylsulfonyl group from these derivatives (K2CO3, DMF, 90 °C) as a route to quinolines were met with mixed results. Although dihydroquinoline sulfonamides prepared from ethyl acrylate and acrylonitrile generally underwent elimination to give excellent yields of quinolines, those generated from 3-buten-2-one failed to undergo elimination and instead decomposed. The failure of these ketone substrates to aromatize presumably derives from the enolizable methyl ketone at C-3. Finally, the attempted aromatization of the acrylate-derived 6,7-difluoro-1,2-dihydroquinoline sulfonamide demonstrated that other interesting processes could occur in preference to the desired elimination.
Collapse
Affiliation(s)
- Ebenezer Ametsetor
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078-3071, USA
| | - Kwabena Fobi
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078-3071, USA
| | - Richard A. Bunce
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078-3071, USA
| |
Collapse
|
5
|
Hsueh NC, Wang YH, Chang MY. Sequential condensation and double desulfonylative cyclopropanation of 1,2-bis(sulfonylmethyl)arenes with 3-arylacroleins: access to biscyclopropane-fused tetralins. Org Biomol Chem 2023; 21:1206-1221. [PMID: 36632710 DOI: 10.1039/d2ob02188a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Efficient tBuOK-mediated sequential condensation and double desulfonylative cyclopropanation of readily accessible 1,2-bis(sulfonylmethyl)arenes with 3-arylacroleins is described. This high-yielding, single-step strategy provides a variety of polysubstituted biscyclopropane-fused tetralins with six contiguous stereogenic centers via the construction of five carbon-carbon single bonds. A plausible mechanism is proposed and discussed. In the overall reaction process, water and sulfinic acid salts were generated as the byproducts.
Collapse
Affiliation(s)
- Nai-Chen Hsueh
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Yu-Han Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Meng-Yang Chang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan. .,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.,NPUST College of Professional Studies, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| |
Collapse
|
6
|
Ashatkina MA, Reznikov AN, Klimochkin YN. Intramolecular Cyclization of ortho-Substituted Chalcones in the Presence of Palladium Complexes with Chiral Bisphosphine Ligands. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022050116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Chen G, Xu B. Divergent Synthesis of Sulfonyl Quinolines, Formyl Indoles, and Quinolones from Ethynyl Benzoxazinanones via Au I Catalysis, Au I-ArI Co-Catalysis, and Silver Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guifang Chen
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Bo Xu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
8
|
Yu X, Zhang Z, Dong G. Catalytic Enantioselective Synthesis of γ-Lactams with β-Quaternary Centers via Merging of C-C Activation and Sulfonyl Radical Migration. J Am Chem Soc 2022; 144:9222-9228. [PMID: 35580261 DOI: 10.1021/jacs.2c03746] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transition-metal-catalyzed C-C activation has become synthetically valuable; however, it rarely involves single-electron downstream processes. To expand the repertoire of C-C activation, here we describe the discovery of a Rh-catalyzed enantioselective C-C activation involving migration of a sulfonyl radical. This reaction directly transforms cyclobutanones containing a sulfonamide-tethered 1,3-diene moiety into γ-lactams containing a β-quaternary center with excellent enantioselectivity. This unusual process involves cleavage of C-C and N-S bonds and subsequent formation of C-N and C-S bonds. The reaction also exhibits broad functional group tolerance and a good substrate scope. A combined experimental and computational mechanistic study suggested that the reaction goes through a Rh(I)-mediated oxidative addition into the cyclobutanone C-C bond followed by a Rh(III)-triggered N-S bond homolysis and sulfonyl radical migration.
