1
|
He J, Zhou X, Wan Z, Cao H, Liu X. New Frontiers in phosphorothioate formation: harnessing inorganic phosphorus sources. Chem Commun (Camb) 2024; 60:14691-14702. [PMID: 39588692 DOI: 10.1039/d4cc05854b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Organic phosphorothioates are a class of organic compounds containing the C-S-P structural motif, known for their unique physical and chemical properties. These compounds hold significant value in various fields, including agriculture, pharmaceuticals, and materials science, particularly playing a crucial role in agrochemicals and nucleotide modification. Traditionally, phosphorothioates have been synthesized primarily through the formation of P-S bonds or direct phosphorothioation reactions from organic phosphorus sources such as P(O)H and P(O)SH. In recent years, new strategies utilizing inorganic phosphorus sources, such as P4S10 and white phosphorus (P4), have emerged as a dynamic area of research. This review highlights the latest advancements in the synthesis of phosphorothioates and phosphoropolythioates from inorganic phosphorus sources, focusing on their applicability, mechanisms, current limitations, and potential future directions.
Collapse
Affiliation(s)
- Jiawei He
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| | - Xuesi Zhou
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| | - Zixuan Wan
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| | - Hua Cao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| | - Xiang Liu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| |
Collapse
|
2
|
Chen Y, Lu Z, He W, Zhu H, Lu W, Shi J, Sheng J, Xie W. Rhodium-catalyzed annulation of hydrazines with vinylene carbonate to synthesize unsubstituted 1-aminoindole derivatives. RSC Adv 2024; 14:4804-4809. [PMID: 38323018 PMCID: PMC10844929 DOI: 10.1039/d3ra07466h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/30/2024] [Indexed: 02/08/2024] Open
Abstract
Herein, we describe rhodium-catalysed C-H bond activation for [3 + 2] annulation using hydrazide and vinylene carbonate, providing an efficient method for synthesising unsubstituted 1-aminoindole compounds. Characterised by high yields, mild reaction conditions, and no need for external oxidants, this transformation demonstrates excellent regioselectivity and a wide tolerance for various functional groups.
Collapse
Affiliation(s)
- Yichun Chen
- School of Environment and Chemical Engineering, Foshan University Foshan 528000 China
| | - Ziqi Lu
- School of Environment and Chemical Engineering, Foshan University Foshan 528000 China
| | - Wenfen He
- School of Environment and Chemical Engineering, Foshan University Foshan 528000 China
| | - Huanyi Zhu
- School of Environment and Chemical Engineering, Foshan University Foshan 528000 China
| | - Weilong Lu
- School of Environment and Chemical Engineering, Foshan University Foshan 528000 China
| | - Junjun Shi
- School of Environment and Chemical Engineering, Foshan University Foshan 528000 China
| | - Jie Sheng
- School of Environment and Chemical Engineering, Foshan University Foshan 528000 China
| | - Wucheng Xie
- School of Environment and Chemical Engineering, Foshan University Foshan 528000 China
| |
Collapse
|
3
|
Prabhakar Ganesh PSK, Muthuraja P, Gopinath P. Rh(III) Catalyzed Redox-Neutral C-H Activation/[5 + 2] Annulation of Aroyl Hydrazides and Sulfoxonium Ylides: Synthesis of Benzodiazepinones. Org Lett 2023; 25:8361-8366. [PMID: 37963274 DOI: 10.1021/acs.orglett.3c03495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
We herein report the Rh(III) catalyzed redox-neutral C-H activation/[5 + 2] annulation of aroyl hydrazides with sulfoxonium ylides as safe carbene precursors. The reaction shows excellent functional group tolerance, broad substrate scope, and scalability. We demonstrated the synthetic utility of the protocol via the synthesis of various diazepam drug analogues, late-stage functionalization of probenecid drug, and large scale synthesis. Finally, kinetic studies revealed C-H activation as the rate-determining step.
