1
|
Ratzenböck K, Fischer SM, Slugovc C. Poly(ether)s derived from oxa-Michael polymerization: a comprehensive review. MONATSHEFTE FUR CHEMIE 2023. [DOI: 10.1007/s00706-023-03049-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
AbstractPoly(ether)s represent an important class of polymers and are typically formed by ring-opening polymerization, Williamson ether synthesis, or self-condensation of alcohols. The oxa-Michael reaction presents another method to form poly(ether)s with additional functional groups in the polymer backbone starting from di- or triols and electron deficient olefins such as acrylates, sulfones, or acrylamides. However, research on oxa-Michael polymerization is still limited. Herein, we outline the principles of the oxa-Michael polymerization and focus on the synthesis and preparation of poly(ether-sulfone)s, poly(ether-ester)s, poly(ether)s, and poly(ether-amide)s. Further, challenges as well as future perspectives of the oxa-Michael polymerization are discussed.
Graphical abstract
Collapse
|
2
|
Lu D, Zou X, Li C. Advances in the application of named reactions in polymer synthesis. HIGH PERFORM POLYM 2022. [DOI: 10.1177/09540083221143691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
With the development of polymer science, more and more named reactions have been applied to synthesizing polymers. Introducing new reactions into polymer synthesis is undoubtedly an excellent expansion for monomer and polymer libraries. In this review, the named reactions employed in polymer-chain synthesis were divided into seven types: electrophilic reactions, nucleophilic reactions, transition metal-mediated cross-coupling reactions, free radical reactions, pericyclic reactions, multi-component reactions and rearrangement reactions. The discussion was mainly focused on the progress in the utilization of these named reactions in polymer synthesis, which could be a valuable reference for researchers in the polymer field.
Collapse
Affiliation(s)
- Dawei Lu
- Beijing University of Chemical Technology, Beijing, China
| | - Xudong Zou
- Beijing University of Chemical Technology, Beijing, China
| | | |
Collapse
|
3
|
Bio-Based Polymer Developments from Tall Oil Fatty Acids by Exploiting Michael Addition. Polymers (Basel) 2022; 14:polym14194068. [PMID: 36236017 PMCID: PMC9571392 DOI: 10.3390/polym14194068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 01/14/2023] Open
Abstract
In this study, previously developed acetoacetates of two tall-oil-based and two commercial polyols were used to obtain polymers by the Michael reaction. The development of polymer formulations with varying cross-link density was enabled by different bio-based monomers in combination with different acrylates—bisphenol A ethoxylate diacrylate, trimethylolpropane triacrylate, and pentaerythritol tetraacrylate. New polymer materials are based on the same polyols that are suitable for polyurethanes. The new polymers have qualities comparable to polyurethanes and are obtained without the drawbacks that come with polyurethane extractions, such as the use of hazardous isocyanates or reactions under harsh conditions in the case of non-isocyanate polyurethanes. Dynamic mechanical analysis, differential scanning calorimetry, thermal gravimetric analysis, and universal strength testing equipment were used to investigate the physical and thermal characteristics of the created polymers. Polymers with a wide range of thermal and mechanical properties were obtained (glass transition temperature from 21 to 63 °C; tensile modulus (Young’s) from 8 MPa to 2710 MPa and tensile strength from 4 to 52 MPa). The synthesized polymers are thermally stable up to 300 °C. The suggested method may be used to make two-component polymer foams, coatings, resins, and composite matrices.
Collapse
|
4
|
Synthesis of branched and benzyl chlorine-free poly(4-acetoxystyrene) via living polymerization followed by Friedel–Crafts alkylation. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04437-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
5
|
Mei W, Liu Q, Zhou H, Wang J. Preparation and UV curing properties of oxazolidinone-based acrylate derivatives. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Fischer SM, Kaschnitz P, Slugovc C. Tris(2,4,6-trimethoxyphenyl)phosphine – a Lewis base able to compete with phosphazene bases in catalysing oxa-Michael reactions. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01335e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The performance of the fairly airstable and commercially available “Lewis base beast” TTMPP in catalysing oxa-Michael reactions and the control of its activity by dilution and solvent choice are disclosed.
Collapse
Affiliation(s)
- Susanne M. Fischer
- Christian Doppler Laboratory for Organocatalysis in Polymerization, Stremayrgasse 9, 8010 Graz, Austria
- Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Petra Kaschnitz
- Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Christian Slugovc
- Christian Doppler Laboratory for Organocatalysis in Polymerization, Stremayrgasse 9, 8010 Graz, Austria
- Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| |
Collapse
|
7
|
Jiang Q, Zhao L, Du Y, Huang W, Xue X, Yang H, Jiang L, Jiang Q, Jiang B. Synthesis of thermoresponsive nonconjugated fluorescent branched poly(ether amide)s via oxa-Michael addition polymerization. Polym Chem 2022. [DOI: 10.1039/d1py01437d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Novel thermoresponsive nonconjugated fluorescent branched poly(ether amide)s with tunable LCST via t-BuP2-catalyzed oxa-Michael addition polymerization of N,N′-methylenebis(acrylamide) with triols.
