1
|
Xie Y, Lin M, Wei Z, Cai Z, He L, Du G. Organocatalytic SuFEx click reactions of SO 2F 2. Org Biomol Chem 2024. [PMID: 39714122 DOI: 10.1039/d4ob01844c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
An organocatalytic method for the SuFEx click reaction of gaseous SO2F2 is described. Different organic bases such as DBU, TBD, triethylamine and Hünig's base can efficiently catalyze the SuFEx of SO2F2 with various phenols to produce aryl fluorosulfates in 61-97% yields. Under the same conditions, pyridone, pyrazolone and amines can also react with SO2F2 to afford the corresponding heteroaryl fluorosulfates or sulfamoyl fluorides in good yields. In this process, molecular sieves absorb the acidic HF efficiently, avoiding the use of stoichiometric amounts of organosilicon reagents and excess bases.
Collapse
Affiliation(s)
- Yu Xie
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China.
| | - Muze Lin
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China.
| | - Zhihang Wei
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China.
| | - Zhihua Cai
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China.
| | - Lin He
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China.
| | - Guangfen Du
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China.
| |
Collapse
|
2
|
Sturm JS, Millanvois A, Bahri C, Golz P, Limberg N, Wiesner A, Riedel S. Streamlining Thionyl Tetrafluoride (SOF 4) and Pentafluoro-Oxosulfate [OSF 5] - Anions Syntheses. Chemistry 2024; 30:e202403365. [PMID: 39352264 DOI: 10.1002/chem.202403365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Indexed: 11/13/2024]
Abstract
A one pot room temperature synthesis of thionyl tetrafluoride (SOF4) from elemental fluorine (F2) and thionyl fluoride (SOF2) is reported. The selective decagram scale process (100 mmol) allows a quantitative preparation of SOF4 with high purity. The solid-state structure has also been elucidated and compared with the reported gas phase one. The use of this reagent for the formation of the emerging pentafluorooxosulfate [cat][OSF5] anions led to the preparation of multiple ion-pairs (cat=Ag, NEt3Me, PPN, PPh4) in different organic solvents. The SuFEx reservoir ability of this anion was studied and by tuning the solvent system, the reactivity of pure thionyl tetrafluoride was observed using Ag[OSF5] in THF and acetone.
Collapse
Affiliation(s)
- Johanna S Sturm
- Fachbereich Biologie, Chemie, Pharmazie Institut für Chemie und Biochemie -, Anorganische Chemie Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
| | - Alexandre Millanvois
- Fachbereich Biologie, Chemie, Pharmazie Institut für Chemie und Biochemie -, Anorganische Chemie Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
| | - Carlota Bahri
- Fachbereich Biologie, Chemie, Pharmazie Institut für Chemie und Biochemie -, Anorganische Chemie Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
| | - Paul Golz
- Fachbereich Biologie, Chemie, Pharmazie Institut für Chemie und Biochemie -, Anorganische Chemie Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
| | - Niklas Limberg
- Fachbereich Biologie, Chemie, Pharmazie Institut für Chemie und Biochemie -, Anorganische Chemie Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
| | - Anja Wiesner
- Fachbereich Biologie, Chemie, Pharmazie Institut für Chemie und Biochemie -, Anorganische Chemie Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
| | - Sebastian Riedel
- Fachbereich Biologie, Chemie, Pharmazie Institut für Chemie und Biochemie -, Anorganische Chemie Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
| |
Collapse
|
3
|
Sahoo M, Lee JW, Lee S, Choe W, Jung B, Kwak J, Hong SY. Isolation and Reactivity of Arylnickel(II) Complexes in Nickel-Catalyzed Borylation of Aryl Fluorosulfates. JACS AU 2024; 4:1646-1653. [PMID: 38665649 PMCID: PMC11040702 DOI: 10.1021/jacsau.4c00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 04/28/2024]
Abstract
Aryl fluorosulfates have emerged as versatile SuFExable substrates, harnessing the reactivity of the S-F bond. In this study, we unveil their alternative synthetic utility in nickel-catalyzed borylation via C-O bond activation. This method highlights mild reaction conditions, a broad substrate scope, and moderate functional group tolerance, rendering it a practical and appealing approach for synthesizing a diverse array of aryl boronate esters. Furthermore, computational analysis sheds light on the reaction pathways, uncovering the participation of LNi(0) and LNi(II)ArX species. This insight is supported by the 31P NMR reaction monitoring along with isolation and single-crystal X-ray structural elucidation of well-defined arylnickel(II) intermediates obtained from the oxidative addition of aryl fluorosulfates. A comprehensive investigation, merging experimental and computational approaches, deepens our understanding of the alternative reactivity of SuFExable substrates.
Collapse
Affiliation(s)
- Manoj
Kumar Sahoo
- Department
of Chemistry, Ulsan National Institute of
Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jeong Woo Lee
- Department
of Chemistry, Ulsan National Institute of
Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Soochan Lee
- Department
of Chemistry, Ulsan National Institute of
Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Wonyoung Choe
- Department
of Chemistry, Ulsan National Institute of
Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Byunghyuck Jung
- Department
of Physics and Chemistry, Daegu Gyeongbuk
Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jaesung Kwak
- Infectious
Diseases Therapeutic Research Center, Korea
Research Institute of Chemical Technology (KRICT), Division of Medicinal
Chemistry and Pharmacology, KRICT School, University of Science and
Technology (UST), Daejeon 34114, Republic of Korea
| | - Sung You Hong
- Department
of Chemistry, Ulsan National Institute of
Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
4
|
Chawla R, Singh AK, Dutta PK. Arylazo sulfones: multifaceted photochemical reagents and beyond. Org Biomol Chem 2024; 22:869-893. [PMID: 38196324 DOI: 10.1039/d3ob01599h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The photochemical action of arylazo sulfones under visible light irradiation has recently gained considerable attention for the construction of carbon-carbon and carbon-heteroatom bonds in organic synthesis. The inherent dyedauxiliary group (-N2SO2R) embedded in the reagent is responsible for the absorption of visible light even in the absence of a photocatalyst, additive or oxidant, leading to the generation of three different radicals, viz. aryl (carbon-centred), sulfonyl (sulphur-centred) and diazenyl (nitrogen-centred) radicals, under different reaction conditions. Encountering a reagent with such a versatile behaviour is quite rare, which makes arylazo sulfones a highly interesting class of compounds. The mild reaction conditions under which these reagents can operate are an added advantage. Recently, they are also being used as non-ionic photoacid generators (PAGs), electron acceptors, and hydrogen atom transfer (HAT) and imination reagents in a number of synthetic transformations. They have displayed substantial damaging effect on the structure of DNA in the presence of light which can lead to their use as phototoxic pharmaceuticals for cancer treatment. Moreover, their photochemistry is also being exploited in polymerization reactions (as photoinitiators) and in materials chemistry (surface modification).