Collapse
Affiliation(s)
| | - Perumal Muthuraja
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Purushothaman Gopinath
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| |
Collapse
|
4
|
Singh A, Kumar S, Volla CMR. α-Carbonyl sulfoxonium ylides in transition metal-catalyzed C-H activation: a safe carbene precursor and a weak directing group. Org Biomol Chem 2023; 21:879-909. [PMID: 36562262 DOI: 10.1039/d2ob01835g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transition metal-catalyzed cross-coupling of sp2 C-H bonds with diazo compounds via carbene migratory insertion represents an efficient strategy for the construction of C-C and C-heteroatom bonds in organic synthesis. Despite the popularity of diazo compounds as coupling partners in C-H activation, they pose serious safety and stability issues due to potential exothermic reactions linked with the release of N2 gas. However, compared with diazo compounds, sulfoxonium ylides are generally crystalline solids, more stable, widely used in industrial scales, and easier/safer to prepare. Therefore, recent years have witnessed an upsurge in employing α-carbonyl sulfoxonium ylides as an alternative carbene surrogate in transition metal-catalyzed C-H activation. Unlike diazo compounds, α-carbonyl sulfoxonium ylides contain inherent potential to serve as a coupling partner as well as a weak directing group. This review will summarize the progress made in both categories of reactions.
Collapse
Affiliation(s)
- Anurag Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Shreemoyee Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Chandra M R Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| |
Collapse
|
5
|
Pan C, Yuan C, Yu JT. Ruthenium‐Catalyzed C–H Functionalization/Annulation of N‐Aryl Indazoles/Phthalazines with Sulfoxonium Ylides to access Tetracyclic Fused Cinnolines. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Changduo Pan
- Jiangsu University of Technology School of Petrochemical Engineering Changzhou 213164 Changzhou CHINA
| | - Cheng Yuan
- Jiangsu University of Technology School of Chemical and Environmental Engineering CHINA
| | - Jin-Tao Yu
- Changzhou University School of Petrochemical Engineering CHINA
| |
Collapse
|
6
|
Bhorali P, Sultana S, Gogoi S. Recent Advances in Metal‐Catalyzed C−H Bond Functionalization Reactions of Sulfoxonium Ylides. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Pratiksha Bhorali
- Applied Organic Chemistry Chemical Sciences & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Sabera Sultana
- Applied Organic Chemistry Chemical Sciences & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 India
| | - Sanjib Gogoi
- Applied Organic Chemistry Chemical Sciences & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
7
|
Zhang J, Zhang C, Zheng Z, Zhou P, Liu W. Research Progress of Sulfoxonium Ylides in the Construction of Five/Six-Membered Nitrogen-Containing Heterocycles. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202204002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Wen S, Chen Y, Tian Q, Zhang Y, Cheng G. Transition-Metal-, Additive-, and Solvent-Free [3 + 3] Annulation of RCF 2-Imidoyl Sulfoxonium Ylides with Cyclopropenones to Give Multifunctionalized CF 3-Pyridones. J Org Chem 2021; 87:1124-1132. [PMID: 34965129 DOI: 10.1021/acs.joc.1c02464] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An efficient and practical strategy was developed to synthesize 1,3,4-triaryl-6-trifluoromethylpyridones from CF3-imidoyl sulfoxonium ylides and cyclopropenones in good to excellent yields. This stepwise [3 + 3] annulation reaction was carried out under transition-metal-, additive-, and solvent-free conditions, generating 1 equiv of dimethyl sulfoxide as byproduct and tolerating a series of functional groups.
Collapse
Affiliation(s)
- Si Wen
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, the Instrumental Analysis Center, Huaqiao University, Xiamen 361021, China
| | - Yanhui Chen
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, the Instrumental Analysis Center, Huaqiao University, Xiamen 361021, China
| | - Qingyu Tian
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, the Instrumental Analysis Center, Huaqiao University, Xiamen 361021, China
| | - Yuqing Zhang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, the Instrumental Analysis Center, Huaqiao University, Xiamen 361021, China
| | - Guolin Cheng
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, the Instrumental Analysis Center, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
9
|
Application of sulfoxonium ylide in transition-metal-catalyzed C-H bond activation and functionalization reactions. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132478] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
10
|
Wen S, Tian Q, Chen Y, Zhang Y, Cheng G. Annulation of CF 3-Imidoyl Sulfoxonium Ylides with 1,3-Dicarbonyl Compounds: Access to 1,2,3-Trisubstituted 5-Trifluoromethylpyrroles. Org Lett 2021; 23:7407-7411. [PMID: 34543038 DOI: 10.1021/acs.orglett.1c02598] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A lithium-bromide-promoted nucleophilic substitution/annulation cascade reaction between CF3-imidoyl sulfoxonium ylides and 1,3-dicarbonyl compounds has been established, and the corresponding 1,2,3-trisubstituted 5-trifluoromethylpyrroles have been obtained in 27-78% yield. This reaction features a broad substrate scope and generates dimethyl sulfoxide and H2O as byproducts.
