1
|
Chillal AS, Bhawale RT, Sharma S, Kshirsagar UA. Electrochemical Regioselective C(sp 2)-H Bond Chalcogenation of Pyrazolo[1,5- a]pyrimidines via Radical Cross-Coupling at Room Temperature. J Org Chem 2024; 89:14496-14504. [PMID: 39283698 DOI: 10.1021/acs.joc.4c00856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Herein, we disclose an electrochemical approach for the C(sp2)-H chalcogenation of pyrazolo[1,5-a]pyrimidines. This technique offers an oxidant and catalyst-free protocol for achieving regioselective chalcogenation of pyrazolo[1,5-a]pyrimidines. The procedure uses only 0.5 equiv. of diaryl chalcogenides which underscores the atom economy of the protocol. Key attributes of this methodology include mild reaction conditions, short reaction time, utilization of cheap electrode materials, and eco-friendly reaction conditions. Cyclic voltammetry studies and radical quenching experiments revealed a radical cross-coupling pathway for the reaction mechanism.
Collapse
Affiliation(s)
- Abhinay S Chillal
- Department of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Indore 453552, India
| | - Rajesh T Bhawale
- Department of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Indore 453552, India
| | - Siddharth Sharma
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur 313001, India
| | - Umesh A Kshirsagar
- Department of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Indore 453552, India
| |
Collapse
|
2
|
Dapkekar AB, Satyanarayana G. Electrochemically driven regioselective construction of 4-sulfenyl-isochromenones from o-alkynylbenzoates and diaryl disulfides. Org Biomol Chem 2024; 22:7111-7116. [PMID: 39140309 DOI: 10.1039/d4ob01137f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Herein, we report a convenient and environmentally friendly electrochemical technique that enables the regioselective construction of 4-sulfenyl-1H-isochromen-1-ones using readily available precursors such as o-alkynyl benzoates and diaryl disulfides. This electrochemical process has been accomplished through constant current electrolysis in an undivided cell under external acid, catalyst, oxidant, or metal-free conditions. Owing to this protocol's mild reaction conditions, the products are obtained in good to very good yields, demonstrating a broad substrate scope and functional group tolerance.
Collapse
Affiliation(s)
- Anil Balajirao Dapkekar
- Department of Chemistry, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy, Telangana 502284, India.
| | - Gedu Satyanarayana
- Department of Chemistry, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy, Telangana 502284, India.
| |
Collapse
|
3
|
Zhao Z, Zhang H, Yan H, Yu X, Gu L, Zhang S. Electrophotocatalytic Tellurosulfonylation of Alkynes for the Synthesis of β-(Telluro)vinyl Sulfones. Org Lett 2024; 26:6114-6119. [PMID: 38968081 DOI: 10.1021/acs.orglett.4c01831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Difunctionalization of alkynes has gained a lot of interest in current organic chemistry. Herein, we developed an electrophotocatalytic multicomponent cascade reaction of alkynes and indoles with sulfinic acid sodium salts using elemental tellurium as the tellurium source. Using synergistic anodic oxidation and visible-light irradiation, various β-(telluro)vinyl sulfones have been prepared. This strategy features mild reaction conditions, excellent substrate scope, readily available starting materials, and great functional group tolerance.
Collapse
Affiliation(s)
- Zhiheng Zhao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, P. R. China
| | - Huiping Zhang
- College of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Hongyan Yan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, P. R. China
| | - Xixi Yu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, P. R. China
| | - Lijun Gu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, P. R. China
| | - Shengyong Zhang
- School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| |
Collapse
|
4
|
Bag R, Sharma NK. Pd-Catalyzed Picolinamide-Directed C(sp 2)-H Sulfonylation of Amino Acids/Peptides with Sodium Sulfinates. J Org Chem 2024; 89:10127-10147. [PMID: 38924796 DOI: 10.1021/acs.joc.4c00988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
This report describes a Pd-catalyzed picolinamide-directed site-selective C(sp2)-H sulfonylation of amino acids and peptides with sodium sulfinates in moderate to good yields. Sulfonylation of levodopa and dopamine drug molecules and late-stage directed peptide sulfonylation are studied for the first time. Broad substrate scope having various functionalities, late-stage drug modifications, and various post synthetic utilities such as chalcogenation, bromination, olefination, and arylation are potential advantages.
Collapse
Affiliation(s)
- Raghunath Bag
- National Institute of Science Education and Research (NISER)─Bhubaneswar, Jatni-Campus, Bhubaneswar 752050, India
- Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai 400 094, India
| | - Nagendra K Sharma
- National Institute of Science Education and Research (NISER)─Bhubaneswar, Jatni-Campus, Bhubaneswar 752050, India
- Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai 400 094, India
| |
Collapse
|
5
|
Zhao L, Weng Y, Zhou X, Wu G. Aminoselenation and Dehydroaromatization of Cyclohexanones with Anilines and Diselenides. Org Lett 2024. [PMID: 38809603 DOI: 10.1021/acs.orglett.4c01799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
A three-component cascade reaction involving cyclohexanones, anilines, and diaryl diselenides under metal-free conditions is reported. The ortho-selenation of cyclohexanones with diaryl diselenides, followed by sequential dehydroaromatization with anilines, enables the preparation of a variety of o-selanyl anilines in moderate to excellent yields. This innovative transformation is notable for its excellent tolerance of functional groups and is suitable for the late-stage modification of complex pharmaceuticals.