Collapse
Affiliation(s)
- Ruchi Chawla
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| | - Atul K Singh
- Department of Chemistry, University of Allahabad, Prayagraj 211002, India
| | - Pradip K Dutta
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| |
Collapse
|
5
|
Chetankumar E, Bharamawadeyar S, Srinivasulu C, Sureshbabu VV. AITF (4-acetamidophenyl triflimide) mediated synthesis of amides, peptides and esters. Org Biomol Chem 2023; 21:8875-8882. [PMID: 37888883 DOI: 10.1039/d3ob01351k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
A simple, broadly applicable protocol for amidation and esterification reactions is described. Thereby, 4-acetamidophenyl triflimide (AITF), a crystalline stable reagent, is employed for the activation of carboxylic acids. The use of AITF as a coupling agent is demonstrated in the synthesis of peptides, amides and esters under mild conditions in good to excellent yields. Notably, peptide segment condensations were also accomplished. A diverse array of synthetic protocols showcasing a broad substrate scope and good functional group compatibility were accomplished. Herein, we systematically summarized the use of AITF in peptide synthesis strategies.
Collapse
Affiliation(s)
- Eti Chetankumar
- Peptide Research Laboratory, Department of Studies in Chemistry, Sneha Bhavan, Bangalore University, Jnana Bharathi, Bengaluru 560 056, India.
| | - Swetha Bharamawadeyar
- Peptide Research Laboratory, Department of Studies in Chemistry, Sneha Bhavan, Bangalore University, Jnana Bharathi, Bengaluru 560 056, India.
| | - Chinthaginjala Srinivasulu
- Peptide Research Laboratory, Department of Studies in Chemistry, Sneha Bhavan, Bangalore University, Jnana Bharathi, Bengaluru 560 056, India.
| | - Vommina V Sureshbabu
- Peptide Research Laboratory, Department of Studies in Chemistry, Sneha Bhavan, Bangalore University, Jnana Bharathi, Bengaluru 560 056, India.
| |
Collapse
|
6
|
Ma Y, Pan Q, Ou C, Cai Y, Ma X, Liu C. Aryl sulfonyl fluoride synthesis via organophotocatalytic fluorosulfonylation of diaryliodonium salts. Org Biomol Chem 2023; 21:7597-7601. [PMID: 37676649 DOI: 10.1039/d3ob01200j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
A mild and efficient synthesis of various aryl sulfonyl fluorides from diaryliodonium salts under organophotocatalysis via a radical sulfur dioxide insertion and fluorination strategy is presented. Diaryliodonium salts are used as aryl radical precursors, the 1,4-diazabicyclo[2.2.2]octane bis(sulfur dioxide) adduct (DABSO) as a sulfonyl source and cheap KHF2 as a desirable fluorine source, respectively. Notably, the electronic properties of substituents on the aromatic rings in diaryliodonium salts have a significant influence on the reaction yields.
Collapse
Affiliation(s)
- Yuyang Ma
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| | - Qijun Pan
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| | - Caiyun Ou
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| | - Yinxia Cai
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| | - Xiaoyu Ma
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| | - Chao Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
7
|
Ou C, Cai Y, Ma Y, Zhang H, Ma X, Liu C. Aliphatic Sulfonyl Fluoride Synthesis via Decarboxylative Fluorosulfonylation of Hypervalent Iodine(III) Carboxylates. Org Lett 2023; 25:6751-6756. [PMID: 37656922 DOI: 10.1021/acs.orglett.3c02652] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
We disclose herein a photocatalytic decarboxylative fluorosulfonylation reaction of various hypervalent iodine(III) carboxylates in combination with 1,4-diazabicyclo[2.2.2]octane-bis(sulfur dioxide) adduct as a sulfonyl source and KHF2 as a desirable fluorine source via a radical sulfur dioxide insertion and fluorination strategy. A one-pot photocatalytic decarboxylative fluorosulfonylation reaction of various carboxylic acids mediated by PhI(OAc)2 was realized, as well. Notably, this transformation can be performed under heating conditions without the need for catalysts.
Collapse
Affiliation(s)
- Caiyun Ou
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Yinxia Cai
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Yuyang Ma
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Haozhen Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Xiaoyu Ma
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Chao Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
8
|
Audet F, Donnard M, Panossian A, Bernier D, Pazenok S, Leroux FR. New Chemical Transformations Involving SO 2 F 2 -Mediated Alcohol Activation. CHEM REC 2023; 23:e202300107. [PMID: 37236146 DOI: 10.1002/tcr.202300107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/02/2023] [Indexed: 05/28/2023]
Abstract
Sulfuryl fluoride is a gas produced on a multi-ton scale for its use as a fumigant. In the last decades, it has gained interest in organic synthesis as a reagent with unique properties in terms of stability and reactivity when compared to other sulfur-based reagents. Sulfuryl fluoride has not only been used for sulfur-fluoride exchange (SuFEx) chemistry but also encountered applications in classic organic synthesis as an efficient activator of both alcohols and phenols, forming a triflate surrogate, namely a fluorosulfonate. A long-standing industrial collaboration in our research group drove our work on the sulfuryl fluoride-mediated transformations that will be highlighted below. We will first describe recent works on metal-catalyzed transformations from aryl fluorosulfonates while emphasizing the one-pot processes from phenol derivatives. In a second section, nucleophilic substitution reactions on polyfluoroalkyl alcohols will be discussed and the value of polyfluoroalkyl fluorosulfonates in comparison to alternative triflate and halide reagents will be brought to light.
