1
|
Shinziya H, Menon RS, Das AK. A rapid investigation of near-infrared (NIR) fluorescent switch-on probes for detection and in cellulo tracking of G-quadruplex and double-stranded DNA. RSC Adv 2024; 14:30631-30646. [PMID: 39324042 PMCID: PMC11423286 DOI: 10.1039/d4ra06207h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024] Open
Abstract
This review provides a comprehensive overview of the recent advancements in Near Infrared (NIR) fluorescence switch-on probes designed for the detection and in cellulo tracking of G-quadruplex and double-stranded DNA (dsDNA). G-quadruplexes, non-canonical DNA structures, play pivotal roles in regulating various biological processes, making them critical targets for therapeutic and diagnostic applications. The unique properties of NIR fluorescence probes, such as deep tissue penetration, minimal photodamage, and low autofluorescence background, offer significant advantages for bioimaging. We critically analyze the design strategies, photophysical properties, and binding mechanisms of various NIR fluorescence switch-on probes. Additionally, we discuss their efficacy and specificity in identifying G-quadruplexes and dsDNA within cellular environments. Key challenges and future directions for improving the sensitivity, selectivity, and biocompatibility of these probes are also highlighted. This review aims to underscore the potential of NIR fluorescence probes in advancing our understanding of DNA dynamics and their applications in biomedical research.
Collapse
Affiliation(s)
- Hazeena Shinziya
- Department of Chemistry, Christ University Hosur Road Bangalore Karnataka 560029 India
| | - Revathi S Menon
- Department of Chemistry, Christ University Hosur Road Bangalore Karnataka 560029 India
| | - Avijit Kumar Das
- Department of Chemistry, Christ University Hosur Road Bangalore Karnataka 560029 India
| |
Collapse
|
2
|
Wickhorst PJ, Druzhinin SI, Ihmels H, Müller M, Sutera Sardo M, Schönherr H, Viola G. A Dimethylaminophenyl‐Substituted Naphtho[1,2‐
b
]quinolizinium as a Multicolor NIR Probe for the Fluorimetric Detection of Intracellular Nucleic Acids and Proteins. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Peter Jonas Wickhorst
- Department of Chemistry – Biology University of Siegen, and Center of Micro- and Nanochemistry and (Bio)Technology (Cμ) Adolf-Reichwein-Str. 2 57068 Siegen Germany
| | - Sergey I. Druzhinin
- Department of Chemistry – Biology University of Siegen, and Center of Micro- and Nanochemistry and (Bio)Technology (Cμ) Adolf-Reichwein-Str. 2 57068 Siegen Germany
| | - Heiko Ihmels
- Department of Chemistry – Biology University of Siegen, and Center of Micro- and Nanochemistry and (Bio)Technology (Cμ) Adolf-Reichwein-Str. 2 57068 Siegen Germany
| | - Mareike Müller
- Department of Chemistry – Biology University of Siegen, and Center of Micro- and Nanochemistry and (Bio)Technology (Cμ) Adolf-Reichwein-Str. 2 57068 Siegen Germany
| | | | - Holger Schönherr
- Department of Chemistry – Biology University of Siegen, and Center of Micro- and Nanochemistry and (Bio)Technology (Cμ) Adolf-Reichwein-Str. 2 57068 Siegen Germany
| | - Giampietro Viola
- Department of Women's and Child's health Oncohematology laboratory University of Padova Via Giustiniani 2 I-35128 Padova Italy
| |
Collapse
|
3
|
Wickhorst PJ, Ihmels H. Selective, pH-Dependent Colorimetric and Fluorimetric Detection of Quadruplex DNA with 4-Dimethylamino(phenyl)-Substituted Berberine Derivatives. Chemistry 2021; 27:8580-8589. [PMID: 33855748 PMCID: PMC8252107 DOI: 10.1002/chem.202100297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 12/20/2022]
Abstract
The 9- and 12-dimethylaminophenyl-substituted berberine derivatives 3 a and 3 b were readily synthesized by Suzuki-Miyaura reactions and shown to be useful fluorescent probes for the optical detection of quadruplex DNA (G4-DNA). Their association with the nucleic acids was investigated by spectrometric titrations, CD and LD spectroscopy, and with DNA-melting analysis. Both ligands bind to duplex DNA by intercalation and to G4-DNA by terminal π stacking. At neutral conditions, they bind with higher affinity (Kb =105 -106 M-1 ) to representative quadruplex forming oligonucleotides 22AG, c-myc, c-kit, and a2, than to duplex calf thymus (ct) DNA (Kb =5-7×104 M-1 ). At pH 5, however, the affinity of 3 a towards G4-DNA 22AG is higher (Kb =1.2×106 M-1 ), whereas the binding constant towards ct DNA is lower (Kb =3.9×103 M-1 ) than under neutral conditions. Notably, the association of the ligand with DNA results in characteristic changes of the absorption and emission properties under specific conditions, which may be used for optical DNA detection. Other than the parent berberine, the ligands do not show a noticeable increase of their very low intrinsic emission intensity upon association with DNA at neutral conditions. In contrast, a fluorescence light-up effect was observed upon association to duplex (Φfl =0.01) and quadruplex DNA (Φfl =0.04) at pH 5. This fluorimetric response to G4-DNA association in combination with the distinct, red-shifted absorption under these conditions provides a simple and conclusive optical detection of G4-DNA at lower pH.