Collapse
Affiliation(s)
- Lin Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yujie Weng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xinyu Zhou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Ge Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
6
|
Sun Q, Xu Y, Yang L, Zheng CL, Wang G, Wang HB, Fang Z, Wang CS, Guo K. Direct C-H Sulfuration: Synthesis of Disulfides, Dithiocarbamates, Xanthates, Thiocarbamates and Thiocarbonates. Chem Asian J 2024; 19:e202400124. [PMID: 38421239 DOI: 10.1002/asia.202400124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/02/2024]
Abstract
In light of the important biological activities and widespread applications of organic disulfides, dithiocarbamates, xanthates, thiocarbamates and thiocarbonates, the continual persuit of efficient methods for their synthesis remains crucial. Traditionally, the preparation of such compounds heavily relied on intricate multi-step syntheses and the use of highly prefunctionalized starting materials. Over the past two decades, the direct sulfuration of C-H bonds has evolved into a straightforward, atom- and step-economical method for the preparation of organosulfur compounds. This review aims to provide an up-to-date discussion on direct C-H disulfuration, dithiocarbamation, xanthylation, thiocarbamation and thiocarbonation, with a special focus on describing scopes and mechanistic aspects. Moreover, the synthetic limitations and applications of some of these methodologies, along with the key unsolved challenges to be addressed in the future are also discussed. The majority of examples covered in this review are accomplished via metal-free, photochemical or electrochemical approaches, which are in alignment with the overraching objectives of green and sustainable chemistry. This comprehensive review aims to consolidate recent advancements, providing valuable insights into the dynamic landscape of efficient and sustainable synthetic strategies for these crucial classes of organosulfur compounds.
Collapse
Affiliation(s)
- Qiao Sun
- School of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Yuan Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Liu Yang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Chun-Ling Zheng
- School of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Guowei Wang
- School of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Hai-Bo Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Zheng Fang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Chang-Sheng Wang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Kai Guo
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| |
Collapse
|
7
|
Kumar P, Bhalla A. Reaction Pattern and Mechanistic Aspects of Iodine and Iodine-Based Reagents in Selenylation of Aliphatic, Aromatic, and (Hetero)Cyclic Systems. Top Curr Chem (Cham) 2024; 382:12. [PMID: 38589598 DOI: 10.1007/s41061-024-00459-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 03/15/2024] [Indexed: 04/10/2024]
Abstract
Organoselenium compounds have been the subject of extensive research since the discovery of the biologically active compound ebselen. Ebselen has recently been found to show activity against the main protease of the virus responsible for COVID-19. Other organoselenium compounds are also well-known for their diverse biological activities, with such compounds exhibiting interesting physical properties relevant to the fields of electronics, materials, and polymer chemistry. In addition, the incorporation of selenium into various organic molecules has garnered significant attention due to the potential of selenium to enhance the biological activity of these molecules, particularly in conjunction with bioactive heterocycles. Iodine and iodine-based reagents play a prominent role in the synthesis of organoselenium compounds, being valued for their cost-effectiveness, non-toxicity, and ease of handling. These reagents efficiently selenylate a broad range of organic substrates, encompassing alkenes, alkynes, and cyclic, aromatic, and heterocyclic molecules. They serve as catalysts, additives, inducers, and oxidizing agents, facilitating the introduction of different functional groups at alternate positions in the molecules, thereby allowing for regioselective and stereoselective approaches. Specific iodine reagents and their combinations can be tailored to follow the desired reaction pathways. Here, we present a comprehensive review of the progress in the selenylation of organic molecules using iodine reagents over the past decade, with a focus on reaction patterns, solvent effects, heating, microwave, and ultrasonic conditions. Detailed discussions on mechanistic aspects, such as electrophilic, nucleophilic, radical, electrochemical, and ring expansion reactions via selenylation, multiselenylation, and difunctionalization, are included. The review also highlights the formation of various cyclic, heterocyclic, and heteroarenes resulting from the in situ generation of selenium intermediates, encompassing cyclic ketones, cyclic ethers, cyclic lactones, selenophenes, chromones, pyrazolines, pyrrolidines, piperidines, indolines, oxazolines, isooxazolines, lactones, dihydrofurans, and isoxazolidines. To enhance the reader's interest, the review is structured into different sections covering the selenylation of aliphatic sp2/sp carbon and cyclic sp2 carbon, and then is further subdivided into various heterocyclic molecules.
Collapse
Affiliation(s)
- Pankaj Kumar
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, UT, 160014, India
| | - Aman Bhalla
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, UT, 160014, India.
| |
Collapse
|
8
|
Chen Y, Lu Z, He W, Zhu H, Lu W, Shi J, Sheng J, Xie W. Rhodium-catalyzed annulation of hydrazines with vinylene carbonate to synthesize unsubstituted 1-aminoindole derivatives. RSC Adv 2024; 14:4804-4809. [PMID: 38323018 PMCID: PMC10844929 DOI: 10.1039/d3ra07466h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/30/2024] [Indexed: 02/08/2024] Open
Abstract
Herein, we describe rhodium-catalysed C-H bond activation for [3 + 2] annulation using hydrazide and vinylene carbonate, providing an efficient method for synthesising unsubstituted 1-aminoindole compounds. Characterised by high yields, mild reaction conditions, and no need for external oxidants, this transformation demonstrates excellent regioselectivity and a wide tolerance for various functional groups.