Collapse
Affiliation(s)
- Xuan Yu
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Zining Zhang
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
9
|
Mutra MR, Wang JJ. Photoinduced ynamide structural reshuffling and functionalization. Nat Commun 2022; 13:2345. [PMID: 35487916 PMCID: PMC9055057 DOI: 10.1038/s41467-022-30001-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 04/05/2022] [Indexed: 12/11/2022] Open
Abstract
The radical chemistry of ynamides has recently drawn the attention of synthetic organic chemists to the construction of various N-heterocyclic compounds. Nevertheless, the ynamide-radical chemistry remains a long-standing challenge for chemists due to its high reactivity, undesirable byproducts, severe inherent regio- and chemoselective problems. Importantly, the ynamide C(sp)-N bond fission remains an unsolved challenge. In this paper, we observe Photoinduced radical trigger regio- and chemoselective ynamide bond fission, structural reshuffling and functionalization of 2-alkynyl-ynamides to prepare synthetically inaccessible/challenging chalcogen-substituted indole derivatives with excellent step/atom economy. The key breakthroughs of this work includes, ynamide bond cleavage, divergent radical precursors, broad scope, easy to handle, larger-scale reactions, generation of multiple bonds (N-C(sp2), C(sp2)-C(sp2), C(sp2)-SO2R/C-SR, and C-I/C-Se/C-H) in a few minutes without photocatalysts, metals, oxidants, additives. Control experiments and 13C-labeling experiments supporting the conclusion that sulfone radicals contribute to ynamide structural reshuffling processes via a radical pathway. Although ynamides have emerged as a versatile class of compounds for organic synthesis, the radical chemistry of ynamides usually proceeds with the expected connectivity largely intact. Here the authors show a methodology by which the C(sp)–N bond undergoes scission, alkyne migration and functionalization under blue LED light in the absence of metals or additives.
Collapse
Affiliation(s)
- Mohana Reddy Mutra
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Rd, Sanmin District, Kaohsiung City, 807, Taiwan
| | - Jeh-Jeng Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Rd, Sanmin District, Kaohsiung City, 807, Taiwan. .,Department of Medical Research, Kaohsiung Medical University Hospital, No. 100, Tzyou 1st Rd, Sanmin District, Kaohsiung City, 807, Taiwan.
| |
Collapse
|
10
|
Li F, Wu Z, Wang J, Zhang S, Yu J, Yuan Z, Liu J, Shen R, Zhou Y, Liu L. Metal-free synthesis of N-sulfonylformamidines via skeletal reconstruction of sulfonyl oximonitriles. Org Chem Front 2022. [DOI: 10.1039/d1qo01665b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We firstly develop an unprecedented domino reaction of sulfonyl oximonitriles with secondary amines to streamline synthesis of N-sulfonylformamidines in decent to high yields under mild reaction conditions.
Collapse
Affiliation(s)
- Feng Li
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
| | - Ziyan Wu
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
| | - Jingjing Wang
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
| | - Siyuan Zhang
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
| | - Jiaxin Yu
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
| | - Zhen Yuan
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
| | - Jingya Liu
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
| | - Renzeng Shen
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
| | - Yao Zhou
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, Hubei, 435002, P. R. China
| | - Lantao Liu
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
| |
Collapse
|
11
|
Belen’kii LI, Gazieva GA, Evdokimenkova YB, Soboleva NO. The literature of heterocyclic chemistry, Part XX, 2020. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
12
|
Debnath S, Kumar AS, Chauhan S, Kumara Swamy KC. Divergent Reactivity of δ- and β'-Acetoxy Allenoates with 2-Sulfonamidoindoles via Phosphine Catalysis: Entry to Dihydro-α-carboline, α-Carboline, and Spiro-cyclopentene Motifs. J Org Chem 2021; 86:11583-11598. [PMID: 34343010 DOI: 10.1021/acs.joc.1c01137] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The reactivity of 2-sulfonamidoindoles with acetoxy allenoates under phosphine catalysis depends on the disposition of the acetoxy (OAc) group on the allenoate. In the temperature-controlled [3 + 3] annulations, δ-acetoxy allenoates afforded dihydrocarboline and carboline scaffolds with carbon-nitrogen nucleophilic 2-sulfonamidoindoles, in which allenoate serves as a β-, γ-, and δ-carbon donor. At room temperature (25 °C), dihydro-α-carboline motifs were obtained exclusively through Michael addition, 1,4-proton shift, isomerization, 1,2-proton transfer, phosphine elimination, and aza-Michael addition. The higher temperature (80 °C) cascade protocol using Ph3P-Cs2CO3 combination involves addition-elimination, aza-Claisen rearrangement, tosyl migration, and aromatization as key steps to give α-carbolines containing tosyl functionality at the γ-carbon. In contrast, with β'-acetoxy allenoate, 2-sulfonamidoindole acts only as a carbo-nucleophile in (p-tolyl)3P-directed [4 + 1] spiro-annulation, leading to five-membered spiro-carbocyclic motifs essentially as single diastereomers (dr >20:1) via chemoselective carbo-annulation.
