1
|
Chen T, Ma YJ, Xiao G, Fang X, Liu Y, Li K, Yan D. The trade-off anionic modulation in metal-organic glasses showing color-tunable persistent luminescence. MATERIALS HORIZONS 2024; 11:4951-4960. [PMID: 39045671 DOI: 10.1039/d4mh00771a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Ultralong room-temperature phosphorescence (RTP) and thermally activated delayed fluorescence (TADF) materials provide exciting opportunities for the rational design of persistent luminescence owing to their long-lived excitons. However, conventional rare-earth-based all-inorganic emitters involve high cost and harsh synthesis conditions, and purely organic systems may require complicated synthesis routes and tedious purification. Therefore, it is highly desirable to develop a cost-effective and easily manufacturable method for achieving color-tunable RTP-TADF with a long afterglow. Herein, we demonstrate a rational strategy to introduce different anions (Cl-, Br- and OAc- ions) into a Zn-based metal-organic scaffold, which can improve the crystal rigidity and achieve a well-balanced RTP-TADF. Both theoretical and experimental studies have demonstrated that the adjustment of different anions can effectively modulate the spin-orbit coupling (SOC) and the energy gap of singlet-triplet states (ΔEST) and then tailor the afterglow lifetime. Moreover, we prepared dye-doped metal-organic hybrid glasses with remarkable potential for the color-tunable afterglow. Therefore, this work not only provides a new horizon for modulating crystal and glass states with color/lifetime-tunable persistent luminescence, but also contributes to optical information storage and anti-counterfeiting technology.
Collapse
Affiliation(s)
- Tianhong Chen
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Yu-Juan Ma
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Guowei Xiao
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Xiaoyu Fang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Yumin Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Kangjing Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| |
Collapse
|
2
|
Baranova KF, Titov AA, Shakirova JR, Baigildin VA, Smol'yakov AF, Valyaev DA, Ning GH, Filippov OA, Tunik SP, Shubina ES. Substituents' Effect on the Photophysics of Trinuclear Copper(I) and Silver(I) Pyrazolate-Phosphine Cages. Inorg Chem 2024; 63:16610-16621. [PMID: 39193933 DOI: 10.1021/acs.inorgchem.4c00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
A series of structurally similar trinuclear macrocyclic copper(I) and silver(I) pyrazolate complexes bearing various short-bite diphosphine R2PCH(R')PR2 ligands are reported. Upon diphosphine coordination, the planar geometry of the initial complexes undergoes bending along the line between two metal atoms coordinated to the phosphorus moieties. The complexes based on dcpm ligands (R = cyclohexyl, R' = H, Ph) do not exhibit dynamic behavior in solution at room temperature on the 31P NMR time scale as it was previously observed for similar trinuclear copper complexes bearing the dppm (R = Ph, R' = H) scaffold. All copper(I) complexes exhibit thermally activated delayed fluorescence (TADF) behavior in the solid state. Importantly, the use of aliphatic substituents on the phosphorus atoms instead of aromatic ones leads to an almost double increase in the quantum efficiency (ΦPL) of photoluminescence by eliminating nonradiative decay from the 3LCPh states of the dppm aromatic rings. The higher donating ability of the substituents in the pyrazolate ligand (CF3 vs CH3) lowers the energy of the metal-centered excited state, allowing for a significant metal impact on the T1 state. Finally, the Ag(I) complex displays an emission efficiency of approximately 14%, being the highest among known trinuclear silver(I) pyrazolate homometallic derivatives.
Collapse
Affiliation(s)
- Kristina F Baranova
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, 119991 Moscow, Russia
| | - Aleksei A Titov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, 119991 Moscow, Russia
| | - Julia R Shakirova
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504 St. Petersburg, Russia
| | - Vadim A Baigildin
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504 St. Petersburg, Russia
| | - Alexander F Smol'yakov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, 119991 Moscow, Russia
- Plekhanov Russian University of Economics, Stremyanny per. 36, 117997 Moscow, Russia
| | - Dmitry A Valyaev
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
| | - Guo-Hong Ning
- Department College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Oleg A Filippov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, 119991 Moscow, Russia
| | - Sergey P Tunik
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504 St. Petersburg, Russia
| | - Elena S Shubina
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, 119991 Moscow, Russia
| |
Collapse
|
3
|
Ferraro V, Bizzarri C, Bräse S. Thermally Activated Delayed Fluorescence (TADF) Materials Based on Earth-Abundant Transition Metal Complexes: Synthesis, Design and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404866. [PMID: 38984475 PMCID: PMC11426009 DOI: 10.1002/advs.202404866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/27/2024] [Indexed: 07/11/2024]
Abstract
Materials exhibiting thermally activated delayed fluorescence (TADF) based on transition metal complexes are currently gathering significant attention due to their technological potential. Their application extends beyond optoelectronics, in particular organic light-emitting diodes (OLEDs) and light-emitting electrochemical cells (LECs), and include also photocatalysis, sensing, and X-ray scintillators. From the perspective of sustainability, earth-abundant metal centers are preferred to rarer second- and third-transition series elements, thus determining a reduction in costs and toxicity but without compromising the overall performances. This review offers an overview of earth-abundant transition metal complexes exhibiting TADF and their application as photoconversion materials. Particular attention is devoted to the types of ligands employed, helping in the design of novel systems with enhanced TADF properties.
Collapse
Affiliation(s)
- Valentina Ferraro
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131, Karlsruhe, Germany
| | - Claudia Bizzarri
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131, Karlsruhe, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131, Karlsruhe, Germany
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131, Karlsruhe, Germany
| |
Collapse
|
4
|
Giobbio G, Coto PB, Lohier JF, Renaud JL, Gaillard S, Costa RD. [Ag(IPr)(bpy)][PF 6]: brightness and darkness playing with aggregation induced phosphorescence for light-emitting electrochemical cells. Dalton Trans 2024; 53:12307-12315. [PMID: 38984528 DOI: 10.1039/d4dt01056f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Heteroleptic silver(I) complexes have recently started to attract attention in thin-film lighting technologies as an alternative to copper(I) analogues due to the lack of flattening distortion upon excitation. However, the interpretation of their photophysical behavior is challenging going from traditional fluorescence/phosphorescence to a temperature-dependent dual emission mechanism and ligand-lock assisted thermally activated delayed fluorescence. Herein, we unveil the photoluminescence behavior of a three-coordinated Ag(I) complex with the N-heterocyclic carbene (NHC) ligand and 2,2'-bipyridine (bpy) as the N^N ligand. In contrast to its low-emissive Cu(I) complex structural analogues, a strong greenish emission was attributed to the presence of aggregates formed by π-π intermolecular interactions as revealed by the X-ray structure and aggregation induced emission (AIE) studies in solution. In addition, the temperature-dependent time-resolved spectroscopic and computational studies demonstrated that the emission mechanism is related to a phosphorescence emission mechanism of two very close lying (ΔE = 0.08 eV) excited triplet states, exhibiting a similar delocalized nature over the bipyridine ligands. Unfortunately, this favourable AIE is lost upon forming homogeneous thin films suitable for lighting devices. Though the films showed very poor emission, the electrochemical stability under device operation conditions is remarkable compared to the prior-art, highlighting the potential of [Ag(NHC)(N^N)][X] complexes in thin-film lighting.