Collapse
Affiliation(s)
- Si Wen
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, the Instrumental Analysis Center, Huaqiao University, Xiamen 361021, China
| | - Qingyu Tian
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, the Instrumental Analysis Center, Huaqiao University, Xiamen 361021, China
| | - Yanhui Chen
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, the Instrumental Analysis Center, Huaqiao University, Xiamen 361021, China
| | - Yuqing Zhang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, the Instrumental Analysis Center, Huaqiao University, Xiamen 361021, China
| | - Guolin Cheng
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, the Instrumental Analysis Center, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
11
|
Mei GJ, Wong JJ, Zheng W, Nangia AA, Houk K, Lu Y. Rational design and atroposelective synthesis of N–N axially chiral compounds. Chem 2021. [DOI: 10.1016/j.chempr.2021.07.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Chen Y, Lv S, Lai R, Xu Y, Huang X, Li J, Lv G, Wu Y. Synthesis of 2-aminothiazoles via rhodium-catalyzed carbenoid insertion/annulation of sulfoxonium ylides with thioureas. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.02.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
13
|
Zhao F, Qiao J, Lu Y, Zhang X, Dai L, Liu S, Ni H, Jia X, Wu X, Lu S. Redox-Neutral Rhodium(III)-Catalyzed Chemospecific and Regiospecific [4+1] Annulation between Indoles and Alkenes for the Synthesis of Functionalized Imidazo[1,5- a]indoles. J Org Chem 2021; 86:10591-10607. [PMID: 34297561 DOI: 10.1021/acs.joc.1c01256] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Exploiting internal alkenes embedded with an oxidizing function/leaving group as a rare and unconventional one-carbon unit, a redox-neutral rhodium(III)-catalyzed chemo- and regiospecific [4+1] annulation between indoles and alkenes for the synthesis of functionalized imidazo[1,5-a]indoles has been achieved. Internal alkenes employed here can fulfill an unusual [4+1] annulation rather than normal [4+2] annulation/C-H alkenylation. This method is characterized by excellent chemo- and regioselectivity, broad substrate scope, good functional group tolerance, good to high yields, and redox-neutral conditions.
Collapse
Affiliation(s)
- Fei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, P. R. China.,Jinhua Branch, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Jinhua 321007, P. R. China
| | - Jin Qiao
- Jinhua Branch, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Jinhua 321007, P. R. China
| | - Yangbin Lu
- Jinhua Branch, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Jinhua 321007, P. R. China
| | - Xiaoning Zhang
- Jinhua Branch, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Jinhua 321007, P. R. China
| | - Long Dai
- Jinhua Branch, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Jinhua 321007, P. R. China
| | - Siyu Liu
- Jinhua Branch, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Jinhua 321007, P. R. China
| | - Hangcheng Ni
- Jinhua Branch, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Jinhua 321007, P. R. China
| | - Xiuwen Jia
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Xiaowei Wu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China.,Zhongshan Institute for Drug Discovery, the Institutes of Drug Discovery and Development, Chinese Academy of Sciences, Zhongshan 528400, P. R. China
| | - Shiyao Lu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, P. R. China.,Jinhua Branch, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Jinhua 321007, P. R. China
| |
Collapse
|
14
|
Hu S, Han X, Xie X, Fang F, Wang Y, Saidahmatov A, Liu H, Wang J. Synthesis of Pyrazolo[1,2‐a]cinnolines
via
Rhodium(III)‐Catalyzed [4+2] Annulation Reactions of Pyrazolidinones with Sulfoxonium Ylides. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100324] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Shulei Hu
- China Pharmaceutical University 639 Longmian Avenue, Jiangning District Nanjing 211198 People's Republic of China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 People's Republic of China
| | - Xu Han
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 People's Republic of China
| | - Xiong Xie
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 People's Republic of China
| | - Feifei Fang
- China Pharmaceutical University 639 Longmian Avenue, Jiangning District Nanjing 211198 People's Republic of China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 People's Republic of China
| | - Yong Wang
