1
|
Bag S, Gadpayle MP, Ghosh D, Maiti S, De P. Biotinylated Theranostic Amphiphilic Polyurethane for Targeted Drug Delivery. Biomacromolecules 2024; 25:4233-4245. [PMID: 38838045 DOI: 10.1021/acs.biomac.4c00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
In the area of drug delivery aided by stimuli-responsive polymers, the biodegradability of nanocarriers is one of the major challenges that needs to be addressed with the utmost sincerity. Herein, a hydrogen sulfide (H2S) responsive hydrophobic dansyl-based trigger molecule is custom designed and successfully incorporated into the water-soluble polyurethane backbone, which is made of esterase enzyme susceptible urethane bonds. The amphiphilic polyurethanes, PUx (x = 2 and 3) with a biotin chain end, formed self-assembled nanoaggregates. A hemolysis and cytotoxicity profile of doxorubicin (DOX)-loaded biotinylated PU3 nanocarriers revealed that it is nonhemolytic and has excellent selectivity toward HeLa cells (biotin receptor-positive cell lines) causing ∼60% cell death while maintaining almost 100% cell viability for HEK 293T cells (biotin receptor-negative cell lines). Furthermore, better cellular internalization of DOX-loaded fluorescent nanocarriers in HeLa cells than in HEK 293T cells confirmed receptor-mediated endocytosis. Thus, this work ensures that the synthesized polymers serve as biodegradable nanocarriers for anticancer therapeutics.
Collapse
Affiliation(s)
- Sagar Bag
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, West Bengal 741246, India
| | - Mandip Pratham Gadpayle
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, West Bengal 741246, India
| | - Desoshree Ghosh
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, West Bengal 741246, India
| | - Sankar Maiti
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, West Bengal 741246, India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, West Bengal 741246, India
| |
Collapse
|
2
|
Espuche B, Moya SE, Calderón M. Nanogels: Smart tools to enlarge the therapeutic window of gene therapy. Int J Pharm 2024; 653:123864. [PMID: 38309484 DOI: 10.1016/j.ijpharm.2024.123864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
Gene therapy can potentially treat a great number of diseases, from cancer to rare genetic disorders. Very recently, the development and emergency approval of nucleic acid-based COVID-19 vaccines confirmed its strength and versatility. However, gene therapy encounters limitations due to the lack of suitable carriers to vectorize therapeutic genetic material inside target cells. Nanogels are highly hydrated nano-size crosslinked polymeric networks that have been used in many biomedical applications, from drug delivery to tissue engineering and diagnostics. Due to their easy production, tunability, and swelling properties they have called the attention as promising vectors for gene delivery. In this review, nanogels are discussed as vectors for nucleic acid delivery aiming to enlarge gene therapy's therapeutic window. Recent works highlighting the optimization of inherent transfection efficiency and biocompatibility are reviewed here. The importance of the monomer choice, along with the internal structure, surface decoration, and responsive features are outlined for the different transfection modalities. The possible sources of toxicological endpoints in nanogels are analyzed, and the strategies to limit them are compared. Finally, perspectives are discussed to identify the remining challenges for the nanogels before their translation to the market as transfection agents.
Collapse
Affiliation(s)
- Bruno Espuche
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain; POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Sergio E Moya
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain.
| | - Marcelo Calderón
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain.