Collapse
Affiliation(s)
- Ginevra Giobbio
- Normandy University, ENSICAEN, UNICAEN, CNRS, LCMT, 1400 Caen, France.
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Chair of Biogenic Functional Materials, Schulgasse 22, 94315 Straubing, Germany.
| | - Pedro B Coto
- Spanish National Research Council (CSIC) and Donostia International Physics Center (DIPC), Material Physics Center (CFM), 20018 Donostia - San Sebastián, Spain.
| | | | - Jean-Luc Renaud
- Normandy University, ENSICAEN, UNICAEN, CNRS, LCMT, 1400 Caen, France.
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 75005 Paris, France
| | - Sylvain Gaillard
- Normandy University, ENSICAEN, UNICAEN, CNRS, LCMT, 1400 Caen, France.
| | - Rubén D Costa
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Chair of Biogenic Functional Materials, Schulgasse 22, 94315 Straubing, Germany.
| |
Collapse
|
5
|
Li TY, Zheng SJ, Djurovich PI, Thompson ME. Two-Coordinate Thermally Activated Delayed Fluorescence Coinage Metal Complexes: Molecular Design, Photophysical Characters, and Device Application. Chem Rev 2024; 124:4332-4392. [PMID: 38546341 DOI: 10.1021/acs.chemrev.3c00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Since the emergence of the first green light emission from a fluorescent thin-film organic light emitting diode (OLED) in the mid-1980s, a global consumer market for OLED displays has flourished over the past few decades. This growth can primarily be attributed to the development of noble metal phosphorescent emitters that facilitated remarkable gains in electrical conversion efficiency, a broadened color gamut, and vibrant image quality for OLED displays. Despite these achievements, the limited abundance of noble metals in the Earth's crust has spurred ongoing efforts to discover cost-effective electroluminescent materials. One particularly promising avenue is the exploration of thermally activated delayed fluorescence (TADF), a mechanism with the potential to fully harness excitons in OLEDs. Recently, investigations have unveiled TADF in a series of two-coordinate coinage metal (Cu, Ag, and Au) complexes. These organometallic TADF materials exhibit distinctive behavior in comparison to their organic counterparts. They offer benefits such as tunable emissive colors, short TADF emission lifetimes, high luminescent quantum yields, and reasonable stability. Impressively, both vacuum-deposited and solution-processed OLEDs incorporating these materials have achieved outstanding performance. This review encompasses various facets on two-coordinate TADF coinage metal complexes, including molecular design, photophysical characterizations, elucidation of structure-property relationships, and OLED applications.
Collapse
Affiliation(s)
- Tian-Yi Li
- Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Shu-Jia Zheng
- Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Peter I Djurovich
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Mark E Thompson
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
6
|
Busch J, Rehak FR, Ferraro V, Nieger M, Kemell M, Fuhr O, Klopper W, Bräse S. From Mono- to Polynuclear 2-(Diphenylphosphino)pyridine-Based Cu(I) and Ag(I) Complexes: Synthesis, Structural Characterization, and DFT Calculations. ACS OMEGA 2024; 9:2220-2233. [PMID: 38250424 PMCID: PMC10795044 DOI: 10.1021/acsomega.3c05755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 01/23/2024]
Abstract
A series of monometallic Ag(I) and Cu(I) halide complexes bearing 2-(diphenylphosphino)pyridine (PyrPhos, L) as a ligand were synthesized and spectroscopically characterized. The structure of most of the derivatives was unambiguously established by X-ray diffraction analysis, revealing the formation of mono-, di-, and tetranuclear complexes having general formulas MXL3 (M = Cu, X = Cl, Br; M = Ag, X = Cl, Br, I), Ag2X2L3 (X = Cl, Br), and Ag4X4L4 (X = Cl, Br, I). The Ag(I) species were compared to the corresponding Cu(I) analogues from a structural point of view. The formation of Cu(I)/Ag(I) heterobimetallic complexes MM'X2L3 (M/M' = Cu, Ag; X = Cl, Br, I) was also investigated. The X-ray structure of the bromo-derivatives revealed the formation of two possible MM'Br2L3 complexes with Cu/Ag ratios, respectively, of 7:1 and 1:7. The ratio between Cu and Ag was studied by scanning electron microscopy-energy-dispersive X-ray analysis (SEM-EDX) measurements. The structure of the binuclear homo- and heterometallic derivatives was investigated using density functional theory (DFT) calculations, revealing the tendency of the PyrPhos ligands not to maintain the bridging motif in the presence of Ag(I) as the metal center.
Collapse
Affiliation(s)
- Jasmin
M. Busch
- Institute
of Organic Chemistry (IOC), Karlsruhe Institute
of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Florian R. Rehak
- Institute
of Physical Chemistry (IPC), Karlsruhe Institute
of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Valentina Ferraro
- Institute
of Organic Chemistry (IOC), Karlsruhe Institute
of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Martin Nieger
- Department
of Chemistry, University of Helsinki, A.I. Virtasen Aukio 1, P.O. Box 55, FI 00014 Helsinki, Finland
| | - Marianna Kemell
- Department
of Chemistry, University of Helsinki, A.I. Virtasen Aukio 1, P.O. Box 55, FI 00014 Helsinki, Finland
| | - Olaf Fuhr
- Institute
of Nanotechnology (INT), Karlsruhe Institute
of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
- Karlsruhe
Nano-Micro Facility (KNMFi), Karlsruhe Institute
of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Wim Klopper
- Institute
of Physical Chemistry (IPC), Karlsruhe Institute
of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
- Institute
of Nanotechnology (INT), Karlsruhe Institute
of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Stefan Bräse
- Institute
of Organic Chemistry (IOC), Karlsruhe Institute
of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
- Institute
of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
| |
Collapse
|
7
|
Kuznetsova AA, Chachkov DV, Belogorlova NA, Malysheva SF, Vereshchagina YA. Structure of Tris[2-(4-pyridyl)ethyl]phosphine, Tris[2-(2-pyridyl)ethyl]phosphine, and Their Chalcogenides in Solution: Dipole Moments, IR Spectroscopy, and DFT Study. Molecules 2023; 29:110. [PMID: 38202693 PMCID: PMC10779502 DOI: 10.3390/molecules29010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Tris(hetaryl)substituted phosphines and their chalcogenides are promising polydentate ligands for the design of metal complexes. An experimental and theoretical conformational analysis of tris[2-(4-pyridyl)ethyl]phosphine, tris[2-(2-pyridyl)ethyl]phosphine, and their chalcogenides was carried out by the methods of dipole moments, IR spectroscopy and DFT B3PW91/6-311++G(df,p) calculations. In solution, these compounds exist as an equilibrium of mainly non-eclipsed (synclinal or antiperiplanar) forms with a predominance of a symmetrical conformer having a gauche-orientation of the Csp3-Csp3 bonds of pyridylethyl substituents relative to the P=X bond (X = lone pair, O, S, Se) and a gauche-orientation of the pyridyl rings relative to the zigzag ethylene bridges. Regardless of the presence and nature of the chalcogen atom (oxygen, sulfur, or selenium) in the studied molecules with many axes of internal rotation, steric factors-the different position of the nitrogen atoms in the pyridyl rings and the configuration of ethylene bridges-determine the realization and spatial structure of preferred conformers.