Collapse
Affiliation(s)
- Qimin Jiang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu, P. R. China 213164
| | - Liang Zhao
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu, P. R. China 213164
| | - Yongzhuang Du
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu, P. R. China 213164
| | - Wenyan Huang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu, P. R. China 213164
| | - Xiaoqiang Xue
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu, P. R. China 213164
| | - Hongjun Yang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu, P. R. China 213164
| | - Li Jiang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu, P. R. China 213164
| | - Qilin Jiang
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, UK EH9 3FJ
| | - Bibiao Jiang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu, P. R. China 213164
- Changzhou University Huaide College, Jingjiang, Jiangsu, P. R. China 214500
| |
Collapse
|
8
|
Fischer SM, Renner S, Boese AD, Slugovc C. Electron-rich triarylphosphines as nucleophilic catalysts for oxa-Michael reactions. Beilstein J Org Chem 2021; 17:1689-1697. [PMID: 34367347 PMCID: PMC8313974 DOI: 10.3762/bjoc.17.117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/07/2021] [Indexed: 11/29/2022] Open
Abstract
Electron-rich triarylphosphines, namely 4-(methoxyphenyl)diphenylphosphine (MMTPP) and tris(4-trimethoxyphenyl)phosphine (TMTPP), outperform commonly used triphenylphosphine (TPP) in catalyzing oxa-Michael additions. A matrix consisting of three differently strong Michael acceptors and four alcohols of varying acidity was used to assess the activity of the three catalysts. All test reactions were performed with 1 mol % catalyst loading, under solvent-free conditions and at room temperature. The results reveal a decisive superiority of TMTPP for converting poor and intermediate Michael acceptors such as acrylamide and acrylonitrile and for converting less acidic alcohols like isopropanol. With stronger Michael acceptors and more acidic alcohols, the impact of the more electron-rich catalysts is less pronounced. The experimental activity trend was rationalized by calculating the Michael acceptor affinities of all phosphine-Michael acceptor combinations. Besides this parameter, the acidity of the alcohol has a strong impact on the reaction speed. The oxidation stability of the phosphines was also evaluated and the most electron-rich TMTPP was found to be only slightly more sensitive to oxidation than TPP. Finally, the catalysts were employed in the oxa-Michael polymerization of 2-hydroxyethyl acrylate. With TMTPP polymers characterized by number average molar masses of about 1200 g/mol at room temperature are accessible. Polymerizations carried out at 80 °C resulted in macromolecules containing a considerable share of Rauhut-Currier-type repeat units and consequently lower molar masses were obtained.
Collapse
Affiliation(s)
- Susanne M Fischer
- Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
- Christian Doppler Laboratory for Organocatalysis in Polymerization, Stremayrgasse 9, 8010 Graz, Austria
| | - Simon Renner
- Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - A Daniel Boese
- Physical and Theoretical Chemistry, Institute of Chemistry, University of Graz, Heinrichstrasse 28/IV, 8010 Graz, Austria
| | - Christian Slugovc
- Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
- Christian Doppler Laboratory for Organocatalysis in Polymerization, Stremayrgasse 9, 8010 Graz, Austria
| |
Collapse
|
9
|
Yang X, Xie H, Xu Z, Feng J, Fu Q, Li H, Jia Y. Malononitrile‐involved Michael addition polymerization: An efficient and facile route for cyano‐rich polyesters with programmable thermal and mechanical properties. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaoxia Yang
- School of Textile Materials and Engineering Wuyi University Jiangmen China
- China‐Australia Institute for Advanced Materials and Manufacturing Jiaxing University Jiaxing China
| | - Hongyan Xie
- China‐Australia Institute for Advanced Materials and Manufacturing Jiaxing University Jiaxing China
| | - Zhiguang Xu
- China‐Australia Institute for Advanced Materials and Manufacturing Jiaxing University Jiaxing China
| | - Jiabing Feng
- China‐Australia Institute for Advanced Materials and Manufacturing Jiaxing University Jiaxing China
| | - Qiwei Fu
- College of Material and Textile Engineering Jiaxing University Jiaxing China
| | - Haidong Li
- College of Material and Textile Engineering Jiaxing University Jiaxing China
| | - Yongtang Jia
- School of Textile Materials and Engineering Wuyi University Jiangmen China
| |
Collapse
|
10
|
Yang H, Ren Z, Zuo Y, Song Y, Jiang L, Jiang Q, Xue X, Huang W, Wang K, Jiang B. Highly Efficient Amide Michael Addition and Its Use in the Preparation of Tunable Multicolor Photoluminescent Polymers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50870-50878. [PMID: 33125218 DOI: 10.1021/acsami.0c15260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The amide bond is one of the most pivotal functional groups in chemistry and biology. It is also the key component of proteins and widely present in synthetic materials. The majority of studies have focused on the formation of the amide group, but its postmodification has scarcely been investigated. Herein, we successfully develop the Michael additions of amide to acrylate, acrylamide, or propiolate in the presence of phosphazene base at room temperature. This amide Michael addition is much more efficient when the secondary amide instead of the primary amide is used under the same conditions. This reaction was applied to postfunctionalize poly(methyl acrylate-co-acrylamide), P(MA-co-Am), and it is shown that the amide groups of P(MA-co-Am) could be completely modified by N,N-dimethylacrylamide (DMA). Interestingly, the resulting copolymer exhibited tailorable fluorescence with emission wavelength ranging from 380 to 613 nm, which is a desired property for luminescent materials. Moreover, the emissions of the copolymer increased with increasing concentration in solution for all excitation wavelengths from 320 to 580 nm. Therefore, this work not only develops an efficient t-BuP4-catalyzed amide Michael addition but also offers a facile method for tunable multicolor photoluminescent polymers, which is expected to find a wide range of applications in many fields, such as in anticounterfeiting technology.