Collapse
Affiliation(s)
- Shubham Debnath
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, Telangana, India
| | - A Sanjeeva Kumar
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, Telangana, India
| | - Sachin Chauhan
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, Telangana, India
| | - K C Kumara Swamy
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, Telangana, India
| |
Collapse
|
13
|
Smith PJ, Jiang Y, Tong Z, Pickford HD, Christensen KE, Nugent J, Anderson EA. Synthesis of Polysubstituted Fused Pyrroles by Gold-Catalyzed Cycloisomerization/1,2-Sulfonyl Migration of Yndiamides. Org Lett 2021; 23:6547-6552. [PMID: 34369785 DOI: 10.1021/acs.orglett.1c02360] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Yndiamides (bis-N-substituted alkynes) are valuable precursors to azacycles. Here we report a cycloisomerization/1,2-sulfonyl migration of alkynyl-yndiamides to form tetrahydropyrrolopyrroles, unprecedented heterocyclic scaffolds that are relevant to medicinal chemistry. This functional group tolerant transformation can be achieved using Au(I) catalysis that proceeds at ambient temperature, and a thermally promoted process. The utility of the products is demonstrated by a range of reactions to functionalize the fused pyrrole core.
Collapse
Affiliation(s)
- Philip J Smith
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Yubo Jiang
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Zixuan Tong
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Helena D Pickford
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | | | - Jeremy Nugent
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Edward A Anderson
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
14
|
Le MT, Morato NM, Kaerner A, Welch CJ, Cooks RG. Fragmentation of Polyfunctional Compounds Recorded Using Automated High-Throughput Desorption Electrospray Ionization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2261-2273. [PMID: 34280312 DOI: 10.1021/jasms.1c00176] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Using desorption electrospray ionization (DESI) as part of an automated high-throughput system, tandem mass spectra of the compounds in a pharmaceutical library were recorded in the positive mode under standardized conditions. Quality control filtering yielded an MS/MS library of 16 662 spectra. Fragmentation of subsets of the compounds in the library chosen to contain a single instance of a particular functional group (amide, piperazine, sulfonamide) was predicted by experts, and the results were compared with the experimental data. Expert performance was good to excellent for all the cases evaluated. Substituents on the functional groups were found to exert important secondary control over the fragmentation, with the main effect observed being product ion stabilization by aromatic substitution, which was consistent across the different groups evaluated. These substituent effects are generally explicable in terms of standard physical organic chemistry considerations of product ion stability as controlling fragmentation. A somewhat unexpected feature was the incidence of homolytic cleavages, driven by the stability of substituted amine radical cations. The findings of this study are intended to lay the groundwork for machine learning approaches to performing MS/MS spectrum → structure and structure → MS/MS spectrum operations on the same experimental data set. The effort involved and the success achieved in computer-aided interpretation, now underway, will be compared with the expert performance as described here.
Collapse
Affiliation(s)
- MyPhuong T Le
- Department of Chemistry and Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nicolás M Morato
- Department of Chemistry and Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Andreas Kaerner
- Discovery Chemistry Research and Technologies, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Christopher J Welch
- Indiana Consortium for Analytical Science and Engineering (ICASE), Indianapolis, Indiana 46202, United States
| | - R Graham Cooks
- Department of Chemistry and Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
15
|
Campeau D, Pommainville A, Gagosz F. Ynamides as Three-Atom Components in Cycloadditions: An Unexplored Chemical Reaction Space. J Am Chem Soc 2021; 143:9601-9611. [PMID: 34132536 DOI: 10.1021/jacs.1c04051] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
While 1,3-dipolar cycloadditions have appeared to be a fertile area for research, as attested by the numerous synthetic transformations and resulting applications that have been developed during the past 60 years, the use of neutral three-atom components (TACs) in (3+2) cycloadditions remains comparatively sparse. Neutral TACs, however, have great synthetic potential given that their reaction with a π system can produce zwitterionic cycloadducts that may be manipulated for further chemistry. We report herein that ynamides, a class of carbon π systems that has seen wide interest over the last two decades, can be used as neutral TACs in thermally induced intramolecular (3+2) cycloaddition reactions with alkynes to yield a variety of functionalized pyrroles. The transformation is proposed to occur in a stepwise manner via the intermediacy of a pyrrolium ylide, from which the electron-withdrawing group on the nitrogen atom undergoes an intramolecular 1,2-shift to produce the neutral pyrrole. This work demonstrates a yet unexplored facet of ynamide reactivity with great potential in heterocyclic chemistry.