Collapse
Affiliation(s)
- Anastasiia A. Kuznetsova
- Department of Physical Chemistry, A.M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia;
| | - Denis V. Chachkov
- Kazan Department of Joint Supercomputer Center of Russian Academy of Sciences—Branch of Federal Scientific Center “Scientific Research Institute for System Analysis of the RAS”, Lobachevskogo 2/31, 420111 Kazan, Russia;
| | - Natalia A. Belogorlova
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorskogo 1, 664033 Irkutsk, Russia; (N.A.B.); (S.F.M.)
| | - Svetlana F. Malysheva
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorskogo 1, 664033 Irkutsk, Russia; (N.A.B.); (S.F.M.)
| | - Yana A. Vereshchagina
- Department of Physical Chemistry, A.M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia;
| |
Collapse
|
8
|
Song XF, Peng LY, Chen WK, Gao YJ, Cui G. Theoretical studies on thermally activated delayed fluorescence of "carbene-metal-amide" Cu and Au complexes: geometric structures, excitation characters, and mechanisms. Phys Chem Chem Phys 2023; 25:29603-29613. [PMID: 37877743 DOI: 10.1039/d3cp03444e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
"Carbene-metal(I)-amide" (CMA) complexes have garnered significant attention due to their remarkable properties and potential TADF applications in organic electronics. However, the atomistic working mechanism is still elusive. Herein, we chose two CMA complexes, i.e., cyclic (alkyl)(amino) carbene-copper[gold](I)-carbazole (CAAC-Cu[Au]-Cz), and employed both DFT and TD-DFT methods, in combination with radiative and nonradiative rate calculations, to investigate geometric and electronic structures of these two complexes in the ground and excited states, including orbital compositions, electronic transitions, absorption and emission spectra, and the luminescence mechanism. It is found that the coplanar or perpendicular conformations are coexistent in the ground state (S0), the lowest excited singlet state (S1), and the triplet state (T1). Both the coplanar and perpendicular S1 and T1 states have similar ligand-to-ligand charge transfer (LLCT) character between CAAC and Cz, and some charge-transfer character between metal atoms and ligands, which is beneficial to minimize the singlet-triplet energy gaps (ΔEST) and increase the spin-orbit coupling (SOC). An interesting three-state (S0, S1, T1) model involving two regions (coplanar and perpendicular) is proposed to rationalize the experimental TADF phenomena in the CMA complexes. In addition to the coplanar ones, the perpendicular S1 and T1 states also play a role in promoting the repopulation of the coplanar S1 exciton, which is a primary source for the delayed fluorescence.
Collapse
Affiliation(s)
- Xiu-Fang Song
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing 100875, P. R. China.
| | - Ling-Ya Peng
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing 100875, P. R. China.
| | - Wen-Kai Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing 100875, P. R. China.
| | - Yuan-Jun Gao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China.
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing 100875, P. R. China.
- Hefei National Laboratory, Hefei 230088, China
| |
Collapse
|
9
|
Yan JJ, Wu Y, Zhai W, Yang N, Li HX, Yang W, Lu C, Young DJ, Ren ZG. A Multiple Stimuli-Responsive Ag/P/S Complex Showing Solvochromic and Mechanochromic Photoluminescence. Molecules 2023; 28:5513. [PMID: 37513384 PMCID: PMC10384712 DOI: 10.3390/molecules28145513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The reaction of CF3COOAg, 3-bdppmapy (N,N-bis(diphenylphosphanylmethyl)-3-aminopyridine) and HTZ (1,2,4-triazole-3-thiol) in CH2Cl2/MeOH resulted in a dinuclear Ag/P/S complex [Ag2(TZ)2(3-bdppmapy)2]·xSol (1·xSol). Crystals of 1·xSol converted to 1·2MeOH in air at room temperature and further to 1 under vacuum upon heating. The solid-state, room-temperature photoluminescent emission of 1·xSol (510 nm) shifted to 494 nm (1·2MeOH) and 486 nm (1). Grinding solids of 1·2MeOH in air resulted in amorphous 1G characterized by solid-state emission at 468 nm, which converted to 1GR with 513 nm emission upon MeOH treatment. Grinding 1GR in air returned 1G, and this interconversion was reproducible over five cycles. The solid-state photoluminescence of 1G changed in response to vapors containing low-molecular weight alcohols but remained unchanged after exposure to other volatile organic compounds (VOCs) or to water vapor. Test papers impregnated with 1G could detect methanol in vapors from aqueous solutions at concentrations above 50%. Complex 1G is, therefore, an example of a stimuli-responsive molecular sensor for the detection of alcohols.
