1
|
Alvarado-Castillo MA, Cortés-Mendoza S, Barquera-Lozada JE, Delgado F, Toscano RA, Ortega-Alfaro MC, López-Cortés JG. Well-defined Cu(I) complexes based on [N,P]-pyrrole ligands catalyzed a highly endoselective 1,3-dipolar cycloaddition. Dalton Trans 2024; 53:2231-2241. [PMID: 38193761 DOI: 10.1039/d3dt03692h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
We herein report the synthesis and catalytic application of a new family of dinuclear Cu(I) complexes based on [N,P]-pyrrole ligands. The Cu(I) complexes (4a-d) were obtained in good yields and their catalytic properties were evaluated in the1,3-dipolar cycloaddition of azomethine ylides and electron-deficient alkenes. The air-stable complexes 4a-d exhibited high endo-diasteroselectivity to obtain substituted pyrrolidines, and the catalytic system showed excellent reactivity and wide substitution tolerance.
Collapse
Affiliation(s)
- Miguel A Alvarado-Castillo
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, C.P. 04360 CdMx, Mexico.
- Departamento de Química Organica, Escuela Nacional de Ciencias Biológicas Instituto Politécnico Nacional Prol. Carpio y Plan de Ayala, S/N, CdMx, 11340, Mexico
| | - Salvador Cortés-Mendoza
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, C.P. 04360 CdMx, Mexico.
| | - José E Barquera-Lozada
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, C.P. 04360 CdMx, Mexico.
| | - Francisco Delgado
- Departamento de Química Organica, Escuela Nacional de Ciencias Biológicas Instituto Politécnico Nacional Prol. Carpio y Plan de Ayala, S/N, CdMx, 11340, Mexico
| | - Ruben A Toscano
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, C.P. 04360 CdMx, Mexico.
| | - M Carmen Ortega-Alfaro
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, C.P. 04510 CdMx, Mexico
| | - José G López-Cortés
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, C.P. 04360 CdMx, Mexico.
| |
Collapse
|
2
|
Zhang MZ, Wang P, Liu HY, Wang D, Deng Y, Bai YH, Luo F, Wu WY, Chen T. Metal-Catalyst-Free One-Pot Aqueous Synthesis of trans-1,2-Diols from Electron-Deficient α,β-Unsaturated Amides via Epoxidation Using Oxone as a Dual Role Reagent. CHEMSUSCHEM 2023; 16:e202300583. [PMID: 37311715 DOI: 10.1002/cssc.202300583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/15/2023]
Abstract
In organic synthesis, incorporating two functional groups into the carbon-carbon double bond of α,β-unsaturated amides is challenging due to the electron-deficient nature of the olefin moiety. Although a few examples of dihydroxylation of α,β-unsaturated amides have been demonstrated, producing cis-1,2-diols using either highly toxic OsO4 or other specialized metal reagents in organic solvents, they are limited to several specific amides. We describe herein a general and one-pot direct synthesis of trans-1,2-diols from electron-deficient α,β-unsaturated amides through dihydroxylation using oxone as a dual-role reagent in water. This reaction does not require any metal catalyst and produces non-hazardous and nontoxic K2 SO4 as the sole byproduct. Moreover, epoxidation products could also be selectively formed by adjusting the reaction conditions. By the strategy, the intermediates of Mcl-1 inhibitor and antiallergic bioactive molecule can be synthesized in one pot. The gram-scale synthesis of trans-1,2-diol which is isolated and purified by recrystallization further shows the potential applications of this new reaction in organic synthesis.