Collapse
Affiliation(s)
- Yichun Chen
- School of Environment and Chemical Engineering, Foshan University Foshan 528000 China
| | - Ziqi Lu
- School of Environment and Chemical Engineering, Foshan University Foshan 528000 China
| | - Wenfen He
- School of Environment and Chemical Engineering, Foshan University Foshan 528000 China
| | - Huanyi Zhu
- School of Environment and Chemical Engineering, Foshan University Foshan 528000 China
| | - Weilong Lu
- School of Environment and Chemical Engineering, Foshan University Foshan 528000 China
| | - Junjun Shi
- School of Environment and Chemical Engineering, Foshan University Foshan 528000 China
| | - Jie Sheng
- School of Environment and Chemical Engineering, Foshan University Foshan 528000 China
| | - Wucheng Xie
- School of Environment and Chemical Engineering, Foshan University Foshan 528000 China
| |
Collapse
|
9
|
Ghosh P, Chhetri G, Mandal A, Chen Y, Hersh WH, Das S. C(sp 2)-H selenylation of substituted benzo[4,5]imidazo[2,1- b]thiazoles using phenyliodine(iii)bis(trifluoroacetate) as a mediator. RSC Adv 2024; 14:4462-4470. [PMID: 38312731 PMCID: PMC10835571 DOI: 10.1039/d4ra00057a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/17/2024] [Indexed: 02/06/2024] Open
Abstract
Herein, an expeditious metal-free regioselective C-H selenylation of substituted benzo[4,5]imidazo[2,1-b]thiazole derivatives was devised to synthesize structurally orchestrated selenoethers with good to excellent yields. This PIFA [bis(trifluoroacetoxy)iodobenzene]-mediated protocol operates under mild conditions and offers broad functional group tolerance. In-depth mechanistic investigation supports the involvement of radical pathways. Furthermore, the synthetic utility of this methodology is portrayed through gram-scale synthesis.
Collapse
Affiliation(s)
- Prasanjit Ghosh
- Department of Chemistry, University of North Bengal Darjeeling-734013 India
| | - Gautam Chhetri
- Department of Chemistry, University of North Bengal Darjeeling-734013 India
| | - Anirban Mandal
- Department of Chemistry, University of North Bengal Darjeeling-734013 India
| | - Yu Chen
- Department of Chemistry and Biochemistry, Queens College and the Graduate Centre of City University of New York Flushing New York 11367-1597 USA
- PhD Program in Chemistry, The Graduate Center of the City University of New York 365 Fifth Ave. New York 10016 USA
| | - William H Hersh
- Department of Chemistry and Biochemistry, Queens College and the Graduate Centre of City University of New York Flushing New York 11367-1597 USA
- PhD Program in Chemistry, The Graduate Center of the City University of New York 365 Fifth Ave. New York 10016 USA
| | - Sajal Das
- Department of Chemistry, University of North Bengal Darjeeling-734013 India
| |
Collapse
|
10
|
Wang CS, Xu Y, Wang SP, Zheng CL, Wang G, Sun Q. Recent advances in selective mono-/dichalcogenation and exclusive dichalcogenation of C(sp 2)-H and C(sp 3)-H bonds. Org Biomol Chem 2024; 22:645-681. [PMID: 38180073 DOI: 10.1039/d3ob01847d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Organochalcogen compounds are prevalent in numerous natural products, pharmaceuticals, agrochemicals, polymers, biological molecules and synthetic intermediates. Direct chalcogenation of C-H bonds has evolved as a step- and atom-economical method for the synthesis of chalcogen-bearing compounds. Nevertheless, direct C-H chalcogenation severely lags behind C-C, C-N and C-O bond formations. Moreover, compared with the C-H monochalcogenation, reports of selective mono-/dichalcogenation and exclusive dichalcogenation of C-H bonds are relatively scarce. The past decade has witnessed significant advancements in selective mono-/dichalcogenation and exclusive dichalcogenation of various C(sp2)-H and C(sp3)-H bonds via transition-metal-catalyzed/mediated, photocatalytic, electrochemical or metal-free approaches. In light of the significance of both mono- and dichalcogen-containing compounds in various fields of chemical science and the critical issue of chemoselectivity in organic synthesis, the present review systematically summarizes the advances in these research fields, with a special focus on elucidating scopes and mechanistic aspects. Moreover, the synthetic limitations, applications of some of these processes, the current challenges and our own perspectives on these highly active research fields are also discussed. Based on the substrate types and C-H bonds being chalcogenated, the present review is organized into four sections: (1) transition-metal-catalyzed/mediated chelation-assisted selective C-H mono-/dichalcogenation or exclusive dichalcogenation of (hetero)arenes; (2) directing group-free selective C-H mono-/dichalcogenation or exclusive dichalcogenation of electron-rich (hetero)arenes; (3) C(sp3)-H dichalcogenation; (4) dichalcogenation of both C(sp2)-H and C(sp3)-H bonds. We believe the present review will serve as an invaluable resource for future innovations and drug discovery.