Collapse
Affiliation(s)
- Jia-Jun Yan
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yu Wu
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Weijia Zhai
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Ningwen Yang
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Hong-Xi Li
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Wei Yang
- Faculty of Food Science and Technology, Suzhou Polytechnic Institute of Agriculture, Suzhou 215008, China
| | - Chengrong Lu
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - David James Young
- Glasgow College UESTC, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zhi-Gang Ren
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
10
|
Romo-Islas G, Ward JS, Rissanen K, Rodríguez L. Heterometallic Au(I)-Cu(I) Clusters: Luminescence Studies and 1O 2 Production. Inorg Chem 2023; 62:8101-8111. [PMID: 37191273 DOI: 10.1021/acs.inorgchem.3c00046] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Two different organometallic gold(I) compounds containing naphthalene and phenanthrene as fluorophores and 2-pyridyldiphenylphosphane as the ancillary ligand were synthesized (compounds 1 with naphthalene and 2 with phenanthrene). They were reacted with three different copper(I) salts with different counterions (PF6-, OTf-, and BF4-; OTf = triflate) to obtain six Au(I)/Cu(I) heterometallic clusters (compounds 1a-c for naphthalene derivatives and 2a-c for phenanthrene derivatives). The heterometallic compounds present red pure room-temperature phosphorescence in both solution, the solid state, and air-equilibrated samples, as a difference with the dual emission recorded for the gold(I) precursors 1 and 2. The presence of Au(I)-Cu(I) metallophilic contacts has been identified using single-crystal X-ray diffraction structure resolution of two of the compounds, which play a direct role in the resulting red-shifted emission with respect to the gold(I) homometallic precursors. Polystyrene (PS) and poly(methyl methacrylate) (PMMA) polymeric matrices were doped with our luminescent compounds, and the resulting changes in their emissive properties were analyzed and compared with those previously recorded in the solution and the solid state. All complexes were tested to analyze their ability to produce 1O2 and present very good values of ΦΔ up to 50%.
Collapse
Affiliation(s)
- Guillermo Romo-Islas
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Jas S Ward
- Department of Chemistry, University of Jyvaskyla, P.O. Box 35, 40014 Jyvaskyla, Finland
| | - Kari Rissanen
- Department of Chemistry, University of Jyvaskyla, P.O. Box 35, 40014 Jyvaskyla, Finland
| | - Laura Rodríguez
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
11
|
Artem’ev AV, Baranov AY, Berezin AS, Stass DV, Hettstedt C, Kuzmina UA, Karaghiosoff K, Bagryanskaya IY. TADF and X-ray Radioluminescence of New Cu(I) Halide Complexes: Different Halide Effects on These Processes. Int J Mol Sci 2023; 24:ijms24065145. [PMID: 36982219 PMCID: PMC10049412 DOI: 10.3390/ijms24065145] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/10/2023] Open
Abstract
A series of complexes [Cu2X2(Pic3PO)2] (X = Cl, Br, I) based on tris(pyridin-2-ylmethyl)phosphine oxide (Pic3PO) has been synthesized. At 298 K, these compounds exhibit thermally activated delayed fluorescence (TADF) of 1(M+X)LCT type with λmax varying from 485 to 545 nm, and quantum efficiency up to 54%. In the TADF process, the halide effect appears as the emission intensification and bathochromic shift of λmax in the following order X = I < Br < Cl. Upon X-ray irradiation, the title compounds emit radioluminescence, the emission bands of which have the same shape as those at TADF, thereby meaning a similar radiative excited state. By contrast to TADF, the halide effect in the radioluminescence is reversed: its intensity grows in the order X = Cl < Br < I, since heavier atoms absorb X-rays more efficiently. These findings essentially contribute to our knowledge about the halide effect in the photo- and radioluminescent Cu(I) halide emitters.
Collapse
Affiliation(s)
- Alexander V. Artem’ev
- Nikolaev Institute of Inorganic Chemistry, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
- Correspondence:
| | - Andrey Yu. Baranov
- Nikolaev Institute of Inorganic Chemistry, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Alexey S. Berezin
- Nikolaev Institute of Inorganic Chemistry, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Dmitry V. Stass
- Department of Physics, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, 3 Institutskaya St., Novosibirsk 630090, Russia
| | - Christina Hettstedt
- Department of Chemistry, Ludwig-Maximilian University of Munich, Butenandtstr. 5–13, 81377 Munich, Germany
| | - Ul’yana A. Kuzmina
- Nikolaev Institute of Inorganic Chemistry, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
- Department of Physics, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Konstantin Karaghiosoff
- Department of Chemistry, Ludwig-Maximilian University of Munich, Butenandtstr. 5–13, 81377 Munich, Germany
| | - Irina Yu. Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, 9, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| |
Collapse
|
12
|
Yersin H, Czerwieniec R, Monkowius U, Ramazanov R, Valiev R, Shafikov MZ, Kwok WM, Ma C. Intersystem crossing, phosphorescence, and spin-orbit coupling. Two contrasting Cu(I)-TADF dimers investigated by milli- to micro-second phosphorescence, femto-second fluorescence, and theoretical calculations. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Abramov PA. STUDY OF THE STRUCTURE OF Ag(I) SOLVATE COMPLEXES BY MEANS OF POLYOXOMETALATES: CRYSTALLIZATION FROM THE AgNO3/(Bu4N)4[β-Mo8O26]/DMF SYSTEM. REVIEW. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622120186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Komlyagina VI, Romashev NF, Kokovkin VV, Gushchin AL, Benassi E, Sokolov MN, Abramov PA. Trapping of Ag + into a Perfect Six-Coordinated Environment: Structural Analysis, Quantum Chemical Calculations and Electrochemistry. Molecules 2022; 27:6961. [PMID: 36296553 PMCID: PMC9607289 DOI: 10.3390/molecules27206961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 11/25/2022] Open
Abstract
Self-assembly of (Bu4N)4[β-Mo8O26], AgNO3, and 2-bis[(2,6-diisopropylphenyl)-imino]acenaphthene (dpp-bian) in DMF solution resulted in the (Bu4N)2[β-{Ag(dpp-bian)}2Mo8O26] (1) complex. The complex was characterized by single crystal X-ray diffraction (SCXRD), X-ray powder diffraction (XRPD), diffuse reflectance (DR), infrared spectroscopy (IR), and elemental analysis. Comprehensive SCXRD studies of the crystal structure show the presence of Ag+ in an uncommon coordination environment without a clear preference for Ag-N over Ag-O bonding. Quantum chemical calculations were performed to qualify the nature of the Ag-N/Ag-O interactions and to assign the electronic transitions observed in the UV-Vis absorption spectra. The electrochemical behavior of the complex combines POM and redox ligand signatures. Complex 1 demonstrates catalytic activity in the electrochemical reduction of CO2.