Collapse
Affiliation(s)
- Peter Jonas Wickhorst
- Department of Chemistry – BiologyUniversity of Siegen, andCenter of Micro- and Nanochemistry and Engineering (Cμ)Adolf-Reichwein-Str. 257068SiegenGermany
| | - Heiko Ihmels
- Department of Chemistry – BiologyUniversity of Siegen, andCenter of Micro- and Nanochemistry and Engineering (Cμ)Adolf-Reichwein-Str. 257068SiegenGermany
| |
Collapse
|
4
|
Carbazole-hydrazinobenzothiazole a selective turn-on fluorescent sensor for Hg2+ions – Its protein binding and electrochemical application studies. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
Wickhorst PJ, Ihmels H. Berberrubine Phosphate: A Selective Fluorescent Probe for Quadruplex DNA. Molecules 2021; 26:2566. [PMID: 33924894 PMCID: PMC8124163 DOI: 10.3390/molecules26092566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/31/2022] Open
Abstract
A phosphate-substituted, zwitterionic berberine derivative was synthesized and its binding properties with duplex DNA and G4-DNA were studied using photometric, fluorimetric and polarimetric titrations and thermal DNA denaturation experiments. The ligand binds with high affinity toward both DNA forms (Kb = 2-7 × 105 M-1) and induces a slight stabilization of G4-DNA toward thermally induced unfolding, mostly pronounced for the telomeric quadruplex 22AG. The ligand likely binds by aggregation and intercalation with ct DNA and by terminal stacking with G4-DNA. Thus, this compound represents one of the rare examples of phosphate-substituted DNA binders. In an aqueous solution, the title compound has a very weak fluorescence intensity (Φfl < 0.01) that increases significantly upon binding to G4-DNA (Φfl = 0.01). In contrast, the association with duplex DNA was not accompanied by such a strong fluorescence light-up effect (Φfl < 0.01). These different fluorimetric responses upon binding to particular DNA forms are proposed to be caused by the different binding modes and may be used for the selective fluorimetric detection of G4-DNA.
Collapse
Affiliation(s)
| | - Heiko Ihmels
- Department of Chemistry-Biology, University of Siegen, Center of Micro- and Nanochemistry and Engineering (Cµ), Adolf-Reichwein-Str. 2, 57068 Siegen, Germany;
| |
Collapse
|
6
|
Abhijna Krishna R, Dheepika R, Muralisankar M, Nagarajan S. Microwave-assisted synthesis and DNA-binding studies of half-sandwich ruthenium(II) arene complexes containing phenanthroimidazole-triarylamine hybrids. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1885650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | | | | | - Samuthira Nagarajan
- Department of Chemistry, Central University of Tamil Nadu, Thiruvarur, India
| |
Collapse
|
7
|
Bortolozzi R, Ihmels H, Schulte R, Stremmel C, Viola G. Synthesis, DNA-binding and antiproliferative properties of diarylquinolizinium derivatives. Org Biomol Chem 2021; 19:878-890. [PMID: 33410854 DOI: 10.1039/d0ob02298e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A series of ten 2,7- and 2,8-diarylquinolizinium derivatives was synthesized and their DNA-binding and cytotoxic properties were investigated. Except for one nitro-substituted derivative all tested diarylquinolizinium ions bind to DNA with sufficient affinity (2 × 104 M-1-2 × 105 M-1). It was shown with photometric, fluorimetric and polarimetric titrations as well as with flow-LD analysis that the ligands bind mainly by intercalation to duplex DNA, however, depending on the ligand-DNA ratio, groove binding and backbone association were also observed with some derivatives. The biological activity was further investigated with tests of cytotoxicity and antiproliferative properties towards non-tumor cells and selected cancer cells, along with cell cycle analysis and an annexin-V assay. Notably, substrates that carry donor-functionalities in the 4-position of the phenyl substituents revealed a strong, and in some cases selective, antiproliferative activity as quantified by the growth inhibition, GI50, at very low micromolar and even submicromolar level both in leukemia and solid tumors.