Collapse
Affiliation(s)
- Florian Audet
- Laboratoire d'Innovation Moléculaire et Applications (UMR7042), Université de Strasbourg, Université de Haute-Alsace, CNRS, 25 rue Becquerel, 67000, Strasbourg, France
| | - Morgan Donnard
- Laboratoire d'Innovation Moléculaire et Applications (UMR7042), Université de Strasbourg, Université de Haute-Alsace, CNRS, 25 rue Becquerel, 67000, Strasbourg, France
| | - Armen Panossian
- Laboratoire d'Innovation Moléculaire et Applications (UMR7042), Université de Strasbourg, Université de Haute-Alsace, CNRS, 25 rue Becquerel, 67000, Strasbourg, France
| | - David Bernier
- Bayer S.A.S., 14 impasse Pierre Baizet, 69263, Lyon, France
| | - Sergii Pazenok
- Bayer CropScience AG, Alfred Nobel Straße 50, 40789, Monheim, Germany
| | - Frédéric R Leroux
- Laboratoire d'Innovation Moléculaire et Applications (UMR7042), Université de Strasbourg, Université de Haute-Alsace, CNRS, 25 rue Becquerel, 67000, Strasbourg, France
| |
Collapse
|
9
|
Wang T, Xu L, Dong J. FSO 2N 3-Enabled Synthesis of Tetrazoles from Amidines and Guanidines. Org Lett 2023; 25:6222-6227. [PMID: 37581428 DOI: 10.1021/acs.orglett.3c02470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Herein we report the facile syntheses of tetrazoles enabled by FSO2N3 under mild conditions. FSO2N3 has been shown as the most powerful diazotizing reagent, which converts thousands of primary amines to azides fast and orthogonally. As the follow-up studies of the diazo transfer reaction using FSO2N3, we discover that amidines and guanidines are rapidly transformed into tetrazole derivatives when reacting with FSO2N3 under an aqueous environment, which is unprecedented for tetrazole synthesis.
Collapse
Affiliation(s)
- Tianyu Wang
- Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Long Xu
- Institute of Translational Medicine, Zhangjiang Institute for Advanced Study, National Facility for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiajia Dong
- Institute of Translational Medicine, Zhangjiang Institute for Advanced Study, National Facility for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China
| |
Collapse
|
10
|
Chen XL, Qin HL. Synthesis of aliphatic nitriles from cyclobutanone oxime mediated by sulfuryl fluoride (SO 2F 2). Beilstein J Org Chem 2023; 19:901-908. [PMID: 37377774 PMCID: PMC10291241 DOI: 10.3762/bjoc.19.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
A SO2F2-mediated ring-opening cross-coupling of cyclobutanone oxime derivatives with alkenes was developed for the construction of a range of δ-olefin-containing aliphatic nitriles with (E)-configuration selectivity. This new method features wide substrate scope, mild conditions, and direct N-O activation.
Collapse
Affiliation(s)
- Xian-Lin Chen
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, PR China
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, PR China
| |
Collapse
|
11
|
Zeng D, Deng WP, Jiang X. Advances in the construction of diverse SuFEx linkers. Natl Sci Rev 2023; 10:nwad123. [PMID: 37441224 PMCID: PMC10335383 DOI: 10.1093/nsr/nwad123] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/02/2022] [Accepted: 01/30/2023] [Indexed: 07/15/2023] Open
Abstract
Sulfur fluoride exchange (SuFEx), a new generation of click chemistry, was first presented by Sharpless, Dong and co-workers in 2014. Owing to the high stability and yet efficient reactivity of the SVI-F bond, SuFEx has found widespread applications in organic synthesis, materials science, chemical biology and drug discovery. A diverse collection of SuFEx linkers has emerged, involving gaseous SO2F2 and SOF4 hubs; SOF4-derived iminosulfur oxydifluorides; O-, N- and C-attached sulfonyl fluorides and sulfonimidoyl fluorides; and novel sulfondiimidoyl fluorides. This review summarizes the progress of these SuFEx connectors, with an emphasis on analysing the advantages and disadvantages of synthetic strategies of these connectors based on the SuFEx concept, and it is expected to be beneficial to researchers to rapidly and correctly understand this field, thus inspiring further development in SuFEx chemistry.
Collapse
Affiliation(s)
- Daming Zeng
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | | | | |
Collapse
|
12
|
Xie J, Lan F, Liu X, Weng W, Ding N. The Synthesis of Fluorinated Carbohydrates Using Sulfuryl Fluoride as the Deoxyfluorination Reagent. Org Lett 2023; 25:3796-3799. [PMID: 37191445 DOI: 10.1021/acs.orglett.3c01305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Fluorination of carbohydrates has been one of the strategies to increase their enzymatic and chemical stabilities and reduce their hydrophilicities, making this modification attractive for drug discovery purposes. The synthesis of monofluorinated carbohydrates was achieved under mild conditions by using SO2F2 as the deoxyfluorination reagent in the presence of a base without extra fluoride additives. This method features low toxicity, easy availability, low cost, and high efficiency and can be subjected to diverse sugar units.