Collapse
Affiliation(s)
- Veronika I. Komlyagina
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), 3 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., 630090 Novosibirsk, Russia
| | - Nikolay F. Romashev
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), 3 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Vasily V. Kokovkin
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), 3 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Artem L. Gushchin
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), 3 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Enrico Benassi
- Faculty of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., 630090 Novosibirsk, Russia
| | - Maxim N. Sokolov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), 3 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Pavel A. Abramov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), 3 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia
| |
Collapse
|
15
|
Xie KF, Huang Y, Li SZ, Li LL, Dong WK. AN INVESTIGATION INTO THE IMPACT OF INTRODUCED THIOCYANATE ANIONS ON THE TRINUCLEAR Co(II) SALAMO-BASED COMPLEX. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622080078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Durka K, Marek‐Urban PH, Nowicki K, Drapała J, Jarzembska KN, Łaski P, Grzelak A, Dąbrowski M, Woźniak K, Luliński S. Expedient Synthesis of Oxaboracyclic Compounds Based on Naphthalene and Biphenyl Backbone and Phase‐Dependent Luminescence of their Chelate Complexes. Chemistry 2022; 28:e202104492. [DOI: 10.1002/chem.202104492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Indexed: 12/20/2022]
Affiliation(s)
- Krzysztof Durka
- Faculty of Chemistry Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Paulina H. Marek‐Urban
- Faculty of Chemistry Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
- Department of Chemistry University of Warsaw Żwirki i Wigury 101 02-089 Warsaw Poland
| | - Krzysztof Nowicki
- Faculty of Chemistry Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Jakub Drapała
- Faculty of Chemistry Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | | | - Piotr Łaski
- Department of Chemistry University of Warsaw Żwirki i Wigury 101 02-089 Warsaw Poland
| | - Aleksandra Grzelak
- Faculty of Chemistry Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Marek Dąbrowski
- Faculty of Chemistry Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Krzysztof Woźniak
- Department of Chemistry University of Warsaw Żwirki i Wigury 101 02-089 Warsaw Poland
| | - Sergiusz Luliński
- Faculty of Chemistry Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| |
Collapse
|
17
|
Malakhova YA, Sukhikh TS, Rakhmanova MI, Vinogradova KA. EFFECT OF POLYMORPHISM ON THE LUMINESCENT PROPERTIES ON SILVER(I) NITRATE COMPLEXES WITH 2-AMINO-5-PHENYLPYRAZINE. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622030155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Abstract
The monothiocarbonate ligand, [S(O)COR]−, is unusual and rare regarding its use in the formation of coordination compounds. Here, we report the synthesis and structures of the silver(I) and gold(I) monothiocarbonate complexes, [{Ag4(SC(O)OiPr)2(2,2′-bpy)4}(PF6)2]n (1) and [Au2{S(O)COiPr}2(dppe)]n (2), respectively. Both complexes are coordination polymers, with 1 being cationic and 2 neutral. The uniqueness of the ligand is that it is monoanionic and contains both a ‘hard’ O-donor ligand and a ‘soft’ S-donor ligand in a O-C-S manifold with, in principle, electron delocalization across the three atoms. However, for both complexes 1 and 2, it was found that the binding occurred exclusively through the S-donor atom, while the C=O portion remained dangling and was not involved in bonding. This bonding mode departs significantly from the symmetrical S-C-S type ligand such as dithiocarbamates. The structures were analysed and confirmed by NMR and X-ray crystallography.
Collapse
|
19
|
Wu Z, Cui S, Zhao Z, He B, Li XL. Photophysical properties of homobimetallic Cu( i)–Cu( i) and heterobimetallic Cu( i)–Ag( i) complexes of 2-(6-bromo-2-pyridyl)-1 H-imidazo[4,5- f][1,10]phenanthroline. NEW J CHEM 2022. [DOI: 10.1039/d2nj00774f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The heteronuclear Cu(i)–Ag(i) complexes show dual emission bands and enhanced luminescence compared with their isostructural homobinuclear Cu(i) complexes.
Collapse
Affiliation(s)
- Zhan Wu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Shu Cui
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Zhenqin Zhao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Bingling He
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Xiu-Ling Li
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| |
Collapse
|
20
|
Chupina AV, Yanshole VV, Sulyaeva VS, Kokovkin VV, Abramov PA, Sokolov MN. Self-assembly patterns of non-metalloid silver thiolates: structural, HR-ESI-MS and stability studies. Dalton Trans 2021; 51:705-714. [PMID: 34913941 DOI: 10.1039/d1dt02398e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Screening of AgNO3/AgStBu solutions in DMF, DMSO and NMP resulted in the isolation of three novel nanosized silver/thiolate complexes with a torus-like {Ag20(StBu)10} core. The structures of [NO3@Ag20(StBu)10(NO3)9(DMF)6] (1) and [NO3@Ag20(tBuS)10(NO3)8(NMP)8][NO3@Ag19(tBuS)10(NO3)8(NMP)6]2(NO3) (2) were studied by single crystal X-ray diffraction (SCXRD). The self-assembly process leading to 1 can be switched to a different outcome using Br-, resulting in [Br@Ag16(StBu)8(NO3)5(DMF)3](NO3)2 (3), which is the one of the few genuine host-guest complexes in the silver/thiolate systems. Solutions of the individual complexes in CH3CN were studied by HR-ESI-MS techniques, which revealed a dynamic behavior for each complex, driven by a redistribution of the {AgNO3} units. This dynamics results in the appearance of both cationic and anionic species, based on unchanged silver-thiolate cores. Daylight causes degradation of 3 with the formation of a composite material based on defective orthorhombic Ag2S with a porous morphology, as observed using the SEM technique. The electrocatalytic HER activity of such a material was studied.
Collapse
Affiliation(s)
- Anastasia V Chupina
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia.
| | - Vadim V Yanshole
- Novosibirsk State University, 2 Pirogova Ave., 630090 Novosibirsk, Russia.,International Tomography Center, Institutskaya str. 3a, 630090, Novosibirsk, Russia
| | - Veronica S Sulyaeva
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia.
| | - Vasily V Kokovkin
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia.
| | - Pavel A Abramov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia.
| | - Maxim N Sokolov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia.
| |
Collapse
|
21
|
Cheng G, Zhou D, Monkowius U, Yersin H. Fabrication of a Solution-Processed White Light Emitting Diode Containing a Single Dimeric Copper(I) Emitter Featuring Combined TADF and Phosphorescence. MICROMACHINES 2021; 12:1500. [PMID: 34945348 PMCID: PMC8703954 DOI: 10.3390/mi12121500] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022]
Abstract
Luminescent copper(I) complexes showing thermally activated delayed fluorescence (TADF) have developed to attractive emitter materials for organic light emitting diodes (OLEDs). Here, we study the brightly luminescent dimer Cu2Cl2(P∩N)2 (P∩N = diphenylphosphanyl-6-methyl-pyridine), which shows both TADF and phosphorescence at ambient temperature. A solution-processed OLED with a device structure ITO/PEDOT:PSS/PYD2: Cu2Cl2(P∩N)2/DPEPO (10 nm)/TPBi (40 nm)/LiF (1.2 nm)/Al (100 nm) shows warm white emission with moderate external quantum efficiency (EQE). Methods for EQE increase strategies are discussed.