Collapse
Affiliation(s)
- Chang-Sheng Wang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, PR China.
| | - Yuan Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637371, Singapore.
| | - Shao-Peng Wang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, PR China.
| | - Chun-Ling Zheng
- School of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, PR China.
| | - Guowei Wang
- School of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, PR China.
| | - Qiao Sun
- School of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, PR China.
| |
Collapse
|
11
|
Badshah G, Gomes CMB, Ali S, Luz EQ, Silvério GL, Santana FS, Seckler D, Paixão DB, Schneider PH, Rampon DS. Palladium-Catalyzed Direct Selanylation of Chalcogenophenes and Arenes Assisted by 2-(Methylthio)amide. J Org Chem 2023; 88:14033-14047. [PMID: 37712931 DOI: 10.1021/acs.joc.3c01577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
The direct and selective conversion of a C-H bond into a C-Se bond remains a significant challenge, which is even more intricate with substrates having an innate regioselectivity under several reaction conditions, such as chalcogenophenes. We overrode their selectivity toward selanylation using palladium, copper, and the 2-(methylthio)amide directing group. This chelation-assisted direct selanylation was also suitable for mono and double ortho functionalization of arenes. The mechanistic studies indicate high-valent Pd(IV) species in the catalytic cycle, a reversible C-H activation step, and Cu(II) as a sequestering agent for organoselenide byproducts.
Collapse
Affiliation(s)
- Gul Badshah
- Laboratory of Polymers and Catalysis(LaPoCa),Department of Chemistry, Federal University of Paraná, P.O. Box 19061, Curitiba 81531-980, Paraná, Brazil
| | - Carla M B Gomes
- Laboratory of Polymers and Catalysis(LaPoCa),Department of Chemistry, Federal University of Paraná, P.O. Box 19061, Curitiba 81531-980, Paraná, Brazil
| | - Sher Ali
- Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, São Paulo, Brazil
| | - Eduardo Q Luz
- Laboratory of Polymers and Catalysis(LaPoCa),Department of Chemistry, Federal University of Paraná, P.O. Box 19061, Curitiba 81531-980, Paraná, Brazil
| | - Gabriel L Silvério
- Laboratory of Polymers and Catalysis(LaPoCa),Department of Chemistry, Federal University of Paraná, P.O. Box 19061, Curitiba 81531-980, Paraná, Brazil
| | - Francielli S Santana
- Department of Chemistry, Federal University of Paraná, P.O. Box 19061, Curitiba 81531-990, Paraná, Brazil
| | - Diego Seckler
- Laboratory of Polymers and Catalysis(LaPoCa),Department of Chemistry, Federal University of Paraná, P.O. Box 19061, Curitiba 81531-980, Paraná, Brazil
| | - Douglas B Paixão
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Rio Grande do Sul, Brazil
| | - Paulo H Schneider
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Rio Grande do Sul, Brazil
| | - Daniel S Rampon
- Laboratory of Polymers and Catalysis(LaPoCa),Department of Chemistry, Federal University of Paraná, P.O. Box 19061, Curitiba 81531-980, Paraná, Brazil
| |
Collapse
|
12
|
Xu Z, Yao J, Zhong K, Lin S, Hu X, Ruan Z. Electrochemical Selenylation of Sulfoxonium Ylides for the Synthesis of gem-Diselenides as Antimicrobials against Fungi. J Org Chem 2023; 88:5572-5585. [PMID: 37083436 DOI: 10.1021/acs.joc.3c00091] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Organoselenium compounds are important scaffolds in pharmaceutical molecules. Herein, we report metal-free, electrochemical, highly chemo- and regioselective synthesis of gem-diselenides through the coupling of α-keto sulfoxonium ylides with diselenides. The versatility of the electrochemical manifold enabled the selenylation with ample scope and broad functional group tolerance, as well as setting the stage for modification of complex bioactive molecules. Detailed mechanistic studies revealed that the key C-Se bond was constructed using n-Bu4NI as an electrolyte and catalyst through the electrosynthetic protocol. Finally, the desired α-keto gem-diselenides showed excellent antimicrobial activity against Candida albicans, which can be identified as the lead compounds for further exploration.
Collapse
Affiliation(s)
- Zhongnan Xu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Jiwen Yao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Kaihui Zhong
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Shuimu Lin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Xinwei Hu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Zhixiong Ruan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou, Guangzhou Medical University, Guangzhou 511436, P. R. China
| |
Collapse
|
13
|
Logeswaran R, Jeganmohan M. Synthesis of Selenoflavones via Ruthenium-Catalyzed Selenylation of Unsaturated Acids. J Org Chem 2023; 88:4554-4568. [PMID: 36947709 DOI: 10.1021/acs.joc.3c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
An efficient method for pharmaceutically useful selenoflavones via a ruthenium-catalyzed selenylation reaction is demonstrated. The ruthenium-catalyzed selenylation was applied to synthesize diverse alkenyl selenides from simple unsaturated acids/amides and diaryl diselenides. A wide range of differently substituted diaryl diselenides can be applied in this protocol with a good functional group with excellent stereo- and regioselectivity.
Collapse
Affiliation(s)
- Ravichandran Logeswaran
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
14
|
Lalji RSK, Prince, Gupta M, Kumar S, Kumar A, Singh BK. Rhodium-catalyzed selenylation and sulfenylation of quinoxalinones 'on water'. RSC Adv 2023; 13:6191-6198. [PMID: 36814880 PMCID: PMC9940630 DOI: 10.1039/d2ra07400a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/08/2023] [Indexed: 02/22/2023] Open
Abstract
A rhodium-catalysed, regioselective synthetic methodology for selenylation and sulfenylation of 3-phenyl quinoxolinones has been developed through N-directed C-H activation in the presence of silver triflimide, and silver carbonate using dichalcogenides 'on water'. The methodology has been proven to be efficient, regioselective and green. Using this method, a range of selenylations and sulfenylations of the substrates has been carried out in good to excellent yields. Further, late-stage functionalisation produced potential anti-tumour, anti-fungal and anti-bacterial agents making these compounds potential drug candidates.