Collapse
Affiliation(s)
- Dominic Campeau
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5, Ottawa, Canada
| | - Alice Pommainville
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5, Ottawa, Canada
| | - Fabien Gagosz
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5, Ottawa, Canada
| |
Collapse
|
16
|
Yamasaki K, Yamauchi A, Inokuma T, Miyakawa Y, Wang Y, Oriez R, Yamaoka Y, Takasu K, Tanaka N, Kashiwada Y, Yamada K. Mechanistic Support for Intramolecular Migrative Cyclization of Propargyl Sulfones Provided by Catalytic Asymmetric Induction with a Chiral Counter Cation Strategy. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Kohta Yamasaki
- Graduate School of Pharmaceutical Sciences Tokushima University Shomachi, Tokushima 770-8505 Japan
| | - Akiho Yamauchi
- Graduate School of Pharmaceutical Sciences Tokushima University Shomachi, Tokushima 770-8505 Japan
| | - Tsubasa Inokuma
- Graduate School of Pharmaceutical Sciences Tokushima University Shomachi, Tokushima 770-8505 Japan
- Research Cluster on “Innovative Chemical Sensing” Tokushima University Shomachi, Tokushima 770-8505 Japan
| | - Yasunori Miyakawa
- Graduate School of Pharmaceutical Sciences Kyoto University Yoshida, Sakyo-ku, Kyoto 606-8501 Japan
| | - Yinli Wang
- Graduate School of Pharmaceutical Sciences Tokushima University Shomachi, Tokushima 770-8505 Japan
- Graduate School of Pharmaceutical Sciences Kyoto University Yoshida, Sakyo-ku, Kyoto 606-8501 Japan
| | - Raphaël Oriez
- Graduate School of Pharmaceutical Sciences Kyoto University Yoshida, Sakyo-ku, Kyoto 606-8501 Japan
| | - Yousuke Yamaoka
- Graduate School of Pharmaceutical Sciences Kyoto University Yoshida, Sakyo-ku, Kyoto 606-8501 Japan
| | - Kiyosei Takasu
- Graduate School of Pharmaceutical Sciences Kyoto University Yoshida, Sakyo-ku, Kyoto 606-8501 Japan
| | - Naonobu Tanaka
- Graduate School of Pharmaceutical Sciences Tokushima University Shomachi, Tokushima 770-8505 Japan
| | - Yoshiki Kashiwada
- Graduate School of Pharmaceutical Sciences Tokushima University Shomachi, Tokushima 770-8505 Japan
| | - Ken‐ichi Yamada
- Graduate School of Pharmaceutical Sciences Tokushima University Shomachi, Tokushima 770-8505 Japan
- Research Cluster on “Innovative Chemical Sensing” Tokushima University Shomachi, Tokushima 770-8505 Japan
| |
Collapse
|
17
|
Zavgorodnii AS, Pomogaeva АV, Timoshkin AY. Complexes of the Lewis Acid Ga[N(C6F5)2]3 with Acetonitrile and Pyridine. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363220120130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Koronatov AN, Afanaseva KK, Sakharov PA, Rostovskii NV, Khlebnikov AF, Novikov MS. Rh(ii)-Catalyzed denitrogenative 1-sulfonyl-1,2,3-triazole-1-alkyl-1,2,3-triazole cross-coupling as a route to 3-sulfonamido-1H-pyrroles and 1,2,3-triazol-3-ium ylides. Org Chem Front 2021. [DOI: 10.1039/d0qo01571g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The reaction of 1-alkyl-1H-1,2,3-triazoles with rhodium(ii) azavinyl carbenes, generated from 1-sulfonyl-1H-1,2,3-triazoles, was utilized to prepare 3-sulfonamido-1H-pyrroles and 1,2,3-triazol-3-ium ylides in good yields.