Collapse
Affiliation(s)
- Roberta Bortolozzi
- Department of Women's and Child's health, Oncohematology laboratory, University of Padova, Via Giustiniani 2, I-35128 Padova, Italy. giampietro,
| | - Heiko Ihmels
- Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| | - Robin Schulte
- Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| | - Christopher Stremmel
- Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| | - Giampietro Viola
- Department of Women's and Child's health, Oncohematology laboratory, University of Padova, Via Giustiniani 2, I-35128 Padova, Italy. giampietro,
| |
Collapse
|
8
|
Non-cytotoxic photostable monomethine cyanine platforms: Combined paradigm of nucleic acid staining and in vivo imaging. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Yadhukrishnan VO, Muralisankar M, Dheepika R, Konakanchi R, Bhuvanesh NSP, Nagarajan S. Structurally different domains embedded half-sandwich arene Ru(II) complex: DNA/HSA binding and cytotoxic studies. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1782895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- V. O. Yadhukrishnan
- Department of Chemistry, Central University of Tamil Nadu, Thiruvarur, Tamilnadu, India
| | - Mathiyan Muralisankar
- Department of Chemistry, Central University of Tamil Nadu, Thiruvarur, Tamilnadu, India
| | - Ramachandran Dheepika
- Department of Chemistry, Central University of Tamil Nadu, Thiruvarur, Tamilnadu, India
| | - Ramaiah Konakanchi
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, India
| | | | - Samuthira Nagarajan
- Department of Chemistry, Central University of Tamil Nadu, Thiruvarur, Tamilnadu, India
| |
Collapse
|
10
|
Pithan PM, Steup S, Ihmels H. Cation-induced ring-opening and oxidation reaction of photoreluctant spirooxazine-quinolizinium conjugates. Beilstein J Org Chem 2020; 16:904-916. [PMID: 32461772 PMCID: PMC7214873 DOI: 10.3762/bjoc.16.82] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/20/2020] [Indexed: 12/18/2022] Open
Abstract
Two new spiroindolinonaphthoxazine derivatives with an electron-accepting styrylquinolizinium or styrylcoralyne unit, respectively, were synthesized, and the influence of such an arylvinyl substituent on the chemical and photochemical properties of the compounds was investigated. Specifically, these spirooxazines turned out to be resistant towards the photoinduced merocyanine formation, and the irradiation with light mainly led to photodegradation of the substrates. However, it was shown by colorimetric and fluorimetric screening assays as well as by detailed NMR spectroscopic and mass spectrometric studies that the addition of particular metal ions (Cu2+, Fe3+, and to a certain extent Hg2+) initially induced a ring-opening reaction that was irreversibly followed by a fast ring closure-deprotonation-oxidation sequence to give styryl-substituted naphthoxazole derivatives as the products quantitatively. For the quinolizinium-substituted spirooxazine derivative, the formation of the respective oxidation product caused the development of a broad absorption band between 425 nm and 500 nm and a new emission band at λfl = 628 nm, so that it may be employed as a selective chemosensor or chemodosimeter for the colorimetric and fluorimetric detection of Cu2+ and Fe3+.