Collapse
Affiliation(s)
- Jiahao Xie
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Fangzhou Lan
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Xuyuan Liu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Weizhao Weng
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Ning Ding
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| |
Collapse
|
13
|
Zhang G, Luo X, Guan C, Cui Y, Ding C. Pd/Ni Co‐catalyzed Selective Cross‐Coupling of Aryl Bromides and Aryl Fluorosulfonates at Room Temperature. European J Org Chem 2023. [DOI: 10.1002/ejoc.202300114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
14
|
Guan C, Qi H, Han L, Liu M, Wang J, Zhang G, Ding C. Palladium‐Catalyzed Cyclopropanation of Aryl/Heteroaryl Fluoro‐sulfonates. ChemistrySelect 2023. [DOI: 10.1002/slct.202300420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- Chenfei Guan
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 P. R. of China
| | - Huijie Qi
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 P. R. of China
| | - Linjun Han
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 P. R. of China
| | - Miaoyu Liu
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 P. R. of China
| | - Jing Wang
- Lianhe Chemical Technology Co. Ltd. Huangyan Taizhou China 318020
| | - Guofu Zhang
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 P. R. of China
| | - Chengrong Ding
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 P. R. of China
| |
Collapse
|
15
|
Kong X, Chen Y, Liu Q, Wang W, Zhang S, Zhang Q, Chen X, Xu YQ, Cao ZY. Selective Fluorosulfonylation of Thianthrenium Salts Enabled by Electrochemistry. Org Lett 2023; 25:581-586. [PMID: 36695525 DOI: 10.1021/acs.orglett.2c03956] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A practical electrochemically driven method for fluorosulfonylation of both aryl and alkyl thianthrenium salts has been disclosed. The strategy does not need external redox reagents or metal catalysts. In combination with C-H thianthrenation of aromatics, this method provides a new tool for the site-selective fluorosulfonylation of drugs.
Collapse
Affiliation(s)
- Xianqiang Kong
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Yiyi Chen
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Qianwen Liu
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - WenJie Wang
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Shuangquan Zhang
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Qian Zhang
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Xiaohui Chen
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China.,Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Jiangsu 213164, China
| | - Yuan-Qing Xu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Zhong-Yan Cao
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| |
Collapse
|
16
|
Thomson BJ, Khasnavis SR, Grigorian EC, Krishnan R, Yassa TD, Lee K, Sammis GM, Ball ND. Facile synthesis of sulfonyl fluorides from sulfonic acids. Chem Commun (Camb) 2023; 59:555-558. [PMID: 36503915 PMCID: PMC9835472 DOI: 10.1039/d2cc05781f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
Herein, we demonstrate two complementary strategies for the syntheses of sulfonyl fluorides using sulfonic acids and their salts. One strategy involves the conversion of sulfonic acid sodium salts to sulfonyl fluorides using thionyl fluoride in 90-99% yields in one hour. Lessons learned from the mechanism of this reaction also have enabled a complementary deoxyfluorination of sulfonic acids using Xtalfluor-E® - a bench stable solid - allowing for the conversion of both aryl and alkyl sulfonic acids and salts to sulfonyl fluorides in 41-94% yields. Notably, using Xtalfluor-E® enabled milder conditions and the use of both sulfonic acids and their sodium salts.
Collapse
Affiliation(s)
- Brodie J Thomson
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| | - Samuel R Khasnavis
- Department of Chemistry, Pomona College, 645 North College Avenue, Claremont, California 91711, USA.
| | - Emma C Grigorian
- Department of Chemistry, Pomona College, 645 North College Avenue, Claremont, California 91711, USA.
| | - Rohun Krishnan
- Department of Chemistry, Pomona College, 645 North College Avenue, Claremont, California 91711, USA.
| | - Theodore D Yassa
- Department of Chemistry, Pomona College, 645 North College Avenue, Claremont, California 91711, USA.
| | - Kelvin Lee
- Department of Chemistry, Pomona College, 645 North College Avenue, Claremont, California 91711, USA.
| | - Glenn M Sammis
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| | - Nicholas D Ball
- Department of Chemistry, Pomona College, 645 North College Avenue, Claremont, California 91711, USA.
| |
Collapse
|
17
|
Yang S, Li H, Yu X, An J, Szostak M. Suzuki–Miyaura Cross-Coupling of Aryl Fluorosulfonates Mediated by Air- and Moisture-stable [Pd(NHC)(μ-Cl)Cl] 2 Precatalysts: Broad Platform for C–O Cross-Coupling of Stable Phenolic Electrophiles. J Org Chem 2022; 87:15250-15260. [DOI: 10.1021/acs.joc.2c01778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shiyi Yang
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Hengzhao Li
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Xiang Yu
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Jie An
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
18
|
Zhang G, Luo Z, Wang H, Deng L, Ding C. SO
2
F
2
Promoted Deoxygenhalogenation from Alcohols: A Practical Method for Preparing Halides. ChemistrySelect 2022. [DOI: 10.1002/slct.202202853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Guofu Zhang
- Department College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Zijin Luo
- Department College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Huimin Wang
- Department College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Linfang Deng
- The Third Affiliated Hospital of Zhejiang Chinese Medical University Hangzhou 310014 P. R. China
| | - Chengrong Ding
- Department College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 P. R. China
| |
Collapse
|
19
|
Chemical and biology of Sulfur (VI) Fluoride Exchange (SuFEx) Click Chemistry for Drug Discovery. Bioorg Chem 2022; 130:106227. [DOI: 10.1016/j.bioorg.2022.106227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/05/2022] [Accepted: 10/22/2022] [Indexed: 11/19/2022]
|
20
|
Aizezi N, Zheng J, Xiao K, Xiang M, Abulimiti B, Manapu A. Molecular spectra and dissociation dynamics of SO
2
F
2
under external electric fields. INT J CHEM KINET 2022. [DOI: 10.1002/kin.21607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nuerbiye Aizezi
- College of Physics and Electronic Engineering Xinjiang Normal University Urumqi Xinjiang China
| | - Jingyan Zheng
- College of Physics and Electronic Engineering Xinjiang Normal University Urumqi Xinjiang China
| | - Kelaiti Xiao
- College of Computer Science and Technology Xinjiang Normal University Urumqi Xinjiang China
| | - Mei Xiang
- College of Physics and Electronic Engineering Xinjiang Normal University Urumqi Xinjiang China
| | - Bumaliya Abulimiti
- College of Physics and Electronic Engineering Xinjiang Normal University Urumqi Xinjiang China
| | - Aidehaierjiang Manapu
- College of Physics and Electronic Engineering Xinjiang Normal University Urumqi Xinjiang China
| |
Collapse
|
21
|
Zhang G, Guan C, Han L, Zhao Y, Ding C. A late-stage functionalization tool: sulfonyl fluoride mediated deoxymethylation of phenols. Org Biomol Chem 2022; 20:7640-7644. [PMID: 36124914 DOI: 10.1039/d2ob01523d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The late-stage functionalization of drugs and natural products has been identified as a promising approach to accelerate the discovery of new bioactive compounds. Due to the presence of the "Magic Methyl Effect", the direct deoxymethylation of phenolic hydroxyl groups, which are widespread in natural molecules, is a challenging task. A mild and rapid strategy for direct phenol deoxymethylation under metal catalysis using SO2F2 is described in this paper, while good functional group tolerance and high chemoselectivity allow this strategy to be one of the powerful tools for LSF. The power of this new platform is showcased through gram-scale and orthogonal experiments.