Collapse
Affiliation(s)
| | | | - Pavel A. Sakharov
- St Petersburg State University
- Institute of Chemistry
- St Petersburg
- Russia
| | | | | | | |
Collapse
|
19
|
Xiong B, Chen L, Xu J, Sun H, Li X, Li Y, Lian Z. Catalytic AgF-Initiated Intramolecular 1,3-Sulfonyl Migration of gem-Difluorovinyl Sulfonates to α,α-Difluoro-β-ketosulfones. Org Lett 2020; 22:9263-9268. [PMID: 33205980 DOI: 10.1021/acs.orglett.0c03492] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A 1,3-sulfonyl migration of difluorovinyl sulfonates initiated by a catalytic amount of silver fluoride is presented. α,α-Difluoro-β-ketosulfones were successfully prepared in excellent yields. This method features high chemoselectivity, good functional group tolerance, high atom economy, and mild, environmentally benign reaction conditions. Furthermore, mechanistic experiments indicate that this migration proceeds in an intermolecular pathway and the corresponding sulfinates are possible intermediates.
Collapse
Affiliation(s)
- Baojian Xiong
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lei Chen
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jie Xu
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Haotian Sun
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiong Li
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yue Li
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhong Lian
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
20
|
A concise synthesis of carbasugars isolated from Streptomyces lincolnensis. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Zeng L, Lin Y, Li J, Sajiki H, Xie H, Cui S. Skeletal reorganization divergence of N-sulfonyl ynamides. Nat Commun 2020; 11:5639. [PMID: 33159079 PMCID: PMC7648764 DOI: 10.1038/s41467-020-19467-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 10/07/2020] [Indexed: 01/29/2023] Open
Abstract
Skeletal reorganization is a type of intriguing processes because of their interesting mechanism, high atom-economy and synthetic versatility. Herein, we describe an unusual, divergent skeletal reorganization of N-sulfonyl ynamides. Upon treatment with lithium diisopropylamine (LDA), N-sulfonyl ynamides undergo a skeletal reorganization to deliver thiete sulfones, while the additional use of 1,3-dimethyl-tetrahydropyrimidin-2(1H)-one (DMPU) shifts the process to furnish propargyl sulfonamides. This skeletal reorganization divergence features broad substrate scope and scalability. Mechanistically, experimental and computational studies reveal that these processes may initiate from a lithiation/4-exo-dig cyclization cascade, and the following ligand-dependent 1,3-sulfonyl migration or β-elimination would control the chemodivergence. This protocol additionally provides a facile access to a variety of privileged molecules from easily accessible ynamides. Skeletal reorganizations are intriguing processes in chemical synthesis due to their mechanism, atom-economy and synthetic versatility. Herein, the authors describe a divergent skeletal reorganization of N-sulfonyl ynamides to thiete sulfones and propargyl sulfonamides.
Collapse
Affiliation(s)
- Linwei Zeng
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China
| | - Yuxin Lin
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China
| | - Jiaming Li
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China
| | - Hironao Sajiki
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Hujun Xie
- School of Food Science and Biotechnology, Zhejiang Gongshang University, 310018, Hangzhou, China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China.
| |
Collapse
|
22
|
Heo N, Jung I, Kim DK, Han SH, Lee K, Lee PH. Sequential 1,3-N- to C- and 1,3-C- to C-Migration of Sulfonyl Groups through the Synthesis of 1,4-Diazepines from the Aza-[5 + 2] Cycloaddition of Indoloazomethine Ylides. Org Lett 2020; 22:6562-6567. [DOI: 10.1021/acs.orglett.0c02333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Namrim Heo
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ilyong Jung
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Dae Kyum Kim
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sang Hoon Han
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kooyeon Lee
- Department of Bio-Health Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Phil Ho Lee
- The Korean Academy of Science and Technology, Seongnam 13630, Republic of Korea
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|