Collapse
Affiliation(s)
- Hongjun Yang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Centre of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Ziye Ren
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Centre of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Yongkang Zuo
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Centre of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Yiye Song
- Changzhou University Huaide College, Jingjiang, Jiangsu 214500, P. R. China
| | - Li Jiang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Centre of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Qimin Jiang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Centre of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Xiaoqiang Xue
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Centre of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Wenyan Huang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Centre of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Kaojin Wang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, Guangdong 510640, P. R. China
| | - Bibiao Jiang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Centre of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| |
Collapse
|
11
|
Jiang Q, Du Y, Zhang Y, Zhao L, Jiang L, Huang W, Yang H, Xue X, Jiang B. pH
and thermo responsive aliphatic tertiary amine chromophore hyperbranched poly(amino ether ester)s from
oxa‐Michael
addition polymerization. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200432] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Qimin Jiang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering Changzhou University Changzhou China
| | - Yongzhuang Du
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering Changzhou University Changzhou China
| | - YuanLiang Zhang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering Changzhou University Changzhou China
| | - Liang Zhao
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering Changzhou University Changzhou China
| | - Li Jiang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering Changzhou University Changzhou China
| | - Wenyan Huang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering Changzhou University Changzhou China
| | - Hongjun Yang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering Changzhou University Changzhou China
| | - Xiaoqiang Xue
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering Changzhou University Changzhou China
| | - Bibiao Jiang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering Changzhou University Changzhou China
- Huaide College Changzhou University Jingjiang China
| |
Collapse
|
12
|
Ratzenböck K, Pahovnik D, Slugovc C. Step-growth polymerisation of alkyl acrylates via concomitant oxa-Michael and transesterification reactions. Polym Chem 2020. [DOI: 10.1039/d0py01271h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
An auto-tandem catalytic approach towards the preparation of poly(ester–ether)s from simple alkyl acrylates and diols is introduced.
Collapse
Affiliation(s)
- Karin Ratzenböck
- Christian Doppler Laboratory for Organocatalysis in Polymerization
- A 8010 Graz
- Austria
- Institute for Chemistry and Technology of Materials
- Graz University of Technology
| | - David Pahovnik
- National Institute of Chemistry
- Department of Polymer Chemistry and Technology
- 1000 Ljubljana
- Slovenia
| | - Christian Slugovc
- Christian Doppler Laboratory for Organocatalysis in Polymerization
- A 8010 Graz
- Austria
- Institute for Chemistry and Technology of Materials
- Graz University of Technology
| |
Collapse
|
13
|
Abstract
The visible light-trigged para-fluoro-thiol ligation is demonstrated for first time by using the photogeneration of a superbase DBU.
Collapse
Affiliation(s)
- Johanna Engelke
- School of Chemistry and Physics
- Queensland University of Technology
- Brisbane
- Australia
- Centre for Materials Science
| | - Vinh X. Truong
- School of Chemistry and Physics
- Queensland University of Technology
- Brisbane
- Australia
- Centre for Materials Science
| |
Collapse
|
14
|
Li M, Wang S, Li F, Zhou L, Lei L. Iodine-mediated photo-controlled atom transfer radical polymerization (photo-ATRP) and block polymerization combined with ring-opening polymerization (ROP) via a superbase. Polym Chem 2020. [DOI: 10.1039/d0py01031f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Most organocatalysts for photo-controlled atom transfer radical polymerization (photo-ATRP) are metal complexes or synthetically elaborate organic dyes, which are toxic and expensive.
Collapse
Affiliation(s)
- Mengmeng Li
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an
- P. R. China
| | - Sixuan Wang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an
- P. R. China
| | - Feifei Li
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an
- P. R. China
| | - Lin Zhou
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an
- P. R. China
| | - Lin Lei
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an
- P. R. China
| |
Collapse
|