Collapse
Affiliation(s)
- Guofu Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Chenfei Guan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Linjun Han
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Yiyong Zhao
- Zhejiang Ecological Environment Low Carbon Development Center, Hangzhou 310012, P. R. China
| | - Chengrong Ding
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| |
Collapse
|
22
|
Chrominski M, Ziemkiewicz K, Kowalska J, Jemielity J. Introducing SuFNucs: Sulfamoyl-Fluoride-Functionalized Nucleosides That Undergo Sulfur Fluoride Exchange Reaction. Org Lett 2022; 24:4977-4981. [PMID: 35771144 PMCID: PMC9295159 DOI: 10.1021/acs.orglett.2c02034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The reaction between
ribonucleosides and ex situ generated sulfonyl
fluoride has been developed. The reaction takes place at the −NH2 groups of nucleobases, and the resulting nucleosides are
equipped with a sulfamoyl fluoride moiety, dubbed SuFNucs. These species
undergo a selective sulfur fluoride exchange (SuFEx) reaction with
various amines, leading to sulfamide-functionalized derivatives of
adenosine, guanosine, and cytidine (SulfamNucs). The scope and examples
of further SuFNucs fuctionalization leading to nucleotides, oligonucleotides,
and peptide–nucleoside conjugates are presented.
Collapse
Affiliation(s)
- Mikołaj Chrominski
- Centre of New Technologies University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Kamil Ziemkiewicz
- Centre of New Technologies University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
23
|
Bolduc TG, Lee C, Chappell WP, Sammis GM. Thionyl Fluoride-Mediated One-Pot Substitutions and Reductions of Carboxylic Acids. J Org Chem 2022; 87:7308-7318. [PMID: 35549478 DOI: 10.1021/acs.joc.2c00496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Thionyl fluoride (SOF2) is an underutilized reagent that is yet to be extensively studied for its synthetic applications. We previously reported that it is a powerful reagent for both the rapid syntheses of acyl fluorides and for one-pot peptide couplings, but the full scope of these nucleophilic acyl substitutions had not been explored. Herein, we report one-pot thionyl fluoride-mediated syntheses of peptides and amides (35 examples, 45-99% yields) that were not explored in our previous study. The scope of thionyl fluoride-mediated nucleophilic acyl substitutions was also expanded to encompass esters (24 examples, 64-99% yields) and thioesters (11 examples, 24-96% yields). In addition, we demonstrate that the scope of thionyl fluoride-mediated one-pot reactions can be extended beyond nucleophilic acyl substitutions to mild reductions of carboxylic acids using NaBH4 (13 examples, 33-80% yields).
Collapse
Affiliation(s)
- Trevor G Bolduc
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Cayo Lee
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - William P Chappell
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Glenn M Sammis
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
24
|
Ma Z, Shan L, Ma X, Hu X, Guo Y, Chen QY, Liu C. Arenesulfonyl fluoride synthesis via one-pot copper-free Sandmeyer-type three-component reaction of aryl amine, K2S2O5, and NFSI. J Fluor Chem 2022. [DOI: 10.1016/j.jfluchem.2022.109948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Maschmeyer T, Yunker LPE, Hein JE. Quantitative and convenient real-time reaction monitoring using stopped-flow benchtop NMR. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00048b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We present a stopped-flow benchtop NMR system (composed of commercially available hardware components) that allows for quantitative reaction monitoring to be completed with relative ease, even with experimentally complex reaction systems.
Collapse
Affiliation(s)
- Tristan Maschmeyer
- Department of Chemistry, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Lars P. E. Yunker
- Department of Chemistry, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Jason E. Hein
- Department of Chemistry, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
26
|
Zhang H, Li S, Zheng HL, Zhu G, Liao S, Nie X. Photocatalytic fluorosulfonylation of aliphatic carboxylic acid NHPI esters. Org Chem Front 2022. [DOI: 10.1039/d2qo00861k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
SO2 radical insertion/fluorination via a photocatalytic redox strategy is developed, providing an efficient and reliable approach for the synthesis of alkylsulfonyl fluorides.
Collapse
Affiliation(s)
- Honghai Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Shaojie Li
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Han-Liang Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Gangguo Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Beijing National Laboratory of Molecular Science (BNLMS), Beijing 100190, China
| | - Xingliang Nie
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| |
Collapse
|
27
|
Ma Z, Liu Y, Ma X, Hu X, Guo Y, Chen QY, Liu C. Aliphatic sulfonyl fluoride synthesis via reductive decarboxylative fluorosulfonylation of aliphatic carboxylic acid NHPI esters. Org Chem Front 2022. [DOI: 10.1039/d1qo01655e] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A general and efficient approach to various aliphatic sulfonyl fluorides by the reductive decarboxylative fluorosulfonylation of aliphatic carboxylic acids via a radical sulfur dioxide insertion and fluorination strategy was developed.