Collapse
Affiliation(s)
- Gang Cheng
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China;
- Hong Kong Quantum AI Lab Limited, 17 Science Park West Avenue, Pak Shek Kok, Hong Kong, China
- HKU Shenzhen Institute of Research and Innovation, Shenzhen 518053, China
| | - Dongling Zhou
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China;
| | - Uwe Monkowius
- School of Education, Chemistry, Johannes Kepler University Linz, Altenbergerstr. 69, A-4040 Linz, Austria
| | - Hartmut Yersin
- Institut für Physikalische Chemie, Universität Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
22
|
Huang TH, Luo C, Zhao FZ, Zheng D, Hu QL, Jia L. Influence of different solvents on structures and electronic properties of new Fe2S2 complexes containing bis(2-diphenylphosphinophenyl)ether. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Beliaeva M, Belyaev A, Grachova EV, Steffen A, Koshevoy IO. Ditopic Phosphide Oxide Group: A Rigidifying Lewis Base to Switch Luminescence and Reactivity of a Disilver Complex. J Am Chem Soc 2021; 143:15045-15055. [PMID: 34491736 DOI: 10.1021/jacs.1c04413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Heterodentate phosphines containing anionic organophosphorus groups remain virtually unexplored ligands in the coordination chemistry of coinage metals. A hybrid phosphine-phosphine oxide (o-Ph2PC6H4)2P(O)H (HP3O) readily forms the disilver complex [Ag2(P3O)2] (1) upon deprotonation of the (O)P-H fragment. Due to the electron-rich nature, the anionic phosphide oxide unit in 1 takes part in efficient intermolecular hydrogen bonding, which has an unusual and remarkably strong impact on the photoluminescence of 1, changing the emission from red (644 nm) to green-yellow (539 nm) in the solid. The basicity of the R2(O)P- group and its affinity for both inter- and intramolecular donor-acceptor interactions allow converting 1 into hydrohalogenated (2, 3) and boronated (4) derivatives, which reveal a gradual hypsochromic shift of luminescence, reaching the wavelength of 489 nm. Systematic variable-temperature analysis of the excited state properties suggests that thermally activated delayed fluorescence is involved in the emission process. The long-lived excited states for 1-4, the energy of which is largely regulated by means of the phosphide oxide unit, are potentially suitable for triplet energy transfer photocatalysis. With the highest T1 energy among 1-4, complex 4 demonstrates excellent photocatalytic activity in a [2+2] cycloaddition reaction, which has been realized for the first time for silver(I) compounds.
Collapse
Affiliation(s)
- Mariia Beliaeva
- Department of Chemistry, University of Eastern Finland, Joensuu, 80101, Finland
| | - Andrey Belyaev
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| | - Elena V Grachova
- Department of Chemistry, St. Petersburg State University, Universitetskii pr. 26, 198504, St. Petersburg, Russia
| | - Andreas Steffen
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| | - Igor O Koshevoy
- Department of Chemistry, University of Eastern Finland, Joensuu, 80101, Finland
| |
Collapse
|
24
|
Chupina AV, Abramov PA, Sokolov MN. AgNO3 COMPLEXES WITH 15-CROWN-5
AND DIBENZO-18-CROWN-6. J STRUCT CHEM+ 2021. [DOI: 10.1134/s0022476621050073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
P∩N Bridged Cu(I) Dimers Featuring Both TADF and Phosphorescence. From Overview towards Detailed Case Study of the Excited Singlet and Triplet States. Molecules 2021; 26:molecules26113415. [PMID: 34200044 PMCID: PMC8200198 DOI: 10.3390/molecules26113415] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
We present an overview over eight brightly luminescent Cu(I) dimers of the type Cu2X2(P∩N)3 with X = Cl, Br, I and P∩N = 2-diphenylphosphino-pyridine (Ph2Ppy), 2-diphenylphosphino-pyrimidine (Ph2Ppym), 1-diphenylphosphino-isoquinoline (Ph2Piqn) including three new crystal structures (Cu2Br2(Ph2Ppy)3 1-Br, Cu2I2(Ph2Ppym)3 2-I and Cu2I2(Ph2Piqn)3 3-I). However, we mainly focus on their photo-luminescence properties. All compounds exhibit combined thermally activated delayed fluorescence (TADF) and phosphorescence at ambient temperature. Emission color, decay time and quantum yield vary over large ranges. For deeper characterization, we select Cu2I2(Ph2Ppy)3, 1-I, showing a quantum yield of 81%. DFT and SOC-TDDFT calculations provide insight into the electronic structures of the singlet S1 and triplet T1 states. Both stem from metal+iodide-to-ligand charge transfer transitions. Evaluation of the emission decay dynamics, measured from 1.2 ≤ T ≤ 300 K, gives ∆E(S1-T1) = 380 cm−1 (47 meV), a transition rate of k(S1→S0) = 2.25 × 106 s−1 (445 ns), T1 zero-field splittings, transition rates from the triplet substates and spin-lattice relaxation times. We also discuss the interplay of S1-TADF and T1-phosphorescence. The combined emission paths shorten the overall decay time. For OLED applications, utilization of both singlet and triplet harvesting can be highly favorable for improvement of the device performance.
Collapse
|
26
|
Tao Y, Wang Y, Hu S, Young DJ, Lu C, Li HX, Ren ZG. A photoluminescent Au(I)/Ag(I)/PNN coordination complex for relatively rapid and reversible alcohol sensing. Dalton Trans 2021; 50:6773-6777. [PMID: 33960988 DOI: 10.1039/d1dt00931a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Trinuclear complex [Au2Ag(dppmaphen)2(CN)2]PF6 photoluminesces on exposure to low molecular weight alcohols. This emission is likely due to C-Hπ interactions between the analyte and -PPh2 group, that inhibits non-radiative relaxation of the photoexcited state. Photoluminescene was quenched by removing the analyte under a stream of N2 or replacing it with H2O. This on/off switching was clearly visible, relatively rapid and recyclable.