Collapse
Affiliation(s)
- Ram Sunil Kumar Lalji
- Bio-Organic Research Laboratory, Department of Chemistry, University of Delhi Delhi 110007 India
- Department of Chemistry, Kirori Mal College, University of Delhi Delhi 110007 India
| | - Prince
- Bio-Organic Research Laboratory, Department of Chemistry, University of Delhi Delhi 110007 India
| | - Mohit Gupta
- Bio-Organic Research Laboratory, Department of Chemistry, University of Delhi Delhi 110007 India
- Department of Chemistry, L. N. M. S. College Supaul Birpur Bihar 8543340 India
| | - Sandeep Kumar
- Bio-Organic Research Laboratory, Department of Chemistry, University of Delhi Delhi 110007 India
| | - Amit Kumar
- Department of Chemistry, IIT Patna Bihar 801106 India
| | - Brajendra Kumar Singh
- Bio-Organic Research Laboratory, Department of Chemistry, University of Delhi Delhi 110007 India
| |
Collapse
|
15
|
Rios EAM, Gomes CMB, Silvério GL, Luz EQ, Ali S, D'Oca CDRM, Albach B, Campos RB, Rampon DS. Silver-catalyzed direct selanylation of indoles: synthesis and mechanistic insights. RSC Adv 2023; 13:914-925. [PMID: 36686957 PMCID: PMC9811358 DOI: 10.1039/d2ra06813c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/17/2022] [Indexed: 01/05/2023] Open
Abstract
Herein we describe the Ag(i)-catalyzed direct selanylation of indoles with diorganoyl diselenides. The reaction gave 3-selanylindoles with high regioselectivity and also allowed direct access to 2-selanylindoles when the C3 position of the indole ring was blocked via a process similar to Plancher rearrangement. Experimental analyses and density functional theory calculations were carried out in order to picture the reaction mechanism. Among the pathways considered (via concerted metalation-deprotonation, Ag(iii), radical, and electrophilic aromatic substitution), our findings support a classic electrophilic aromatic substitution via Lewis adducts between Ag(i) and diorganoyl diselenides. The results also afforded new insights into the interactions between Ag(i) and diorganoyl diselenides.
Collapse
Affiliation(s)
- Elise Ane Maluf Rios
- Department of Chemistry, Laboratory of Polymers and Catalysis (LaPoCa), Federal University of Paraná - UFPR P. O. Box 19061 Curitiba PR 81531-990 Brazil
| | - Carla M B Gomes
- Department of Chemistry, Laboratory of Polymers and Catalysis (LaPoCa), Federal University of Paraná - UFPR P. O. Box 19061 Curitiba PR 81531-990 Brazil
| | - Gabriel L Silvério
- Department of Chemistry, Laboratory of Polymers and Catalysis (LaPoCa), Federal University of Paraná - UFPR P. O. Box 19061 Curitiba PR 81531-990 Brazil
| | - Eduardo Q Luz
- Department of Chemistry, Laboratory of Polymers and Catalysis (LaPoCa), Federal University of Paraná - UFPR P. O. Box 19061 Curitiba PR 81531-990 Brazil
| | - Sher Ali
- University of São Paulo, Faculty of Animal Science and Food Engineering Pirassununga SP Brazil
| | - Caroline da Ros Montes D'Oca
- Department of Chemistry, Laboratory of Polymers and Catalysis (LaPoCa), Federal University of Paraná - UFPR P. O. Box 19061 Curitiba PR 81531-990 Brazil
| | - Breidi Albach
- Health Department, Unicesumar - The University Center of Maringá Curitiba PR 81070-190 Brazil
| | - Renan B Campos
- Departamento Acadêmico de Química e Biologia, Universidade Tecnológica Federal do Paraná Rua Deputado Heitor de Alencar Furtado, 5000 81280-340 Curitiba Brazil
| | - Daniel S Rampon
- Department of Chemistry, Laboratory of Polymers and Catalysis (LaPoCa), Federal University of Paraná - UFPR P. O. Box 19061 Curitiba PR 81531-990 Brazil
| |
Collapse
|
16
|
Lu MZ, Goh J, Maraswami M, Jia Z, Tian JS, Loh TP. Recent Advances in Alkenyl sp 2 C-H and C-F Bond Functionalizations: Scope, Mechanism, and Applications. Chem Rev 2022; 122:17479-17646. [PMID: 36240299 DOI: 10.1021/acs.chemrev.2c00032] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alkenes and their derivatives are featured widely in a variety of natural products, pharmaceuticals, and advanced materials. Significant efforts have been made toward the development of new and practical methods to access this important class of compounds by selectively activating the alkenyl C(sp2)-H bonds in recent years. In this comprehensive review, we describe the state-of-the-art strategies for the direct functionalization of alkenyl sp2 C-H and C-F bonds until June 2022. Moreover, metal-free, photoredox, and electrochemical strategies are also covered. For clarity, this review has been divided into two parts; the first part focuses on currently available alkenyl sp2 C-H functionalization methods using different alkene derivatives as the starting materials, and the second part describes the alkenyl sp2 C-F bond functionalization using easily accessible gem-difluoroalkenes as the starting material. This review includes the scope, limitations, mechanistic studies, stereoselective control (using directing groups as well as metal-migration strategies), and their applications to complex molecule synthesis where appropriate. Overall, this comprehensive review aims to document the considerable advancements, current status, and emerging work by critically summarizing the contributions of researchers working in this fascinating area and is expected to stimulate novel, innovative, and broadly applicable strategies for alkenyl sp2 C-H and C-F bond functionalizations in the coming years.