Collapse
Affiliation(s)
- Zhanhu Ma
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Yongan Liu
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xiaoyu Ma
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Xiaojun Hu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Yong Guo
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Qing-Yun Chen
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Chao Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
28
|
Song X, He Y, Wang B, Peng S, Pan X, Wei M, Liu Q, Qin HL, Tang H. Synthesis of aryl sulfonyl fluorides from aryl sulfonyl chlorides using sulfuryl fluoride (SO2F2) as fluoride provider. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Zhou Y, Li Z, Hu M, Yan Z, Lin S. Oxidation of Sulfides with SO 2F 2/H 2O 2/Base. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202111022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Lee C, Thomson BJ, Sammis GM. Rapid and column-free syntheses of acyl fluorides and peptides using ex situ generated thionyl fluoride. Chem Sci 2021; 13:188-194. [PMID: 35059166 PMCID: PMC8694322 DOI: 10.1039/d1sc05316g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/28/2021] [Indexed: 01/28/2023] Open
Abstract
Thionyl fluoride (SOF2) was first isolated in 1896, but there have been less than 10 subsequent reports of its use as a reagent for organic synthesis. This is partly due to a lack of facile, lab-scale methods for its generation. Herein we report a novel protocol for the ex situ generation of SOF2 and subsequent demonstration of its ability to access both aliphatic and aromatic acyl fluorides in 55-98% isolated yields under mild conditions and short reaction times. We further demonstrate its aptitude in amino acid couplings, with a one-pot, column-free strategy that affords the corresponding dipeptides in 65-97% isolated yields with minimal to no epimerization. The broad scope allows for a wide range of protecting groups and both natural and unnatural amino acids. Finally, we demonstrated that this new method can be used in sequential liquid phase peptide synthesis (LPPS) to afford tri-, tetra-, penta-, and decapeptides in 14-88% yields without the need for column chromatography. We also demonstrated that this new method is amenable to solid phase peptide synthesis (SPPS), affording di- and pentapeptides in 80-98% yields.
Collapse
Affiliation(s)
- Cayo Lee
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
| | - Brodie J Thomson
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
| | - Glenn M Sammis
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
| |
Collapse
|
31
|
|
32
|
Liao X, Zhou Y, Ai C, Ye C, Chen G, Yan Z, Lin S. SO2F2-mediated oxidation of primary and tertiary amines with 30% aqueous H2O2 solution. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
33
|
Santos L, Donnard M, Panossian A, Vors JP, Jeschke P, Bernier D, Pazenok S, Leroux FR. SO 2F 2-Mediated N-Alkylation of Imino-Thiazolidinones. J Org Chem 2021; 87:2012-2021. [PMID: 34355900 DOI: 10.1021/acs.joc.1c01247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The N-alkylation of ambident and weakly nucleophilic imino-thiazolidinones has been developed via substitution with alkyl fluorosulfonates. These reactive electrophiles are obtained through the transformation of nontoxic, economic, and commercially available alcohol derivatives on exposure to SO2F2 gas. The use of electron-withdrawing groups and DMAc as solvent affords a (Z)- and N-endocyclic selectivity for the easy introduction of a variety of alkyl and polyfluoroalkyl chains.
Collapse
Affiliation(s)
- Laura Santos
- University of Strasbourg, University of Haute-Alsace, CNRS, UMR 7042-LIMA, ECPM, 25 Rue Becquerel, 67087 Strasbourg, France
| | - Morgan Donnard
- University of Strasbourg, University of Haute-Alsace, CNRS, UMR 7042-LIMA, ECPM, 25 Rue Becquerel, 67087 Strasbourg, France
| | - Armen Panossian
- University of Strasbourg, University of Haute-Alsace, CNRS, UMR 7042-LIMA, ECPM, 25 Rue Becquerel, 67087 Strasbourg, France
| | - Jean-Pierre Vors
- Bayer S.A.S., 14 Impasse Pierre Baizet, BP99163, 69263 Lyon, Cedex 09, France
| | - Peter Jeschke
- Bayer CropScience AG, Alfred-Nobel-Strasse 50, 40789 Monheim, Germany
| | - David Bernier
- Bayer S.A.S., 14 Impasse Pierre Baizet, BP99163, 69263 Lyon, Cedex 09, France
| | - Sergii Pazenok
- Bayer CropScience AG, Alfred-Nobel-Strasse 50, 40789 Monheim, Germany
| | - Frédéric R Leroux
- University of Strasbourg, University of Haute-Alsace, CNRS, UMR 7042-LIMA, ECPM, 25 Rue Becquerel, 67087 Strasbourg, France
| |
Collapse
|
34
|
Borrego-Muñoz P, Ospina F, Quiroga D. A Compendium of the Most Promising Synthesized Organic Compounds against Several Fusarium oxysporum Species: Synthesis, Antifungal Activity, and Perspectives. Molecules 2021; 26:3997. [PMID: 34208916 PMCID: PMC8271819 DOI: 10.3390/molecules26133997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 11/17/2022] Open
Abstract
Vascular wilt caused by F. oxysporum (FOX) is one of the main limitations of producing several agricultural products worldwide, causing economic losses between 40% and 100%. Various methods have been developed to control this phytopathogen, such as the cultural, biological, and chemical controls, the latter being the most widely used in the agricultural sector. The treatment of this fungus through systemic fungicides, although practical, brings problems because the agrochemical agents used have shown mutagenic effects on the fungus, increasing the pathogen's resistance. The design and the synthesis of novel synthetic antifungal agents used against FOX have been broadly studied in recent years. This review article presents a compendium of the synthetic methodologies during the last ten years as promissory, which can be used to afford novel and potential agrochemical agents. The revision is addressed from the structural core of the most active synthetic compounds against FOX. The synthetic methodologies implemented strategies based on cyclo condensation reactions, radical cyclization, electrocyclic closures, and carbon-carbon couplings by metal-organic catalysis. This revision contributes significantly to the organic chemistry, supplying novel alternatives for the use of more effective agrochemical agents against F. oxysporum.