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 People's Republic of China
| | - Abdusaid Saidahmatov
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 People's Republic of China
| | - Hong Liu
- China Pharmaceutical University 639 Longmian Avenue, Jiangning District Nanjing 211198 People's Republic of China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 People's Republic of China
- School of Pharmaceutical Science and Technology Hangzhou Institute for Advanced Study UCAS Hangzhou 310024 People's Republic of China
| | - Jiang Wang
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 People's Republic of China
- School of Pharmaceutical Science and Technology Hangzhou Institute for Advanced Study UCAS Hangzhou 310024 People's Republic of China
| |
Collapse
|
15
|
Xie W, Jian X, Zhang L, Jin K, Shi J, Zhu F. Synthesis of C3-sulfone substituted naphthols via rhodium(III)-catalyzed annulation of sulfoxonium ylides with alkynylsulfones. Org Biomol Chem 2021; 19:1498-1502. [PMID: 33529298 DOI: 10.1039/d0ob02267e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
C-H activation of sulfoxonium ylides catalyzed by rhodium(iii) with subsequent annulation by alkynylsulfones was accomplished. This methodology offers a step-economical approach for assembling C3-sulfone-substituted naphthols with a high level of regioselectivity that is complementary to previous protocols. The approach has an extensive substrate spectrum and broad functional group tolerance.
Collapse
Affiliation(s)
- Wucheng Xie
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China.
| | - Xinyi Jian
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China.
| | - Liyang Zhang
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China.
| | - Kexin Jin
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China.
| | - Junjun Shi
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China.
| | - Feng Zhu
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China.
| |
Collapse
|
16
|
Xie H, Zhong M, Kang H, Shu B, Zhang S. A Cascade Rh(III)‐catalyzed C−H Activation/Chemodivergent Annulation of
N
‐carbamoylindoles with Sulfoxonium Ylides for the Synthesis of Dihydropyrimidoindolone and Tricyclic [1,3]Oxazino[3,4‐
a
]indol‐1‐ones Derivatives. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001380] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Hui Xie
- Center for Drug Research and Development Guangdong Pharmaceutical University Guangzhou 510006 People's Republic of China
| | - Mei Zhong
- School of Pharmacy Guangdong Pharmaceutical University Guangzhou 510006 People's Republic of China
| | - Hua‐Jie Kang
- School of Pharmacy Guangdong Pharmaceutical University Guangzhou 510006 People's Republic of China
| | - Bing Shu
- School of Pharmacy Guangdong Pharmaceutical University Guangzhou 510006 People's Republic of China
| | - Shang‐Shi Zhang
- Center for Drug Research and Development Guangdong Pharmaceutical University Guangzhou 510006 People's Republic of China
| |
Collapse
|
17
|
Kumar S, Nunewar S, Oluguttula S, Nanduri S, Kanchupalli V. Recent advances in Rh(iii)/Ir(iii)-catalyzed C–H functionalization/annulation via carbene migratory insertion. Org Biomol Chem 2021; 19:1438-1458. [DOI: 10.1039/d0ob02309d] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The review highlighted diverse annulations, including nitrogen, oxygen, sulfur heterocycles and carbocylizations via Rh(iii)/Ir(iii)-catalyzed C–H functionalization/annulation with various arene and carbene precursors.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Process Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad 500 037
- India
| | - Saiprasad Nunewar
- Department of Process Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad 500 037
- India
| | - Srilekha Oluguttula
- Department of Process Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad 500 037
- India
| | - Srinivas Nanduri
- Department of Process Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad 500 037
- India
| | - Vinaykumar Kanchupalli
- Department of Process Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad 500 037
- India
| |
Collapse
|
18
|
Chen T, Ding Z, Guan Y, Zhang R, Yao J, Chen Z. Ruthenium-catalyzed coupling of α-carbonyl phosphoniums with sulfoxonium ylides via C–H activation/Wittig reaction sequences. Chem Commun (Camb) 2021; 57:2665-2668. [DOI: 10.1039/d1cc00433f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A Ru(ii)-catalyzed coupling of various α-carbonyl phosphoniums with sulfoxonium ylides has been realized for the facile synthesis of 1-naphthols in good to excellent yields.