Collapse
Affiliation(s)
- Phil M Pithan
- Department of Chemistry and Biology, University of Siegen and Center of Micro- and Nanochemistry and Engineering (Cμ), Adolf-Reichwein-Str. 2, 57068 Siegen, Germany
| | - Sören Steup
- Department of Chemistry and Biology, University of Siegen and Center of Micro- and Nanochemistry and Engineering (Cμ), Adolf-Reichwein-Str. 2, 57068 Siegen, Germany
| | - Heiko Ihmels
- Department of Chemistry and Biology, University of Siegen and Center of Micro- and Nanochemistry and Engineering (Cμ), Adolf-Reichwein-Str. 2, 57068 Siegen, Germany
| |
Collapse
|
11
|
Pithan PM, Ihmels H. Studies on the photocyclization reaction of 8‐styryl‐substituted coralyne derivatives. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Phil Marvin Pithan
- Department of Chemistry and Biology, and Center of Micro‐ and Nanochemistry and Engineering (Cμ)University of Siegen Siegen Germany
| | - Heiko Ihmels
- Department of Chemistry and Biology, and Center of Micro‐ and Nanochemistry and Engineering (Cμ)University of Siegen Siegen Germany
| |
Collapse
|
12
|
Kölsch S, Ihmels H, Mattay J, Sewald N, Patrick BO. Reversible photoswitching of the DNA-binding properties of styrylquinolizinium derivatives through photochromic [2 + 2] cycloaddition and cycloreversion. Beilstein J Org Chem 2020; 16:111-124. [PMID: 32082430 PMCID: PMC7006495 DOI: 10.3762/bjoc.16.13] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/08/2020] [Indexed: 12/17/2022] Open
Abstract
It was demonstrated that styrylquinolizinium derivatives may be applied as photoswitchable DNA ligands. At lower ligand:DNA ratios (≤1.5), these compounds bind to duplex DNA by intercalation, with binding constants ranging from K b = 4.1 × 104 M to 2.6 × 105 M (four examples), as shown by photometric and fluorimetric titrations as well as by CD and LD spectroscopic analyses. Upon irradiation at 450 nm, the methoxy-substituted styrylquinolizinium derivatives form the corresponding syn head-to-tail cyclobutanes in a selective [2 + 2] photocycloaddition, as revealed by X-ray diffraction analysis of the reaction products. These photodimers bind to DNA only weakly by outside-edge association, but they release the intercalating monomers upon irradiation at 315 nm in the presence of DNA. As a result, it is possible to switch between these two ligands and likewise between two different binding modes by irradiation with different excitation wavelengths.
Collapse
Affiliation(s)
- Sarah Kölsch
- Department of Chemistry and Biology, Organic Chemistry II, University of Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Heiko Ihmels
- Department of Chemistry and Biology, Organic Chemistry II, University of Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Jochen Mattay
- Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, PO Box 100121, D-33501 Bielefeld, Germany
| | - Norbert Sewald
- Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, PO Box 100121, D-33501 Bielefeld, Germany
| | - Brian O Patrick
- Department of Chemistry, Structural Chemistry Facility, The University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, BC, Canada
| |
Collapse
|
13
|
Pithan PM, Kuhlmann C, Engelhard C, Ihmels H. Synthesis of 5-Alkyl- and 5-Phenylamino-Substituted Azothiazole Dyes with Solvatochromic and DNA-Binding Properties. Chemistry 2019; 25:16088-16098. [PMID: 31523866 PMCID: PMC6973281 DOI: 10.1002/chem.201903657] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/09/2019] [Indexed: 01/24/2023]
Abstract
A series of new 5-mono- and 5,5'-bisamino-substituted azothiazole derivatives was synthesized from the readily available diethyl azothiazole-4,4'-dicarboxylate. This reaction most likely comprises an initial Michael-type addition by the respective primary alkyl and aromatic amines at the carbon atom C5 of the substrate. Subsequently, the resulting intermediates are readily oxidized by molecular oxygen to afford the amino-substituted azothiazole derivatives. The latter exhibit remarkably red-shifted absorption bands (λabs =507-661 nm) with high molar extinction coefficients and show a strong positive solvatochromism. As revealed by spectrometric titrations and circular and linear dichroism studies, the water-soluble, bis-(dimethylaminopropylamino)-substituted azo dye associates with duplex DNA by formation of aggregates along the phosphate backbone at high ligand-DNA ratios (LDR) and by intercalation at low LDR, which also leads to a significant increase of the otherwise low emission intensity at 671 nm.
Collapse
Affiliation(s)
- Phil M. Pithan
- Department of Chemistry and Biology, and Center of Micro- and Nanochemistry and EngineeringUniversity of SiegenAdolf-Reichwein-Str. 257068SiegenGermany
| | - Christopher Kuhlmann
- Department of Chemistry and Biology, and Center of Micro- and Nanochemistry and EngineeringUniversity of SiegenAdolf-Reichwein-Str. 257068SiegenGermany
| | - Carsten Engelhard
- Department of Chemistry and Biology, and Center of Micro- and Nanochemistry and EngineeringUniversity of SiegenAdolf-Reichwein-Str. 257068SiegenGermany
| | - Heiko Ihmels
- Department of Chemistry and Biology, and Center of Micro- and Nanochemistry and EngineeringUniversity of SiegenAdolf-Reichwein-Str. 257068SiegenGermany
| |
Collapse
|
14
|
Das AK, Druzhinin SI, Ihmels H, Müller M, Schönherr H. Colorimetric and Fluorimetric DNA Detection with a Hydroxystyryl-Quinolizinium Photoacid and Its Application for Cell Imaging. Chemistry 2019; 25:12703-12707. [PMID: 31418956 PMCID: PMC6790585 DOI: 10.1002/chem.201903017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/09/2019] [Indexed: 01/09/2023]
Abstract
The combination of styryl dye properties with the acidity and strong photoacidity of the 2,2'-[(1''-hydroxy-4''-methyl-(E)-2'',6''-phenylene)]-bisquinolizinium enables the detection of DNA by distinct absorption and emission color changes and the fluorimetric detection of DNA in cells with epifluorescence and confocal fluorescence microscopy.