| |
Collapse
|
3
|
Mavi AK, Kumar M, Singh A, Prajapati MK, Khabiya R, Maru S, Kumar D. Progress in Non‐Viral Delivery of Nucleic Acid. INTEGRATION OF BIOMATERIALS FOR GENE THERAPY 2023:281-322. [DOI: 10.1002/9781394175635.ch10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Correia JS, Mirón-Barroso S, Hutchings C, Ottaviani S, Somuncuoğlu B, Castellano L, Porter AE, Krell J, Georgiou TK. How does the polymer architecture and position of cationic charges affect cell viability? Polym Chem 2023; 14:303-317. [PMID: 36760606 PMCID: PMC9846193 DOI: 10.1039/d2py01012g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
Polymer chemistry, composition and molar mass are factors that are known to affect cytotoxicity, however the influence of polymer architecture has not been investigated systematically. In this study the influence of the position of the cationic charges along the polymer chain on cytotoxicity was investigated while keeping constant the other polymer characteristics. Specifically, copolymers of various architectures, based on a cationic pH responsive monomer, 2-(dimethylamino)ethyl methacrylate (DMAEMA) and a non-ionic hydrophilic monomer, oligo(ethylene glycol)methyl ether methacrylate (OEGMA) were engineered and their toxicity towards a panel of cell lines investigated. Of the seven different polymer architectures examined, the block-like structures were less cytotoxic than statistical or gradient/tapered architectures. These findings will assist in developing future vectors for nucleic acid delivery.
Collapse
Affiliation(s)
| | | | | | - Silvia Ottaviani
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent UniversityNottingham NG11 8NSUK,Department of Surgery and Cancer, Division of Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM)London W12 0NNUK
| | | | - Leandro Castellano
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM)London W12 0NNUK,School of Life Sciences, John Maynard Smith Building, University of SussexBrightonUK
| | | | - Jonathan Krell
- Department of Surgery & Cancer, Imperial College LondonUK
| | | |
Collapse
|
5
|
Fortenberry AW, Jankoski PE, Stacy EK, McCormick CL, Smith AE, Clemons TD. A Perspective on the History and Current Opportunities of Aqueous RAFT Polymerization. Macromol Rapid Commun 2022; 43:e2200414. [PMID: 35822936 PMCID: PMC10697073 DOI: 10.1002/marc.202200414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/15/2022] [Indexed: 02/06/2023]
Abstract
Reversible addition-fragmentation chain transfer (RAFT) polymerization has proven itself as a powerful polymerization technique affording facile control of molecular weight, molecular weight distribution, architecture, and chain end groups - while maintaining a high level of tolerance for solvent and monomer functional groups. RAFT is highly suited to water as a polymerization solvent, with aqueous RAFT now utilized for applications such as controlled synthesis of ultra-high molecular weight polymers, polymerization induced self-assembly, and biocompatible polymerizations, among others. Water as a solvent represents a non-toxic, cheap, and environmentally friendly alternative to organic solvents traditionally utilized for polymerizations. This, coupled with the benefits of RAFT polymerization, makes for a powerful combination in polymer science. This perspective provides a historical account of the initial developments of aqueous RAFT polymerization at the University of Southern Mississippi from the McCormick Research Group, details practical considerations for conducting aqueous RAFT polymerizations, and highlights some of the recent advances aqueous RAFT polymerization can provide. Finally, some of the future opportunities that this versatile polymerization technique in an aqueous environment can offer are discussed, and it is anticipated that the aqueous RAFT polymerization field will continue to realize these, and other exciting opportunities into the future.
Collapse
Affiliation(s)
| | - Penelope E Jankoski
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Evan K Stacy
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Charles L McCormick
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Adam E Smith
- Department of Chemical Engineering, The University of Mississippi, Oxford, MS, 38677, USA
| | - Tristan D Clemons
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| |
Collapse
|
6
|
Hayes G, Drain B, Becer CR. Multiarm Core Cross-Linked Star-Shaped Poly(2-oxazoline)s Using a Bisfunctional 2-Oxazoline Monomer. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c02245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Graham Hayes
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Ben Drain
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - C. Remzi Becer
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
7
|
Fus-Kujawa A, Prus P, Bajdak-Rusinek K, Teper P, Gawron K, Kowalczuk A, Sieron AL. An Overview of Methods and Tools for Transfection of Eukaryotic Cells in vitro. Front Bioeng Biotechnol 2021; 9:701031. [PMID: 34354988 PMCID: PMC8330802 DOI: 10.3389/fbioe.2021.701031] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Transfection is a powerful analytical tool enabling studies of gene products and functions in eukaryotic cells. Successful delivery of genetic material into cells depends on DNA quantity and quality, incubation time and ratio of transfection reagent to DNA, the origin, type and the passage of transfected cells, and the presence or absence of serum in the cell culture. So far a number of transfection methods that use viruses, non-viral particles or physical factors as the nucleic acids carriers have been developed. Among non-viral carriers, the cationic polymers are proposed as the most attractive ones due to the possibility of their chemical structure modification, low toxicity and immunogenicity. In this review the delivery systems as well as physical, biological and chemical methods used for eukaryotic cells transfection are described and discussed.