Collapse
Affiliation(s)
- Tian Chen
- Center for Molecular Science and Engineering
- College of Sciences
- Northeastern University
- Shenyang 110819
- P. R. China
| | - Zhiqiang Ding
- Center for Molecular Science and Engineering
- College of Sciences
- Northeastern University
- Shenyang 110819
- P. R. China
| | - Yuqiu Guan
- Center for Molecular Science and Engineering
- College of Sciences
- Northeastern University
- Shenyang 110819
- P. R. China
| | - Ruike Zhang
- Center for Molecular Science and Engineering
- College of Sciences
- Northeastern University
- Shenyang 110819
- P. R. China
| | - Jinzhong Yao
- College of Biological
- Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing 314001
- People's Republic of China
| | - Zhangpei Chen
- Center for Molecular Science and Engineering
- College of Sciences
- Northeastern University
- Shenyang 110819
- P. R. China
| |
Collapse
|
19
|
Jin HS, Du YZ, Zhao QY, Zhao LM. Ru( ii)-Catalyzed C–H activation/annulation reactions of N-aryl-pyrazolidinones with sulfoxonium ylides: synthesis of cinnoline-fused pyrazolidinones. Org Chem Front 2021. [DOI: 10.1039/d1qo01001h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The first Ru(ii)-catalyzed cascade C–H activation/annulation reactions of N-aryl-pyrazolidinones with sulfoxonium ylides are reported.
Collapse
Affiliation(s)
- Hai-Shan Jin
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Ya-Zhen Du
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Qing-Yang Zhao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Li-Ming Zhao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| |
Collapse
|
20
|
Lyu X, Huang S, Huang Y, Song H, Liu Y, Li Y, Yang S, Wang Q. Rhodium(III)‐Catalyzed Cross‐Coupling of Sulfoxonium Ylides with Quinoline‐8‐carboxaldehydes for Synthesis of Quinoline‐1,3‐diketones. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Xue‐Li Lyu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University Tianjin 300071 P. R. China
| | - Shi‐Sheng Huang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University Tianjin 300071 P. R. China
| | - Yuan‐Qiong Huang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University Tianjin 300071 P. R. China
| | - Hong‐Jian Song
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University Tianjin 300071 P. R. China
| | - Yu‐Xiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University Tianjin 300071 P. R. China
| | - Yong‐Qiang Li
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University Tianjin 300071 P. R. China
| | - Shao‐Xiang Yang
- Beijing Key Laboratory of Flavor Chemistry Beijing Technology and Business University Beijing 100048 P. R. China
| | - Qing‐Min Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
21
|
Cui XF, Qiao X, Wang HS, Huang GS. Iridium(III)-Catalyzed Tandem Annulation of Pyridine-Substituted Anilines and α-Cl Ketones for Obtaining 2-Arylindoles. J Org Chem 2020; 85:13517-13528. [PMID: 32988207 DOI: 10.1021/acs.joc.0c01619] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A facile and expeditious protocol for the synthesis of 2-arylindole compounds from readily available N-(2-pyridyl)anilines and commercially available α-Cl ketones through iridium-catalyzed C-H activation and cyclization is reported here. As a complementary approach to the conventional strategies for indole synthesis, the transformation exhibits powerful reactivity, tolerates a large number of functional groups, and proceeds with good to excellent yields under mild conditions, providing a straightforward method to obtain structurally diverse and valuable indole scaffolds. Furthermore, the reaction could be easily scaled up to gram scale.