Collapse
Affiliation(s)
- Ming-Zhu Lu
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Jeffrey Goh
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Manikantha Maraswami
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhenhua Jia
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jie-Sheng Tian
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
17
|
Xu-Xu QF, Nishii Y, Miura M. Synthesis of Diarylselenides through Rh-Catalyzed Direct Diarylation of Elemental Selenium with Benzamides. J Org Chem 2022; 87:16887-16894. [DOI: 10.1021/acs.joc.2c02131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Qing-Feng Xu-Xu
- Innovative Catalysis Science Division, Institute for Open and Transitionary Research Initiative (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuji Nishii
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Miura
- Innovative Catalysis Science Division, Institute for Open and Transitionary Research Initiative (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
18
|
Bora D, John SE, Galla MS, Sathish M, Shankaraiah N. Rh(III)-catalysed site-selective alkylation of β-carbolines/isoquinolines and tandem C H/C N functionalization to construct indolizine-indole frameworks. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Direct Electrooxidative Selenylation/Cyclization of Alkynes: Access to Functionalized Benzo[b]furans. Molecules 2022; 27:molecules27196314. [PMID: 36234851 PMCID: PMC9572441 DOI: 10.3390/molecules27196314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
A mild, practical, metal and oxidant-free methodology for the synthesis of various C-3 selenylated benzo[b]furan derivatives was developed through the intramolecular cyclization of alkynes promoted with diselenides via electrooxidation. A wide range of selenium-substituted benzo[b]furan derivatives were obtained in good to excellent yields with high regioselectivity under constant current in an undivided cell equipped with carbon and platinum plates as the anode and cathode, respectively. Moreover, the convergent approach exhibited good functional group tolerance and could be easily scaled up with good efficiency, providing rapid access to a diverse range of selenylated benzo[b]furans derivatives from simple, readily available starting materials.
Collapse
|
20
|
Ramachandran K, Anbarasan P. Rhodium-Catalyzed C2-Alkylation of Indoles with Cyclopropanols Using N, N-Dialkylcarbamoyl as a Traceless Directing Group. Org Lett 2022; 24:6745-6749. [DOI: 10.1021/acs.orglett.2c02527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kuppan Ramachandran
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
21
|
Ma W, Zhou Y, Wang Y, Li B, Zheng T, Cheng Z, Mei R. Palladium‐Catalyzed Remote δ‐C–H Selenylation of Arylethylamide and Alkenylethylamide Derivatives. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Yunhao Zhou
- Sichuan Industrial Institute of Antibiotics CHINA
| | | | | | | | | | | |
Collapse
|
22
|
Zeng S, Fang S, Cai H, Wang D, Liu W, Hu X, Ruan Z, Sun P. Selenium‐Electrocatalytic Cyclization of 2‐Vinylanilides towards Indoles of Peptide Labeling. Chem Asian J 2022; 17:e202200762. [DOI: 10.1002/asia.202200762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/18/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Shaogao Zeng
- Jinan University College of Pharmacy International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education 510632 Guangzhou CHINA
| | - Songlin Fang
- Jinan University College of Pharmacy International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education 510632 Guangzhou CHINA
| | - Haiping Cai
- Guangzhou Medical University School of Pharmaceutical Sciences and the Fifth Affiliated Hospital Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target 511436 Guangzhou CHINA
| | - Dong Wang
- Jinan University College of Pharmacy International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education 510632 Guangzhou CHINA
| | - Weiling Liu
- Jinan University College of Pharmacy International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education 510632 Guangzhou CHINA
| | - Xinwei Hu
- Guangzhou Medical University School of Pharmaceutical Sciences and the Fifth Affiliated Hospital Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target 511436 Guangzhou CHINA
| | - Zhixiong Ruan
- Guangzhou Medical University School of Pharmaceutical Sciences Xinzao, Panyu District 511436 Guangzhou CHINA
| | - Pinghua Sun
- Jinan University College of Pharmacy International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education 510632 Guangzhou CHINA
| |
Collapse
|
23
|
Liu L, Gu YC, Zhang CP. Palladium-catalyzed C-H trifluoromethylselenolation of arenes with [Me 4N][SeCF 3] and an oxidant. Chem Commun (Camb) 2022; 58:9238-9241. [PMID: 35899839 DOI: 10.1039/d2cc02897b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Trifluoromethylselenolation of arenes with [Me4N][SeCF3] in the presence of an oxidant through Pd-catalyzed C(sp2)-H activation under the assistance of a directing group is established for the first time. The reaction tolerates different directing groups and a variety of functional groups, enabling selective installation of a SeCF3 moiety onto the ortho positions of arenes. Mechanistic studies revealed that the CF3SeSeCF3 intermediate in situ generated from oxidation of [Me4N][SeCF3] might be the real SeCF3 reagent in the reaction.