Collapse
Affiliation(s)
- Agnieszka Fus-Kujawa
- Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Pawel Prus
- Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- Students’ Scientific Society, Katowice, Poland
| | - Karolina Bajdak-Rusinek
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Paulina Teper
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Katarzyna Gawron
- Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Agnieszka Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Aleksander L. Sieron
- Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
8
|
Constantinou AP, Zhang K, Somuncuoğlu B, Feng B, Georgiou TK. PEG-Based Methacrylate Tetrablock Terpolymers: How Does the Architecture Control the Gelation? Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anna P. Constantinou
- Department of Materials, Royal School of Mines, Imperial College London, Exhibition Road, SW7 2AZ London, United Kingdom
| | - Kaiwen Zhang
- Department of Materials, Royal School of Mines, Imperial College London, Exhibition Road, SW7 2AZ London, United Kingdom
| | - Birsen Somuncuoğlu
- Department of Materials, Royal School of Mines, Imperial College London, Exhibition Road, SW7 2AZ London, United Kingdom
| | - Bailin Feng
- Department of Materials, Royal School of Mines, Imperial College London, Exhibition Road, SW7 2AZ London, United Kingdom
| | - Theoni K. Georgiou
- Department of Materials, Royal School of Mines, Imperial College London, Exhibition Road, SW7 2AZ London, United Kingdom
| |
Collapse
|
9
|
Wang Z, Sun J, Li M, Luo T, Shen Y, Cao A, Sheng R. Natural steroid-based cationic copolymers cholesterol/diosgenin- r-PDMAEMAs and their pDNA nanoplexes: impact of steroid structures and hydrophobic/hydrophilic ratios on pDNA delivery. RSC Adv 2021; 11:19450-19460. [PMID: 35479247 PMCID: PMC9033666 DOI: 10.1039/d1ra00223f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/05/2021] [Indexed: 11/21/2022] Open
Abstract
Using natural-based lipids to construct biocompatible, controllable and efficient nanocarriers and elucidating their structure-function relationships, was regarded as an important area for creating sustainable biomaterials. Herein, we utilized two natural steroids: cholesterol and diosgenin (bearing different hydrophobic tails) as the building blocks, to synthesize a series of natural steroid-based cationic random copolymers PMA6Chol-r-PDMAEMA and PMA6Dios-r-PDMAEMA via RAFT polymerization. The results demonstrated that the steroid-r-PDMAEMA copolymers could efficiently bind pDNA (N/P < 3.0) and then form near-spherical shape (142-449 nm) and positively-charged (+11.5 to +19.6 mV) nanoparticles. The in vitro cytotoxicity and gene transfection efficiency greatly depend on the steroid hydrophobic tail structures and steroid/PDMAEMA block ratios. Optimum transfection efficiency of the (Chol-P1/pDNA and Dios-P3/pDNA) nanoplexes could reach to 18.1-31.2% of the PEI-25K/pDNA complex. Moreover, all of the steroid-r-PDMAEMA/Cy3-pDNA nanoplexes have an obvious "lysosome localization" effect, indicating the steroid structures do not remarkably influence the intracellular localization behaviors of these nanoplexes.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Radiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai 200072 China.,School of Material Engineering, Jinling Institute of Technology Nanjing 211169 China.,CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Jingjing Sun
- Department of Radiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai 200072 China.,CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Mingrui Li
- CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Ting Luo
- CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Yulin Shen
- School of Material Engineering, Jinling Institute of Technology Nanjing 211169 China
| | - Amin Cao
- CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Ruilong Sheng
- Department of Radiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai 200072 China.,CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China.,CQM-Centro de Quimica da Madeira, Universidade da Madeira Campus da Penteada Funchal Madeira 9000-390 Portugal
| |
Collapse
|
10
|
Pafiti KS, Kepola EJ, Vlasiou MC, Yamasaki EN, Patrickios CS, Mastroyiannopoulos NP, Phylactou LA, Théato P. Oligo(ethylene imine)‐grafted glycidyl methacrylate linear and star homopolymers:
Odd–even
correlated transfection efficiency. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kyriaki S. Pafiti
- School of Sciences and Engineering University of Nicosia Nicosia Cyprus