Collapse
Affiliation(s)
- Xin-Feng Cui
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xin Qiao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - He-Song Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Guo-Sheng Huang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
22
|
Zhang M, Zhang J, Teng Z, Chen J, Xia Y. Ruthenium(II)-Catalyzed Homocoupling of α-Carbonyl Sulfoxonium Ylides Under Mild Conditions: Methodology Development and Mechanistic DFT Study. Front Chem 2020; 8:648. [PMID: 33195001 PMCID: PMC7525066 DOI: 10.3389/fchem.2020.00648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 06/22/2020] [Indexed: 01/22/2023] Open
Abstract
A mild ruthenium(II)-catalyzed homocoupling of α-carbonyl sulfoxonium ylides was developed and the detailed mechanism was understood based on DFT calculations in the current report. The catalytic system utilizes the α-carbonyl sulfoxonium ylide as both the directing group for ortho-sp2 C-H activation and the acylmethylating reagent for C-C coupling. Various substituents are compatible in the transformation and a variety of isocoumarin derivatives were synthesized at room temperature without any protection. The theoretical results disclosed that the full catalytic cycle contains eight elementary steps, and in all the cationic Ru(II) monomer is involved as the catalytic active species. The acid additive is responsible for protonation of the ylide carbon prior to the intramolecular nucleophilic addition and C-C bond cleavage. Interestingly, the intermediacy of free acylmethylation intermediate or its enol isomer is not necessary for the transformation.
Collapse
Affiliation(s)
- Maosheng Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Jinrong Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Zhenfang Teng
- Information Technology Center, Wenzhou University, Wenzhou, China
| | - Jianhui Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Yuanzhi Xia
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| |
Collapse
|
23
|
Zhang L, Chen J, Zhong T, Zheng X, Zhou J, Jiang X, Yu C. Palladium-Catalyzed [2 + 2 + 1] Annulation of Alkyne-Tethered Aryl Iodides with Diaziridinone: Synthesis of 3,4-Fused Tricyclic Indoles. J Org Chem 2020; 85:10823-10834. [PMID: 32786647 DOI: 10.1021/acs.joc.0c01365] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A novel palladium-catalyzed [2 + 2 + 1] annulation of alkyne-tethered aryl iodides with diaziridinone was developed, leading to the formation of 3,4-fused tricyclic indoles. From a mechanistic standpoint, the formation of fused tricyclic indole scaffolds involved C,C-palladacycles, which were synthesized through the intramolecular reaction of aryl halides and alkynes. The cascade reaction described herein could be carried out with a broad range of substrates and provided various 3,4-fused tricyclic indoles with yields up to 98%.
Collapse
Affiliation(s)
- Lei Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Junyu Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Tianshuo Zhong
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiangyun Zheng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jian Zhou
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xinpeng Jiang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Chuanming Yu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
24
|
Nishii Y, Miura M. Cp*M-Catalyzed Direct Annulation with Terminal Alkynes and Their Surrogates for the Construction of Multi-Ring Systems. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02972] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Yuji Nishii
- Frontier Research Base for Global Young Researchers, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Miura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
25
|
Wang X, Song J, Zhong M, Kang H, Xie H, Che T, Shu B, Peng D, Zhang L, Zhang S. Iridium‐Catalyzed [4+2] Annulations of β‐Keto Sulfoxonium Ylides and
o
‐Phenylenediamines: Mild and Facile Synthesis of Quinoxaline Derivatives. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xiao‐Tong Wang
- Center for Drug Research and Development Guangdong Pharmaceutical University 510006 Guangzhou China
- School of Pharmacy Guangdong Pharmaceutical University 510006 Guangzhou PR China
| | - Jia‐Lin Song
- School of Pharmacy Guangdong Pharmaceutical University 510006 Guangzhou PR China
| | - Mei Zhong
- School of Pharmacy Guangdong Pharmaceutical University 510006 Guangzhou PR China
| | - Hua‐Jie Kang
- School of Pharmacy Guangdong Pharmaceutical University 510006 Guangzhou PR China
| | - Hui Xie
- Center for Drug Research and Development Guangdong Pharmaceutical University 510006 Guangzhou China
| | - Tong Che
- Center for Drug Research and Development Guangdong Pharmaceutical University 510006 Guangzhou China
| | - Bing Shu