Collapse
Affiliation(s)
- Lei Liu
- School of Materials Science and Engineering & School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China.
| | - Yu-Cheng Gu
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG426EY, UK
| | - Cheng-Pan Zhang
- School of Materials Science and Engineering & School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China.
| |
Collapse
|
24
|
Liu M, Yan K, Wen J, Zhang N, Chen X, Li X, Wang X. PIFA Induced Regioselective C–H Chalcogenylation of Benzo[d]imidazo[5,1‐b]thiazoles under Mild Conditions. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Min Liu
- Qufu Normal University College of Chemistry and Chemical Engineering Qufu CHINA
| | - Kelu Yan
- Qufu Normal University School of Chemistry and Chemical Engineering Jingxuan Road 57 273165 Qufu CHINA
| | - Jiangwei Wen
- Qufu Normal University College of Chemistry and Chemical Engineering Qufu CHINA
| | - Ning Zhang
- Qufu Normal University College of Chemistry and Chemical Engineering Qufu CHINA
| | - Xinyu Chen
- Qufu Normal University College of Chemistry and Chemical Engineering Qufu CHINA
| | - Xue Li
- Qufu Normal University College of Chemistry and Chemical Engineering Qufu CHINA
| | - Xiu Wang
- Qufu Normal University College of Chemistry and Chemical Engineering Qufu CHINA
| |
Collapse
|
25
|
Li B, Zhou Y, Sun Y, Xiong F, Gu L, Ma W, Mei R. Electrochemical selenium-π-acid promoted hydration of alkynyl phosphonates. Chem Commun (Camb) 2022; 58:7566-7569. [PMID: 35708585 DOI: 10.1039/d2cc01901a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An unprecedented electrochemical selenium-π-acid promoted hydration of internal alkynes bearing a phosphonate auxiliary was described. Thus, valuable (hetero)aryl and alkyl ketones could be accessed under mild, metal- and external oxidant-free conditions. This protocol features high atom-economy, good chemo- and regio-selectivity, excellent functional group tolerance and easily transformable products. Control experiments demonstrate that phosphonate assistance is essential for this transformation.
Collapse
Affiliation(s)
- Bo Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China.,Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, P. R. China
| | - Yunhao Zhou
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, P. R. China
| | - Yanan Sun
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China
| | - Feng Xiong
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China
| | - Linghui Gu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, P. R. China
| | - Wenbo Ma
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, P. R. China
| | - Ruhuai Mei
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China.,Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, P. R. China
| |
Collapse
|
26
|
Mao H, Chen J, Zhang X, Yu N, Lu Y, Zhao F. Regio‐ and Stereoselective Synthesis of Tetrasubstituted Alkenes via Ruthenium(II)‐Catalyzed C–H Alkenylation/Directing Group Migration. ChemistrySelect 2022. [DOI: 10.1002/slct.202200292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hui Mao
- College of Pharmacy Jinhua Polytechnic 888 West Hai Tang Road Jinhua 321007 P. R. China
| | - Jing Chen
- Department of Preparation Center General Hospital of Ningxia Medical University Yinchuan 750004 P. R. China
| | - Xiaoning Zhang
- Jinhua Branch Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University 888 West Hai Tang Road Jinhua 321007 P. R. China
| | - Na Yu
- Department of Preparation Center General Hospital of Ningxia Medical University Yinchuan 750004 P. R. China
| | - Yangbin Lu
- Jinhua Branch Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University 888 West Hai Tang Road Jinhua 321007 P. R. China
| | - Fei Zhao
- Jinhua Branch Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University 888 West Hai Tang Road Jinhua 321007 P. R. China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 P. R. China
| |
Collapse
|
27
|
Mandal R, Garai B, Sundararaju B. Weak-Coordination in C–H Bond Functionalizations Catalyzed by 3d Metals. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05267] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Rajib Mandal
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh208016, India
| | - Bholanath Garai
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh208016, India
| | - Basker Sundararaju
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh208016, India
| |
Collapse
|
28
|
Liu L, Jian Y, Hu W, Zhao S, Shi ZJ, Selander N, ZHOU TAIGANG. Ni and Fe Catalyzed Cascade Radical Reactions of Oxime Esters with Diselenides. Org Chem Front 2022. [DOI: 10.1039/d2qo00586g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A radical cyclization and ring-opening of oxime esters with diselenides was developed. Both Ni(0) and Fe(II) catalysts could be employed for the selenylation of olefin-containing and cyclic oxime ester derivatives....
Collapse
|
29
|
Rampon D, Seckler D, da Luz EQ, Paixão DB, Larroza AME, Schneider PH, Alves D. Transition metal catalysed direct sulfanylation of unreactive C-H bonds: an overview of the last two decades. Org Biomol Chem 2022; 20:6072-6177. [DOI: 10.1039/d2ob00986b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metal catalysed direct sulfanylations of unreactive C-H bonds have become a unique and straightforward synthetic strategy in late-stage C-S bond formation of relevant complex molecules. Such transformations have represented...