| | | | | | - Edna N. Yamasaki
- School of Sciences and Engineering University of Nicosia Nicosia Cyprus
| | | | | | - Leonidas A. Phylactou
- Department of Molecular Genetics, Function & Therapy Cyprus Institute of Neurology and Genetics Nicosia Cyprus
- Cyprus School of Molecular Medicine The Cyprus Institute of Neurology and Genetics Nicosia Cyprus
| | - Patrick Théato
- Karlsruhe Institute of Technology (KIT) Institute for Chemical Technology and Polymer Chemistry (ITCP) Karlsruhe Germany
- Soft Matter Synthesis Laboratory Institute for Biological Interfaces III, Karlsruhe Institute of Technology (KIT), Hermann‐von‐Helmholtz‐Platz 1 Eggenstein‐Leopoldshafen Germany
| |
Collapse
|
11
|
Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021; 121:11527-11652. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of genome editing has transformed the therapeutic landscape for several debilitating diseases, and the clinical outlook for gene therapeutics has never been more promising. The therapeutic potential of nucleic acids has been limited by a reliance on engineered viral vectors for delivery. Chemically defined polymers can remediate technological, regulatory, and clinical challenges associated with viral modes of gene delivery. Because of their scalability, versatility, and exquisite tunability, polymers are ideal biomaterial platforms for delivering nucleic acid payloads efficiently while minimizing immune response and cellular toxicity. While polymeric gene delivery has progressed significantly in the past four decades, clinical translation of polymeric vehicles faces several formidable challenges. The aim of our Account is to illustrate diverse concepts in designing polymeric vectors towards meeting therapeutic goals of in vivo and ex vivo gene therapy. Here, we highlight several classes of polymers employed in gene delivery and summarize the recent work on understanding the contributions of chemical and architectural design parameters. We touch upon characterization methods used to visualize and understand events transpiring at the interfaces between polymer, nucleic acids, and the physiological environment. We conclude that interdisciplinary approaches and methodologies motivated by fundamental questions are key to designing high-performing polymeric vehicles for gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Matthew R Bockman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Craig Van Bruggen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christian J Grimme
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rishad J Dalal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mckenna G Hanson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph K Hexum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
12
|
Saviano F, Lovato T, Russo A, Russo G, Bouton CR, Shattock RJ, Alexander C, Quaglia F, Blakney AK, Gurnani P, Conte C. Ornithine-derived oligomers and dendrimers for in vitro delivery of DNA and ex vivo transfection of skin cells via saRNA. J Mater Chem B 2021; 8:4940-4949. [PMID: 32463058 DOI: 10.1039/d0tb00942c] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gene therapies are undergoing a renaissance, primarily due to their potential for applications in vaccination for infectious diseases and cancers. Although the biology of these technologies is rapidly evolving, delivery strategies need to be improved to overcome the poor pharmacokinetics and cellular transport of nucleic acids whilst maintaining patient safety. In this work, we describe the divergent synthesis of biodegradable cationic dendrimers based on the amino acid ornithine as non-viral gene delivery vectors and evaluate their potential as delivery vectors for DNA and RNA. The dendrimers effectively complexed model nucleic acids at lower N/P ratios than polyethyleneimine and outperformed it in DNA transfection experiments with ratios above 5. Remarkably, all dendrimer polyplexes at N/P = 2 achieved up to 7-fold higher protein content over an optimized PEI formulation when used for transfections with self-amplifying RNA (saRNA). Finally, transfection studies utilizing human skin explants revealed an increase of cells producing protein from 2% with RNA alone to 12% with dendrimer polyplexes, attributed to expression enrichment predominantly in epithelial cells, fibroblasts and leukocytes, with minor enrichment in NK cells, T cells, monocytes, and B cells. Overall, this study indicates the clear potential of ornithine dendrimers as safe and effective delivery vectors for both DNA and RNA therapeutics.