- School of Pharmacy Guangdong Pharmaceutical University 510006 Guangzhou PR China
| | - Dongming Peng
- Department of Medicinal Chemistry School of Pharmacy Hunan University of Chinese Medicine 410208 Changsha China
| | - Luyong Zhang
- Center for Drug Research and Development Guangdong Pharmaceutical University 510006 Guangzhou China
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems Guangdong Pharmaceutical University 510006 Guangzhou China
- Key Laboratory of New Drug Discovery and Evaluation of Ordinary Universities of Guangdong Province Guangdong Pharmaceutical University 510006 Guangzhou China
| | - Shang‐Shi Zhang
- Center for Drug Research and Development Guangdong Pharmaceutical University 510006 Guangzhou China
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems Guangdong Pharmaceutical University 510006 Guangzhou China
- Key Laboratory of New Drug Discovery and Evaluation of Ordinary Universities of Guangdong Province Guangdong Pharmaceutical University 510006 Guangzhou China
| |
Collapse
|
26
|
Kommagalla Y, Ando S, Chatani N. Rh(III)-Catalyzed Reaction of α-Carbonyl Sulfoxonium Ylides and Alkenes: Synthesis of Indanones via [4 + 1] Cycloaddition. Org Lett 2020; 22:1375-1379. [DOI: 10.1021/acs.orglett.9b04664] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yadagiri Kommagalla
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shunsuke Ando
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
27
|
Cui XF, Huang GS. Rhodium-catalyzed tandem acylmethylation/annulation of N-nitrosoanilines with sulfoxonium ylides for the synthesis of substituted indazole N-oxides. Org Biomol Chem 2020; 18:4014-4018. [DOI: 10.1039/d0ob00723d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An atom-economical protocol for synthesizing indazole N-oxides from readily available N-nitrosoanilines and sulfoxonium ylides through the rhodium(iii)-catalyzed C–H activation and cyclization reaction is described here.
Collapse
Affiliation(s)
- Xin-Feng Cui
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou 730000
| | - Guo-Sheng Huang
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou 730000
| |
Collapse
|
28
|
Li H, Lu Y, Jin X, Sun S, Duan L, Liu J. Rhodium( iii)-catalyzed C–H annulation of 2-acetyl-1-arylhydrazines with sulfoxonium ylides: synthesis of 2-arylindoles. RSC Adv 2020; 10:39708-39711. [PMID: 35515363 PMCID: PMC9057399 DOI: 10.1039/d0ra07701a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/23/2020] [Indexed: 11/24/2022] Open
Abstract
An efficient Rh(iii)-catalyzed synthesis of 2-arylindole derivatives via intermolecular C–H annulation of arylhydrazines with sulfoxonium ylides was accomplished. A variety of 2-acetyl-1-arylhydrazines with sulfoxonium ylides were converted into 2-arylindoles in satisfactory yields. Excellent selectivity and good functional group tolerance of this transformation were also observed. Rh(iii)-catalyzed intermolecular C–H annulation of arylhydrazines with sulfoxonium ylides for synthesis of 2-arylindole derivatives was well established.![]()
Collapse
Affiliation(s)
- He Li
- Inner Mongolia Key Laboratory of Carbon Nanomaterials
- Nano Innovation Institute (NII)
- College of Chemistry and Materials Science
- Inner Mongolia University for Nationalities
- Tongliao 028000
| | - Ye Lu
- Inner Mongolia Key Laboratory of Carbon Nanomaterials
- Nano Innovation Institute (NII)
- College of Chemistry and Materials Science
- Inner Mongolia University for Nationalities
- Tongliao 028000
| | - Xinxin Jin
- Inner Mongolia Key Laboratory of Carbon Nanomaterials
- Nano Innovation Institute (NII)
- College of Chemistry and Materials Science
- Inner Mongolia University for Nationalities
- Tongliao 028000
| | - Shuang Sun
- Inner Mongolia Key Laboratory of Carbon Nanomaterials
- Nano Innovation Institute (NII)
- College of Chemistry and Materials Science
- Inner Mongolia University for Nationalities
- Tongliao 028000
| | - Limei Duan
- Inner Mongolia Key Laboratory of Carbon Nanomaterials
- Nano Innovation Institute (NII)
- College of Chemistry and Materials Science
- Inner Mongolia University for Nationalities
- Tongliao 028000
| | - Jinghai Liu
- Inner Mongolia Key Laboratory of Carbon Nanomaterials
- Nano Innovation Institute (NII)
- College of Chemistry and Materials Science
- Inner Mongolia University for Nationalities
- Tongliao 028000
| |
Collapse
|
29
|
Shu B, Wang XT, Shen ZX, Che T, Zhong M, Song JL, Kang HJ, Xie H, Zhang L, Zhang SS. Iridium-catalyzed arylation of sulfoxonium ylides and arylboronic acids: a straightforward preparation of α-aryl ketones. Org Chem Front 2020. [DOI: 10.1039/d0qo00543f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A highly efficient iridium(iii)-catalyzed arylation coupling of sulfoxonium ylides with arylboronic acids to generate α-aryl ketones has been established for the first time.