Collapse
Affiliation(s)
| | | | - Diego Quiroga
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Campus Nueva Granada, Universidad Militar, Nueva Granada, Cajicá 250247, Colombia; (P.B.-M.); (F.O.)
| |
Collapse
|
35
|
Wei M, Liang D, Cao X, Luo W, Ma G, Liu Z, Li L. A Broad‐Spectrum Catalytic Amidation of Sulfonyl Fluorides and Fluorosulfates**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mingjie Wei
- PCFM Lab and GDHPRC Lab School of Chemistry Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Dacheng Liang
- PCFM Lab and GDHPRC Lab School of Chemistry Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Xiaohui Cao
- School of Pharmacy Guangdong Pharmaceutical University Guangzhou 510006 P. R. China
| | - Wenjun Luo
- PCFM Lab and GDHPRC Lab School of Chemistry Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Guojian Ma
- PCFM Lab and GDHPRC Lab School of Chemistry Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Zeyuan Liu
- PCFM Lab and GDHPRC Lab School of Chemistry Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Le Li
- PCFM Lab and GDHPRC Lab School of Chemistry Sun Yat-sen University Guangzhou 510275 P. R. China
| |
Collapse
|
36
|
Wei M, Liang D, Cao X, Luo W, Ma G, Liu Z, Li L. A Broad-Spectrum Catalytic Amidation of Sulfonyl Fluorides and Fluorosulfates*. Angew Chem Int Ed Engl 2021; 60:7397-7404. [PMID: 33337566 DOI: 10.1002/anie.202013976] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/30/2020] [Indexed: 12/18/2022]
Abstract
A broad-spectrum, catalytic method has been developed for the synthesis of sulfonamides and sulfamates. With the activation by the combination of a catalytic amount of 1-hydroxybenzotriazole (HOBt) and silicon additives, amidations of sulfonyl fluorides and fluorosulfates proceeded smoothly and excellent yields were generally obtained (87-99 %). Noticeably, this protocol is particularly efficient for sterically hindered substrates. Catalyst loading is generally low and only 0.02 mol % of catalyst is required for the multidecagram-scale synthesis of an amantadine derivative. In addition, the potential of this method in medicinal chemistry has been demonstrated by the synthesis of the marketed drug Fedratinib via a key intermediate sulfonyl fluoride 13. Since a large number of amines are commercially available, this route provides a facile entry to access Fedratinib analogues for biological screening.
Collapse
Affiliation(s)
- Mingjie Wei
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Dacheng Liang
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Xiaohui Cao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Wenjun Luo
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Guojian Ma
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zeyuan Liu
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Le Li
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
37
|
Room temperature clickable coupling electron deficient amines with sterically hindered carboxylic acids for the construction of amides. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Ai C, Liao X, Zhou Y, Yan Z, Lin S. SO2F2-mediated deoxygenative C2-sulfonylation of quinoline N-oxides with sodium sulfinates. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
39
|
Zhou T, Szostak M. Palladium-Catalyzed Cross-Couplings by C-O Bond Activation. Catal Sci Technol 2020; 10:5702-5739. [PMID: 33796263 PMCID: PMC8009314 DOI: 10.1039/d0cy01159b] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although palladium-catalyzed cross-coupling of aryl halides and reactive pseudohalides has revolutionized the way organic molecules are constructed today across various fields of chemistry, comparatively less progress has been made in the palladium-catalyzed cross-coupling of less reactive C-O electrophiles. This is despite the fact that the use of phenols and phenol derivatives as bench-stable cross-coupling partners has been well-recognized to bring about major advantages over aryl halides, such as (1) natural abundance of phenols, (2) avoidance of toxic halides, (3) orthogonal cross-coupling conditions, (4) prefunctionalization of phenolic substrates by electrophilic substitution or C-H functionalization, (5) ready availability of phenols from a different pool of precursors than aryl halides. In this review, we present an overview of recent advances made in the field of palladium-catalyzed cross-coupling of C-O electrophiles with a focus on (1) catalytic systems, (2) reaction type, and (3) class of C-O coupling partners. Although the field has been historically dominated by nickel catalysis, it is now evident that the use of more versatile, more functional group tolerant and highly active palladium catalysts supported by appropriately designed ancillary ligands enables the cross-coupling with improved substrate scope and generality, and likely represents a practical solution to the broadly applicable cross-coupling of various C-O bonds across diverse chemical disciplines. The review covers the period through June 2020.
Collapse
Affiliation(s)
- Tongliang Zhou
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, United States
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, United States
| |
Collapse
|
40
|
Gurjar J, Fokin VV. Sulfuryl Fluoride Mediated Synthesis of Amides and Amidines from Ketoximes via Beckmann Rearrangement. Chemistry 2020; 26:10402-10405. [PMID: 31997464 DOI: 10.1002/chem.201905358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/20/2020] [Indexed: 12/26/2022]
Abstract
A metal-free and redox-neutral method for Beckmann rearrangement employing inexpensive and readily available SO2 F2 gas is described. The reported transformation proceeds at ambient temperature and is compatible with a wide range of sterically and electronically diverse aromatic, heteroaromatic, aliphatic and lignin-like oximes providing amides in good to excellent yields. The reaction proceeds through the formation of an imidoyl fluoride intermediate that can also be used for the synthesis of amidines.
Collapse
Affiliation(s)
- Jitendra Gurjar
- University of Southern California, The Bridge@USC and Loker Hydrocarbon Research Institute, 1002 Childs Way, Los Angeles, CA, 90089-3502, USA
| | - Valery V Fokin
- University of Southern California, The Bridge@USC and Loker Hydrocarbon Research Institute, 1002 Childs Way, Los Angeles, CA, 90089-3502, USA
| |
Collapse
|
41
|
Foth PJ, Malig TC, Yu H, Bolduc TG, Hein JE, Sammis GM. Halide-Accelerated Acyl Fluoride Formation Using Sulfuryl Fluoride. Org Lett 2020; 22:6682-6686. [PMID: 32806146 DOI: 10.1021/acs.orglett.0c02566] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Herein, we report a new one-pot sequential method for SO2F2-mediated nucleophilic acyl substitution reactions starting from carboxylic acids. A mechanistic study revealed that SO2F2-mediated acid activation proceeds via the anhydride, which is then converted to the corresponding acyl fluoride. Tetrabutylammonium chloride or bromide accelerate the formation of acyl fluoride. Optimized halide-accelerated conditions were used to synthesize acyl fluorides in 30-80% yields, and esters, amides, and thioesters in 72-96% yields without reoptimization for each nucleophile.