Collapse
Affiliation(s)
- Avijit Kumar Das
- Department of Chemistry and Biology, and Center of Micro- and Nanochemistry and Engineering (Cμ)University of SiegenAdolf-Reichwein-Str. 257068SiegenGermany
| | - Sergey I. Druzhinin
- Department of Chemistry and Biology, and Center of Micro- and Nanochemistry and Engineering (Cμ)University of SiegenAdolf-Reichwein-Str. 257068SiegenGermany
| | - Heiko Ihmels
- Department of Chemistry and Biology, and Center of Micro- and Nanochemistry and Engineering (Cμ)University of SiegenAdolf-Reichwein-Str. 257068SiegenGermany
| | - Mareike Müller
- Department of Chemistry and Biology, and Center of Micro- and Nanochemistry and Engineering (Cμ)University of SiegenAdolf-Reichwein-Str. 257068SiegenGermany
| | - Holger Schönherr
- Department of Chemistry and Biology, and Center of Micro- and Nanochemistry and Engineering (Cμ)University of SiegenAdolf-Reichwein-Str. 257068SiegenGermany
| |
Collapse
|
15
|
Xie X, Zuffo M, Teulade-Fichou MP, Granzhan A. Identification of optimal fluorescent probes for G-quadruplex nucleic acids through systematic exploration of mono- and distyryl dye libraries. Beilstein J Org Chem 2019; 15:1872-1889. [PMID: 31467609 PMCID: PMC6693400 DOI: 10.3762/bjoc.15.183] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/23/2019] [Indexed: 12/20/2022] Open
Abstract
A library of 52 distyryl and 9 mono-styryl cationic dyes was synthesized and investigated with respect to their optical properties, propensity to aggregation in aqueous medium, and capacity to serve as fluorescence “light-up” probes for G-quadruplex (G4) DNA and RNA structures. Among the 61 compounds, 57 dyes showed preferential enhancement of fluorescence intensity in the presence of one or another G4-DNA or RNA structure, while no dye displayed preferential response to double-stranded DNA or single-stranded RNA analytes employed at equivalent nucleotide concentration. Thus, preferential fluorimetric response towards G4 structures appears to be a common feature of mono- and distyryl dyes, including long-known mono-styryl dyes used as mitochondrial probes or protein stains. However, the magnitude of the G4-induced “light-up” effect varies drastically, as a function of both the molecular structure of the dyes and the nature or topology of G4 analytes. Although our results do not allow to formulate comprehensive structure–properties relationships, we identified several structural motifs, such as indole- or pyrrole-substituted distyryl dyes, as well as simple mono-stryryl dyes such as DASPMI [2-(4-(dimethylamino)styryl)-1-methylpyridinium iodide] or its 4-isomer, as optimal fluorescent light-up probes characterized by high fluorimetric response (I/I0 of up to 550-fold), excellent selectivity with respect to double-stranded DNA or single-stranded RNA controls, high quantum yield in the presence of G4 analytes (up to 0.32), large Stokes shift (up to 150 nm) and, in certain cases, structural selectivity with respect to one or another G4 folding topology. These dyes can be considered as promising G4-responsive sensors for in vitro or imaging applications. As a possible application, we implemented a simple two-dye fluorimetric assay allowing rapid topological classification of G4-DNA structures.
Collapse
Affiliation(s)
- Xiao Xie
- CNRS UMR9187, INSERM U1196, Institut Curie, Université Paris Sud, Université Paris Saclay, Bât. 110, Centre universitaire Paris Sud, F-91405 Orsay, France
| | - Michela Zuffo
- CNRS UMR9187, INSERM U1196, Institut Curie, Université Paris Sud, Université Paris Saclay, Bât. 110, Centre universitaire Paris Sud, F-91405 Orsay, France
| | - Marie-Paule Teulade-Fichou
- CNRS UMR9187, INSERM U1196, Institut Curie, Université Paris Sud, Université Paris Saclay, Bât. 110, Centre universitaire Paris Sud, F-91405 Orsay, France
| | - Anton Granzhan
- CNRS UMR9187, INSERM U1196, Institut Curie, Université Paris Sud, Université Paris Saclay, Bât. 110, Centre universitaire Paris Sud, F-91405 Orsay, France
| |
Collapse
|