Collapse
Affiliation(s)
- Bing Shu
- Center for Drug Research and Development
- Guangdong Pharmaceutical University
- Guangzhou
- China
- School of Pharmacy
| | - Xiao-Tong Wang
- Center for Drug Research and Development
- Guangdong Pharmaceutical University
- Guangzhou
- China
- School of Pharmacy
| | - Zi-Xuan Shen
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou
- PR China
| | - Tong Che
- Center for Drug Research and Development
- Guangdong Pharmaceutical University
- Guangzhou
- China
| | - Mei Zhong
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou
- PR China
| | - Jia-Lin Song
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou
- PR China
| | - Hua-Jie Kang
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou
- PR China
| | - Hui Xie
- Center for Drug Research and Development
- Guangdong Pharmaceutical University
- Guangzhou
- China
| | - Luyong Zhang
- Center for Drug Research and Development
- Guangdong Pharmaceutical University
- Guangzhou
- China
- Jiangsu Key Laboratory of Drug Screening
| | - Shang-Shi Zhang
- Center for Drug Research and Development
- Guangdong Pharmaceutical University
- Guangzhou
- China
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems
| |
Collapse
|
30
|
Karishma P, Agarwal DS, Laha B, Mandal SK, Sakhuja R. Ruthenium Catalyzed C-H Acylmethylation of N-Arylphthalazine-1,4-diones with α-Carbonyl Sulfoxonium Ylides: Highway to Diversely Functionalized Phthalazino-fused Cinnolines. Chem Asian J 2019; 14:4274-4288. [PMID: 31613428 DOI: 10.1002/asia.201901250] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/11/2019] [Indexed: 12/15/2022]
Abstract
A direct ortho-Csp2 -H acylmethylation of 2-aryl-2,3-dihydrophthalazine-1,4-diones with α-carbonyl sulfoxonium ylides is achieved through a RuII -catalyzed C-H bond activation process. The protocol featured high functional group tolerance on the two substrates, including aryl-, heteroaryl-, and alkyl-substituted α-carbonyl sulfoxonium ylides. Thereafter, 2-(ortho-acylmethylaryl)-2,3-dihydrophthalazine-1,4-diones were used as potential starting materials for the expeditious synthesis of 6-arylphthalazino[2,3-a]cinnoline-8,13-diones and 5-acyl-5,6-dihydrophthalazino[2,3-a]cinnoline-8,13-diones under Lawesson's reagent and BF3 ⋅OEt2 mediated conditions, respectively. Of these, the BF3 ⋅OEt2 -mediated cyclization proceeded in DMSO as a solvent and a methylene source via dual C-C and C-N bond formations.
Collapse
Affiliation(s)
- Pidiyara Karishma
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India
| | - Devesh S Agarwal
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India
| | - Biswajit Laha
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manuali P.O., Mohali, Punjab, 140306, India
| | - Sanjay K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manuali P.O., Mohali, Punjab, 140306, India
| | - Rajeev Sakhuja
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India
| |
Collapse
|
31
|
Lv N, Chen Z, Liu Z, Zhang Y. Redox-Neutral Rhodium(III)-Catalyzed Annulation of Arylhydrazines with Sulfoxonium Ylides To Synthesize 2-Arylindoles. J Org Chem 2019; 84:13013-13021. [DOI: 10.1021/acs.joc.9b01815] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Ningning Lv
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zhengkai Chen
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhanxiang Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yuhong Zhang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|