Collapse
Affiliation(s)
- Paul J Foth
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Thomas C Malig
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hao Yu
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Trevor G Bolduc
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Jason E Hein
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Glenn M Sammis
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
42
|
Zhang G, Cui Y, Zhao Y, Cui Y, Bao S, Ding C. A Practical Approach to Ureas and Thiocarbamates: SO
2
F
2
‐Promoted Lossen Rearrangement of Hydroxamic Acid. ChemistrySelect 2020. [DOI: 10.1002/slct.202002270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Guofu Zhang
- College of Chemical EngineeringZhejiang University of Technology Hangzhou 310014 P. R. China
| | - Yin Cui
- College of Chemical EngineeringZhejiang University of Technology Hangzhou 310014 P. R. China
| | - Yiyong Zhao
- Zhejiang Emission Trading Center Hangzhou 310012 P. R. China
| | - Yunqiang Cui
- Zhejiang Yuntao Biotechnology Co., Ltd Shaoxing 312369 P. R. China
| | - Shenxiao Bao
- Hangzhou Sandun Middle School Hangzhou 310030 P. R. China
| | - Chengrong Ding
- College of Chemical EngineeringZhejiang University of Technology Hangzhou 310014 P. R. China
| |
Collapse
|
43
|
Lin Q, Ma Z, Zheng C, Hu X, Guo Y, Chen Q, Liu C. Arenesulfonyl Fluoride Synthesis via Copper‐free Sandmeyer‐type Fluorosulfonylation of Arenediazonium Salts. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000175] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Qiongzhen Lin
- School of Chemical Engineering, Xinjiang Agricultural University Urumqi Xinjiang Uygur Autonomous Region 830052 China
| | - Zhanhu Ma
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology 100 Haiquan Road Shanghai 201418 China
| | - Changge Zheng
- School of Chemical Engineering, Xinjiang Agricultural University Urumqi Xinjiang Uygur Autonomous Region 830052 China
| | - Xiao‐Jun Hu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology 100 Haiquan Road Shanghai 201418 China
| | - Yong Guo
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Qing‐Yun Chen
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Chao Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology 100 Haiquan Road Shanghai 201418 China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
44
|
Zhao Y, Wei J, Ge S, Zhang G, Ding C. SO 2F 2-Mediated one-pot cascade process for transformation of aldehydes (RCHO) to cyanamides (RNHCN). RSC Adv 2020; 10:17288-17292. [PMID: 35521444 PMCID: PMC9053412 DOI: 10.1039/d0ra02631j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022] Open
Abstract
A simple, mild and practical cascade process for the direct conversion of aldehydes to cyanamides was developed featuring a wide substrate scope and great functional group tolerability. This method allows for transformations of readily available, inexpensive, and abundant aldehydes to highly valuable cyanamides in a pot, atom, and step-economical manner with a green nitrogen source. This protocol will serve as a robust tool for the installation of the cyanamide moiety in various complicated molecules.
Collapse
Affiliation(s)
- Yiyong Zhao
- College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Junjie Wei
- Zhejiang Emission Trading Center Hangzhou 310014 People's Republic of China
| | - Shuting Ge
- College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Guofu Zhang
- College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Chengrong Ding
- College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| |
Collapse
|
45
|
Liu Y, Yu D, Guo Y, Xiao JC, Chen QY, Liu C. Arenesulfonyl Fluoride Synthesis via Copper-Catalyzed Fluorosulfonylation of Arenediazonium Salts. Org Lett 2020; 22:2281-2286. [PMID: 32115957 DOI: 10.1021/acs.orglett.0c00484] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We report herein a general and practical copper-catalyzed fluorosulfonylation reaction of a wide range of abundant arenediazonium salts to smoothly prepare various arenesulfonyl fluorides using the 1,4-diazabicyclo[2.2.2]octane-bis(sulfur dioxide) adduct as a convenient sulfonyl source in combination with KHF2 as an ideal fluorine source and without the need for additional oxidants. Interestingly, the electronic character of the arene ring in the starting arenediazonium salts has a significant impact on the reaction mechanistic pathway.
Collapse
Affiliation(s)
- Yongan Liu
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Donghai Yu
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yong Guo
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Ji-Chang Xiao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Qing-Yun Chen
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Chao Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
46
|
Demaerel J, Veryser C, De Borggraeve WM. Ex situ gas generation for lab scale organic synthesis. REACT CHEM ENG 2020. [DOI: 10.1039/c9re00497a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This review discusses recent examples of ex situ generated gaseous reagents, and their use in organic synthesis.
Collapse
Affiliation(s)
- Joachim Demaerel
- Molecular Design and Synthesis
- Department of Chemistry
- 3001 Leuven
- Belgium
| | - Cedrick Veryser
- Molecular Design and Synthesis
- Department of Chemistry
- 3001 Leuven
- Belgium
| | | |
Collapse
|
47
|
Fang WY, Zha GF, Qin HL. Making Carbonyls of Amides Nucleophilic and Hydroxyls of Alcohols Electrophilic Mediated by SO2F2 for Synthesis of Esters from Amides. Org Lett 2019; 21:8657-8661. [DOI: 10.1021/acs.orglett.9b03274] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wan-Yin Fang
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, P. R. China
| | - Gao-Feng Zha
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, P. R. China
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, P. R. China
| |
Collapse
|