Collapse
Affiliation(s)
- Francesca Saviano
- Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy.
| | - Tatiana Lovato
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK.
| | - Annapina Russo
- Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy.
| | - Giulia Russo
- Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy.
| | - Clément R Bouton
- Department of Infectious Disease, Imperial College London, School of Medicine, St Mary's Hospital, Praed Street, London W2 1NY, UK.
| | - Robin J Shattock
- Department of Infectious Disease, Imperial College London, School of Medicine, St Mary's Hospital, Praed Street, London W2 1NY, UK.
| | - Cameron Alexander
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK.
| | - Fabiana Quaglia
- Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy.
| | - Anna K Blakney
- Department of Infectious Disease, Imperial College London, School of Medicine, St Mary's Hospital, Praed Street, London W2 1NY, UK.
| | - Pratik Gurnani
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK.
| | - Claudia Conte
- Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy.
| |
Collapse
|
13
|
Ulkoski D, Munson MJ, Jacobson ME, Palmer CR, Carson CS, Sabirsh A, Wilson JT, Krishnamurthy VR. High-Throughput Automation of Endosomolytic Polymers for mRNA Delivery. ACS APPLIED BIO MATERIALS 2021; 4:1640-1654. [PMID: 35014512 DOI: 10.1021/acsabm.0c01463] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In recent years, there has been an increasing interest in designing delivery systems to enhance the efficacy of RNA-based therapeutics. Here, we have synthesized copolymers comprised of dimethylaminoethyl methacrylate (DMAEMA) or diethylaminoethyl methacrylate (DEAEMA) copolymerized with alkyl methacrylate monomers ranging from 2 to 12 carbons, and developed a high throughput workflow for rapid investigation of their applicability for mRNA delivery. The structure activity relationship revealed that the mRNA encapsulation efficiency is improved by increasing the cationic density and use of shorter alkyl side chains (2-6 carbons). Minimal cytotoxicity was observed when using DEAEMA-co-BMA (EB) polyplexes up to 18 h after dosing, independent of a poly(ethylene glycol) (PEG) first block. The lowest molecular weight polymer (EB10,250) performed best, exhibiting greater transfection than polyethyenimine (PEI) based upon the number of cells transfected and mean intensity. Conventional investigations into the performance of polymeric materials for mRNA delivery is quite tedious, consequently limiting the number of materials and formulation conditions that can be studied. The high throughput approach presented here can accelerate the screening of polymeric systems and paves the way for expanding this generalizable approach to assess various materials for mRNA delivery.
Collapse
Affiliation(s)
- David Ulkoski
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Boston 02451, United States
| | - Michael J. Munson
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg SE-431 83, Sweden
| | - Max E. Jacobson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Christian R. Palmer
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Carcia S. Carson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37240-0002, United States
| | - Alan Sabirsh
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg SE-431 83, Sweden
| | - John T. Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37240-0002, United States
| | | |
Collapse
|
14
|
Zheng Y, Sarkar J, Niino H, Chatani S, Hsu SY, Goto A. Synthesis of core-crosslinked star polymers via organocatalyzed living radical polymerization. Polym Chem 2021. [DOI: 10.1039/d1py00663k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Core-crosslinked star polymers synthesized via a grafting-through approach using RCMP.