Collapse
Affiliation(s)
- Yanhui Tao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, P. R. China.
| | - Yuwei Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, P. R. China.
| | - Shengnan Hu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, P. R. China.
| | - David James Young
- College of Engineering, Informationa Technology and Environment, Charles Darwin University, Northern Territory 0909, Australia
| | - Chengrong Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, P. R. China.
| | - Hong-Xi Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, P. R. China.
| | - Zhi-Gang Ren
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, P. R. China.
| |
Collapse
|
27
|
Rogovoy MI, Berezin AS, Samsonenko DG, Artem’ev AV. Silver(I)–Organic Frameworks Showing Remarkable Thermo-, Solvato- And Vapochromic Phosphorescence As Well As Reversible Solvent-Driven 3D-to-0D Transformations. Inorg Chem 2021; 60:6680-6687. [DOI: 10.1021/acs.inorgchem.1c00480] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Maxim I. Rogovoy
- Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the RAS, 3 Academician Lavrentyev Ave., Novosibirsk 630090, Russian Federation
| | - Alexey S. Berezin
- Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the RAS, 3 Academician Lavrentyev Ave., Novosibirsk 630090, Russian Federation
| | - Denis G. Samsonenko
- Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the RAS, 3 Academician Lavrentyev Ave., Novosibirsk 630090, Russian Federation
| | - Alexander V. Artem’ev
- Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the RAS, 3 Academician Lavrentyev Ave., Novosibirsk 630090, Russian Federation
| |
Collapse
|
28
|
Paderina AV, Koshevoy IO, Grachova EV. Keep it tight: a crucial role of bridging phosphine ligands in the design and optical properties of multinuclear coinage metal complexes. Dalton Trans 2021; 50:6003-6033. [PMID: 33913991 DOI: 10.1039/d1dt00749a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Copper subgroup metal ions in the +1 oxidation state are classical candidates for aggregation via non-covalent metal-metal interactions, which are supported by a number of bridging ligands. The bridging phosphines, soft donors with a relatively labile coordination to coinage metals, serve as convenient and essential components of the ligand environment that allow for efficient self-assembly of discrete polynuclear aggregates. Simultaneously, accessible and rich modification of the organic spacer of such P-donors has been used to generate many fascinating structures with attractive photoluminescent behavior. In this work we consider the development of di- and polynuclear complexes of M(i) (M = Cu, Ag, Au) and their photophysical properties, focusing on the effect of phosphine bridging ligands, their flexibility and denticity.
Collapse
Affiliation(s)
- Aleksandra V Paderina
- Institute of Chemistry, St Petersburg State University, Universitetskii pr. 26, 198504 St Petersburg, Russia.
| | - Igor O Koshevoy
- Department of Chemistry, University of Eastern Finland, 80101 Joensuu, Finland.
| | - Elena V Grachova
- Institute of Chemistry, St Petersburg State University, Universitetskii pr. 26, 198504 St Petersburg, Russia.
| |
Collapse
|
29
|
Peel AJ, Waters JE, Plajer AJ, García-Rodríguez R, Wright DS. Recent advances in the synthesis and application of tris(pyridyl) ligands containing metallic and semimetallic p-block bridgeheads. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2021. [DOI: 10.1016/bs.adomc.2021.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
30
|
Synthesis and Thermochromic Luminescence of Ag(I) Complexes Based on 4,6-Bis(diphenylphosphino)-Pyrimidine. INORGANICS 2020. [DOI: 10.3390/inorganics8090046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Two Ag(I)-based metal-organic compounds have been synthesized exploiting 4,6-bis(diphenylphosphino)pyrimidine (L). The reaction of this ligand with AgNO3 and AgBF4 in acetonitrile produces dinuclear complex, [Ag2L2(MeCN)2(NO3)2] (1) and 1D coordination polymer, [Ag2L(MeCN)3]n(BF4)2n (2), respectively. In complex 1, µ2-P,P′-bridging coordination pattern of the ligand L is observed, whereas its µ4-P,N,N′,P′-coordination mode appears in 2. Both compounds exhibit pronounced thermochromic luminescence expressed by reversible changing of the emission chromaticity from a yellow at 300 K to an orange at 77 K. At room temperature, the emission lifetimes of 1 and 2 are 15.5 and 9.4 µs, the quantum efficiency being 18 and 56%, respectively. On account of temperature-dependent experimental data, the phenomenon was tentatively ascribed to alteration of the emission nature from thermally activated delayed fluorescence at 300 K to phosphoresce at 77 K.
Collapse
|
31
|
Teng T, Li K, Cheng G, Wang Y, Wang J, Li J, Zhou C, Liu H, Zou T, Xiong J, Wu C, Zhang HX, Che CM, Yang C. Lighting Silver(I) Complexes for Solution-Processed Organic Light-Emitting Diodes and Biological Applications via Thermally Activated Delayed Fluorescence. Inorg Chem 2020; 59:12122-12131. [PMID: 32845614 DOI: 10.1021/acs.inorgchem.0c01054] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Luminescent coinage metal complexes have shown promising applications as electroluminescent emitters, photocatalysts/photosensitizers, and bioimaging/theranostic agents, rendering them attractive alternatives to transition metal complexes based on iridium, ruthenium, and platinum that have extremely low earth abundance. In comparison to the widely studied Au(I) and Cu(I) complexes, Ag(I) complexes have seldom been explored in this field because of their inferior emission properties. Herein, we report a novel series of [Ag(N^N)(P^P)]PF6 complexes exhibiting highly efficient thermally activated delayed fluorescence by using easily accessible neutral diamine ligands and commercially available ancillary diphosphine chelates. The photoluminescence quantum yields (PLQYs) of the Ag(I) emitters are ≤0.62 in doped films. The high PLQY with a large delayed fluorescence ratio enabled the fabrication of solution-processed organic light-emitting diodes (OLEDs) with a high maximum external quantum efficiency of 8.76%, among the highest values for Ag(I) emitter-based OLEDs. With superior emission properties and an excited state lifetime in the microsecond regime, together with its potent cytotoxicity, the selected Ag(I) complex has been used for simultaneous cell imaging and anticancer treatment in human liver carcinoma HepG2 cells, revealing the potential of luminescent Ag(I) complexes for biological applications such as theranostics.
Collapse
Affiliation(s)
- Teng Teng
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Kai Li
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China
| | - Gang Cheng
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| | - Yuan Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, People's Republic of China
| | - Jian Wang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, People's Republic of China
| | - Jiafang Li
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China
| | - Changjiang Zhou
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - He Liu
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China
| | - Taotao Zou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, People's Republic of China
| | - Jinfan Xiong
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China
| | - Chao Wu
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China
| | - Hong-Xing Zhang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, People's Republic of China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| | - Chuluo Yang
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China
| |
Collapse
|
32
|
Water dispersible supramolecular assemblies built from luminescent hexarhenium clusters and silver(I) complex with pyridine-2-ylphospholane for sensorics. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Eng J, Penfold TJ. Understanding and Designing Thermally Activated Delayed Fluorescence Emitters: Beyond the Energy Gap Approximation. CHEM REC 2020; 20:831-856. [PMID: 32267093 DOI: 10.1002/tcr.202000013] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/13/2020] [Indexed: 11/08/2022]
Abstract
In this article recent progress in the development of molecules exhibiting Thermally Activated Delayed Fluorescence (TADF) is discussed with a particular focus upon their application as emitters in highly efficient organic light emitting diodes (OLEDs). The key aspects controlling the desirable functional properties, e. g. fast intersystem crossing, high radiative rate and unity quantum yield, are introduced with a particular focus upon the competition between the key requirements needed to achieve high performance OLEDs. The design rules required for organic and metal organic materials are discussed, and the correlation between them outlined. Recent progress towards understanding the influence of the interaction between a molecule and its environment are explained as is the role of the mechanism for excited state formation in OLEDs. Finally, all of these aspects are combined to discuss the ability to implement high level design rules for achieving higher quality materials for commercial applications. This article highlights the significant progress that has been made in recent years, but also outlines the significant challenges which persist to achieve a full understanding of the TADF mechanism and improve the stability and performance of these materials.