Collapse
Affiliation(s)
- Ming-Zhong Zhang
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing, 408100, China
| | - Ping Wang
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing, 408100, China
| | - Hai-Yan Liu
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing, 408100, China
| | - Dailian Wang
- College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan, 756000, China
| | - Ya Deng
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing, 408100, China
| | - Yu-Heng Bai
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing, 408100, China
| | - Fei Luo
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing, 408100, China
| | - Wen-Yu Wu
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing, 408100, China
| | - Tieqiao Chen
- College of Chemical Engineering and Technology, Hainan University, Haikou, 410082, China
| |
Collapse
|
3
|
Xiao L, Li B, Xiao F, Fu C, Wei L, Dang Y, Dong XQ, Wang CJ. Stereodivergent synthesis of enantioenriched azepino[3,4,5- cd]-indoles via cooperative Cu/Ir-catalyzed asymmetric allylic alkylation and intramolecular Friedel-Crafts reaction. Chem Sci 2022; 13:4801-4812. [PMID: 35655885 PMCID: PMC9067570 DOI: 10.1039/d1sc07271d] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/27/2022] [Indexed: 12/20/2022] Open
Abstract
The development of enantioselective annulation reactions using readily available substrates for the construction of structurally and stereochemically diverse heterocycles is a compelling topic in diversity-oriented synthesis. Herein, we report efficient catalytic asymmetric formal 1,3-dipolar (3 + 4) cycloadditions of azomethine ylides with 4-indolyl allylic carbonates for the construction of azepino[3,4,5-cd]-indoles fused with a challenging seven-membered N-heterocycle, a frequently occurring tricyclic indole scaffold in bioactive compounds and pharmaceuticals. Through cooperative Cu/Ir-catalyzed asymmetric allylic alkylation followed by intramolecular Friedel-Crafts reaction, an array of azepino[3,4,5-cd]-indoles were obtained in good yields with excellent diastereo-/enantioselective control. More importantly, the full stereodivergence of this transformation was established via synergistic catalysis followed by acid-promoted epimerization, and up to eight stereoisomers of the cycloadducts bearing three stereogenic centers could be predictably achieved from the same set of starting materials for the first time. Quantum mechanical computations established a plausible mechanism for the synergistic Cu/Ir catalysis to stereodivergently introduce two vicinal stereocenters whose stereochemical information is remotely delivered across the fused azepine ring to control the third chiral center. Epimerization of the last center involves protonation-enabled reversal of the thermodynamically controlled relative configuration.
Collapse
Affiliation(s)
- Lu Xiao
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China .,State Key Laboratory of Elemento-organic Chemistry, Nankai University Tianjin 300071 China
| | - Bo Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University Tianjin 300072 China
| | - Fan Xiao
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Cong Fu
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Liang Wei
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University Tianjin 300072 China
| | - Xiu-Qin Dong
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Chun-Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China .,State Key Laboratory of Elemento-organic Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
4
|
Cu-catalyzed endo-selective asymmetric 1,3-dipolar cycloaddition of azomethine ylides with ethenesulfonyl fluorides: Efficient access to chiral pyrrolidine-3-sulfonyl fluorides. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Chang X, Yang Y, Shen C, Xue KS, Wang ZF, Cong H, Tao HY, Chung LW, Wang CJ. β-Substituted Alkenyl Heteroarenes as Dipolarophiles in the Cu(I)-Catalyzed Asymmetric 1,3-Dipolar Cycloaddition of Azomethine Ylides Empowered by a Dual Activation Strategy: Stereoselectivity and Mechanistic Insight. J Am Chem Soc 2021; 143:3519-3535. [DOI: 10.1021/jacs.0c12911] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Xin Chang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
- State Key Laboratory of of Elemento-organic Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Yuhong Yang
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
| | - Chong Shen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Kun-Shan Xue
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Zuo-Fei Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Hengjiang Cong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Hai-Yan Tao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Lung Wa Chung
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| | - Chun-Jiang Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
- State Key Laboratory of of Elemento-organic Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| |
Collapse
|
6
|
Motati DR, Amaradhi R, Ganesh T. Recent developments in the synthesis of azaindoles from pyridine and pyrrole building blocks. Org Chem Front 2021. [DOI: 10.1039/d0qo01079k] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The azaindole framework is ubiquitous in bioactive natural products and pharmaceuticals. This review highlights the synthetic approaches to azaindoles with advantages and limitations, mechanistic pathways and biological importance.