Collapse
Affiliation(s)
- Yichao Zheng
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- 637371 Singapore
| | - Jit Sarkar
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- 637371 Singapore
| | - Hiroshi Niino
- Otake R&D Center
- Mitsubishi Chemical Corporation
- Hiroshima 739-0693
- Japan
| | - Shunsuke Chatani
- Otake R&D Center
- Mitsubishi Chemical Corporation
- Hiroshima 739-0693
- Japan
| | - Shu Yao Hsu
- Otake R&D Center
- Mitsubishi Chemical Corporation
- Hiroshima 739-0693
- Japan
| | - Atsushi Goto
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- 637371 Singapore
| |
Collapse
|
15
|
Li H, Zhao H, Yao L, Zhang L, Cheng Z, Zhu X. Photocontrolled bromine–iodine transformation reversible-deactivation radical polymerization: facile synthesis of star copolymers and unimolecular micelles. Polym Chem 2021. [DOI: 10.1039/d1py00006c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A facile strategy of synthesizing star copolymers was successfully established via photocontrolled BIT-RDRP. The obtained copolymers have well-defined four-arm amphiphilic block architecture and can form stable unimolecular micelles in water.
Collapse
Affiliation(s)
- Haihui Li
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Haitao Zhao
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Lan Yao
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Lifen Zhang
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Zhenping Cheng
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Xiulin Zhu
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| |
Collapse
|
16
|
Monaco A, Drain B, Becer CR. Detailed GPC analysis of poly( N-isopropylacrylamide) with core cross-linked star architecture. Polym Chem 2021. [DOI: 10.1039/d1py00966d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Core cross-linked star shaped polymers possess unique physical properties that can be utilized as drug transporters for biomedical applications.
Collapse
Affiliation(s)
- Alessandra Monaco
- Department of Chemistry, University of Warwick, CV4 7AL, Coventry, UK
- Polymer Chemistry Laboratory, School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - Ben Drain
- Department of Chemistry, University of Warwick, CV4 7AL, Coventry, UK
- Polymer Chemistry Laboratory, School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - C. Remzi Becer
- Polymer Chemistry Laboratory, School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| |
Collapse
|
17
|
Ghamkhari A, Abbasi F, Abbasi E, Ghorbani M. A novel thermo-responsive system based on β-cyclodextrin-nanocomposite for improving the docetaxel activity. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1765357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Aliyeh Ghamkhari
- Institute of Polymeric Materials and Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
| | - Farhang Abbasi
- Institute of Polymeric Materials and Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
| | - Elmira Abbasi
- Institute of Polymeric Materials and Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
| | - Marjan Ghorbani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Fus-Kujawa A, Teper P, Botor M, Klarzyńska K, Sieroń Ł, Verbelen B, Smet M, Sieroń AL, Mendrek B, Kowalczuk A. Functional star polymers as reagents for efficient nucleic acids delivery into HT-1080 cells. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1716227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Agnieszka Fus-Kujawa
- Department of Molecular Biology and Genetics, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Paulina Teper
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Malwina Botor
- Department of Molecular Biology and Genetics, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Katarzyna Klarzyńska
- Department of Molecular Biology and Genetics, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Łukasz Sieroń
- Department of Molecular Biology and Genetics, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Bram Verbelen
- Department of Chemistry, University of Leuven, Leuven, Belgium
| | - Mario Smet
- Department of Chemistry, University of Leuven, Leuven, Belgium
| | - Aleksander L. Sieroń
- Department of Molecular Biology and Genetics, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Barbara Mendrek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Agnieszka Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| |
Collapse
|