Collapse
Affiliation(s)
- Julien Eng
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Thomas J Penfold
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
34
|
Drev M, Grošelj U, Kočar D, Perdih F, Svete J, Štefane B, Požgan F. Self-Assembly of Multinuclear Sandwich Silver(I) Complexes by Cooperation of Hexakis(azaheteroaryl)benzene Ligands, Argentophilic Interactions, and Fluoride Inclusion. Inorg Chem 2020; 59:3993-4001. [PMID: 32133849 PMCID: PMC7307899 DOI: 10.1021/acs.inorgchem.9b03664] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Self-assembly of AgOTf and AgF with
the hexatopic ligands hexakis(pyridin-2-yl)benzene (2) and 2,4,6-tris(pyridin-2-yl)-1,3,5-tris(quinolin-2-yl)benzene (3) affords the discrete sandwich-shaped complexes [Ag4F(2)2](OTf)3, [Ag4F(3)2](OTf)3, and [Ag5F(2)2](OTf)4. The solid-state
structures of the complexes were characterized by single-crystal X-ray
diffraction analysis, which revealed that the fluoride anion is coordinated
in the center of the Ag4-square or Ag5-pentagon
units which are positioned between two molecules of the hexakis(azaheteroaryl)benzene.
The generation of complexes is dictated by a unique cooperation of
ligand coordination, argentophilicity, and fluoride anion inclusion.
All three complexes adopt highly symmetrical structures in solution,
as evidenced by appearance of one set of proton resonances for the
two ligands arranged face to face. Multinuclear
sandwich-shaped silver(I) complexes are readily assembled by a unique
cooperation of nitrogen-coordinating hexaheteroarylbenzene ligands,
silver atoms, and fluoride anion.
Collapse
Affiliation(s)
- Miha Drev
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Uroš Grošelj
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Drago Kočar
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Franc Perdih
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Jurij Svete
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Bogdan Štefane
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Franc Požgan
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
35
|
Yang JS, Zhang MM, Han Z, Li HY, Li LK, Dong XY, Zang SQ, Mak TCW. A new silver cluster that emits bright-blue phosphorescence. Chem Commun (Camb) 2020; 56:2451-2454. [DOI: 10.1039/c9cc09439c] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A new stable hexanuclear silver(i) cluster features brightly blue phosphorescence at room temperature, which is integrated with yellow phosphors (YAG:Ce3+) to white-light-emission film and demonstrates interesting mechanoresponsive luminescence.
Collapse
Affiliation(s)
- Jin-Sen Yang
- Green Catalysis Center, and College of Chemistry
- Zhengzhou University
- China
| | - Miao-Miao Zhang
- Green Catalysis Center, and College of Chemistry
- Zhengzhou University
- China
| | - Zhen Han
- Green Catalysis Center, and College of Chemistry
- Zhengzhou University
- China
| | - Hai-Yang Li
- Green Catalysis Center, and College of Chemistry
- Zhengzhou University
- China
| | - Lin-Ke Li
- Green Catalysis Center, and College of Chemistry
- Zhengzhou University
- China
| | - Xi-Yan Dong
- Green Catalysis Center, and College of Chemistry
- Zhengzhou University
- China
- College of Chemistry and Chemical Engineering
- Henan Polytechnic University
| | - Shuang-Quan Zang
- Green Catalysis Center, and College of Chemistry
- Zhengzhou University
- China
| | - Thomas C. W. Mak
- Department of Chemistry
- The Chinese University of Hong Kong
- Hong Kong SAR
- China
| |
Collapse
|
36
|
Lin F, Liu W, Wang H, Li J. Strongly emissive white-light-emitting silver iodide based inorganic–organic hybrid structures with comparable quantum efficiency to commercial phosphors. Chem Commun (Camb) 2020; 56:1481-1484. [DOI: 10.1039/c9cc09260a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A series of one-dimensional silver iodide based inorganic–organic hybrid structures with tunable white light emissions and high quantum efficiency have been synthesized by Cu substitution.
Collapse
Affiliation(s)
- Fang Lin
- Hoffmann Institute of Advanced Materials
- Shenzhen Polytechnic
- Nanshan District
- China
| | - Wei Liu
- Hoffmann Institute of Advanced Materials
- Shenzhen Polytechnic
- Nanshan District
- China
| | - Hao Wang
- Hoffmann Institute of Advanced Materials
- Shenzhen Polytechnic
- Nanshan District
- China
| | - Jing Li
- Hoffmann Institute of Advanced Materials
- Shenzhen Polytechnic
- Nanshan District
- China
- Department of Chemistry and Chemical Biology
| |
Collapse
|
37
|
Shekhovtsov NA, Vinogradova KA, Berezin AS, Sukhikh TS, Krivopalov VP, Nikolaenkova EB, Bushuev MB. Excitation wavelength dependent emission of silver( i) complexes with a pyrimidine ligand. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00254b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interplay of three emission mechanisms for silver(i) complexes leads to luminescence thermochromism and color tunable emission.
Collapse
Affiliation(s)
- Nikita A. Shekhovtsov
- Nikolaev Institute of Inorganic Chemistry
- Siberian Branch of Russian Academy of Sciences
- Novosibirsk
- Russia
- Novosibirsk State University
| | - Katerina A. Vinogradova
- Nikolaev Institute of Inorganic Chemistry
- Siberian Branch of Russian Academy of Sciences
- Novosibirsk
- Russia
- Novosibirsk State University
| | - Alexei S. Berezin
- Nikolaev Institute of Inorganic Chemistry
- Siberian Branch of Russian Academy of Sciences
- Novosibirsk
- Russia
| | - Taisiya S. Sukhikh
- Nikolaev Institute of Inorganic Chemistry
- Siberian Branch of Russian Academy of Sciences
- Novosibirsk
- Russia
| | - Viktor P. Krivopalov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry
- Siberian Branch of Russian Academy of Sciences
- Novosibirsk
- Russia
| | - Elena B. Nikolaenkova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry
- Siberian Branch of Russian Academy of Sciences
- Novosibirsk
- Russia
| | - Mark B. Bushuev
- Nikolaev Institute of Inorganic Chemistry
- Siberian Branch of Russian Academy of Sciences
- Novosibirsk
- Russia
- Novosibirsk State University
| |
Collapse
|