Collapse
Affiliation(s)
- Damoder Reddy Motati
- Department of Pharmacology and Chemical Biology
- Emory School of Medicine
- Atlanta
- USA
| | - Radhika Amaradhi
- Department of Pharmacology and Chemical Biology
- Emory School of Medicine
- Atlanta
- USA
| | - Thota Ganesh
- Department of Pharmacology and Chemical Biology
- Emory School of Medicine
- Atlanta
- USA
| |
Collapse
|
7
|
Motati DR, Amaradhi R, Ganesh T. Azaindole therapeutic agents. Bioorg Med Chem 2020; 28:115830. [PMID: 33161343 DOI: 10.1016/j.bmc.2020.115830] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 02/08/2023]
Abstract
Azaindole structural framework is an integral part of several biologically active natural and synthetic organic molecules; and several FDA approved drugs for various diseases. In the last decade, quite a number of literature reports appeared describing the pharmacology, biological activity and therapeutic applications of a variety of azaindole molecules. This prompted the organic and medicinal chemistry community to develop novel synthetic methods for various azaindoles and test them for a bioactivity against a variety of biological targets. Herein, we have summarized the biological activity of therapeutically advanced clinical candidates and several preclinical candidate drugs that contain azaindole structural moiety.
Collapse
Affiliation(s)
- Damoder Reddy Motati
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Rd, Atlanta, GA 30322, United States
| | - Radhika Amaradhi
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Rd, Atlanta, GA 30322, United States
| | - Thota Ganesh
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Rd, Atlanta, GA 30322, United States.
| |
Collapse
|
8
|
Molina A, Díaz-Tendero S, Adrio J, Carretero JC. Catalytic asymmetric synthesis of diazabicyclo[3.1.0]hexanes by 1,3-dipolar cycloaddition of azomethine ylides with azirines. Chem Commun (Camb) 2020; 56:5050-5053. [PMID: 32243487 DOI: 10.1039/d0cc01061h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Substituted 1,3-diazabicyclo[3.1.0]hexanes with two contiguous quaternary stereocentres are readily prepared by catalytic asymmetric [3+2] cycloaddition of α-substituted iminoesters with azirines. High diastereoselectivities and enantioselectivities (up to 98% ee) are achieved using CuI/(R)-Fesulphos as the catalytic system.
Collapse
Affiliation(s)
- Alba Molina
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | | | | | | |
Collapse
|
9
|
Brewitz L, Noda H, Kumagai N, Shibasaki M. (
2R
,
3S
)‐3,4,4,4‐Tetrafluorovaline: A Fluorinated Bioisostere of Isoleucine. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lennart Brewitz
- Institute of Microbial Chemistry (BIKAKEN) Tokyo Kamiosaki 3‐14‐23, Shinagawa‐ku 141‐0021 Tokyo Japan
| | - Hidetoshi Noda
- Institute of Microbial Chemistry (BIKAKEN) Tokyo Kamiosaki 3‐14‐23, Shinagawa‐ku 141‐0021 Tokyo Japan
| | - Naoya Kumagai
- Institute of Microbial Chemistry (BIKAKEN) Tokyo Kamiosaki 3‐14‐23, Shinagawa‐ku 141‐0021 Tokyo Japan
| | - Masakatsu Shibasaki
- Institute of Microbial Chemistry (BIKAKEN) Tokyo Kamiosaki 3‐14‐23, Shinagawa‐ku 141‐0021 Tokyo Japan
| |
Collapse
|
10
|
Zhang CB, Dou PH, You Y, Wang ZH, Zhou MQ, Xu XY, Yuan WC. Organocatalytic asymmetric [3+2]-cycloaddition of 3-isothiocyanato oxindoles with 1,3,5-trisubstituted-hexahydro-1,3,5-triazines to access spiro-imidazolidinethione-oxindoles. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130571] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|