Collapse
|
30
|
Xie W, Chen X, Li Y, Lin J, Chen W, Shi J. Electrooxidative Annulation of Unsaturated Molecules via Directed C—H Activation. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202110028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Huang H, Wang H, Gong C, Zhuang Z, Feng W, Wu SH, Wang L. Synthesis of 2-trifluoromethylquinolines through rhodium-catalysed redox-neutral [3 + 3] annulation between anilines and CF3-ynones using traceless directing groups. Org Chem Front 2022. [DOI: 10.1039/d1qo01478a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Rhodium-catalysed [3 + 3]-cycloaddition of acetanilides with CF3-ynones was achieved through a traceless directing-group strategy, which delivered 2-trifluromethylquinolines exhibiting favorable blue emissions.
Collapse
Affiliation(s)
- Haichao Huang
- School of Medicine, Huaqiao University, Quanzhou, 362021, P. R. China
| | - Hailong Wang
- School of Medicine, Huaqiao University, Quanzhou, 362021, P. R. China
| | - Chao Gong
- School of Medicine, Huaqiao University, Quanzhou, 362021, P. R. China
| | - Zhenjing Zhuang
- School of Medicine, Huaqiao University, Quanzhou, 362021, P. R. China
| | - Wenmin Feng
- School of Medicine, Huaqiao University, Quanzhou, 362021, P. R. China
| | - Si-Hai Wu
- School of Medicine, Huaqiao University, Quanzhou, 362021, P. R. China
| | - Lianhui Wang
- School of Medicine, Huaqiao University, Quanzhou, 362021, P. R. China
| |
Collapse
|
32
|
Lin S, Cheng X, Hasimujiang B, Xu Z, Li F, Ruan Z. Electrochemical regioselective C-H selenylation of 2 H-indazole derivatives. Org Biomol Chem 2021; 20:117-121. [PMID: 34870669 DOI: 10.1039/d1ob02108g] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Selenium-substituted heteroarenes are biologically active compounds and useful building blocks. In this study, we have developed a metal- and oxidant-free, environmentally friendly protocol for the regioselective selenylation of 2H-indazole derivatives by an electrochemical strategy. A number of selenylated 2H-indazoles with a wide range of functional groups have been synthesized in moderate to good yields under mild and environment-friendly reaction conditions.
Collapse
Affiliation(s)
- Shengsheng Lin
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P.R. China.
| | - Xiaomei Cheng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P.R. China.
| | - Balati Hasimujiang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P.R. China.
| | - Zhongnan Xu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P.R. China.
| | - Fengtan Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P.R. China.
| | - Zhixiong Ruan
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P.R. China.
| |
Collapse
|
33
|
Ghorai J, Kesavan A, Anbarasan P. Cp*Co(III)-catalyzed C2-thiolation and C2,C3-dithiolation of substituted indoles with N-(arylthio)succinimide. Chem Commun (Camb) 2021; 57:10544-10547. [PMID: 34553717 DOI: 10.1039/d1cc03760a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A general and efficient Cp*CoIII-catalyzed C2-thiolation and C2,C3-dithiolation of indole derivatives has been achieved employing N-(aryl/alkylthio)succinimide as a thiolating reagent. This external oxidant-free method utilizes only catalytic amounts of additive and tolerates various functional groups to afford various thiolated products in good yields. Control experiments revealed the importance of the Cp*CoIII-catalyst for both C2- and C3-thiolation.
Collapse
Affiliation(s)
- Jayanta Ghorai
- Department of Chemistry, Indian Institute of Technology Madras, Chennai - 600036, India.
| | - Arunachalam Kesavan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai - 600036, India.
| | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai - 600036, India.
| |
Collapse
|
34
|
Sonawane AD, Sonawane RA, Ninomiya M, Koketsu M. Diorganyl diselenides: a powerful tool for the construction of selenium containing scaffolds. Dalton Trans 2021; 50:12764-12790. [PMID: 34581339 DOI: 10.1039/d1dt01982a] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Organoselenium compounds find versatile applications in organic synthesis, materials synthesis, and ligand chemistry. Organoselenium heterocycles are widely studied agents with diverse applications in various biological processes. This review highlights the recent progress in the synthesis of selenium heterocycles using diorganyl diselenides with keen attention on green synthetic approaches, scopes, C-H selanylation, the mechanisms of different reactions and insights into the formation of metal complexes. The C-H selanylation using diorganyl diselenides with different catalysts, bases, transition metals, iodine salts, NIS, hypervalent iodine, and other reagents is summarised. Finally, the diverse binding modes of bis(2/4-pyridyl)diselenide with different metal complexes are also summarised.
Collapse
Affiliation(s)
- Amol D Sonawane
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Rohini A Sonawane
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Masayuki Ninomiya
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Mamoru Koketsu
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| |
Collapse
|
35
|
Gu L, Wang Y, Cheng Z, Sun Y, Gong X, Li Z, Ma W. Brønsted Acid Promoted
N
‐Dealkylation of
N
‐Alkyl(sulfon)amides. ChemistrySelect 2021. [DOI: 10.1002/slct.202101676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Linghui Gu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University No 168. Huaguan Rd Chengdu 610052 People's Republic of China
| | - Yang Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University No 168. Huaguan Rd Chengdu 610052 People's Republic of China
| | - Zemin Cheng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University No 168. Huaguan Rd Chengdu 610052 People's Republic of China
| | - Yanan Sun
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University No 168. Huaguan Rd Chengdu 610052 People's Republic of China
| | - Xin Gong
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University No 168. Huaguan Rd Chengdu 610052 People's Republic of China
| | - Zheyu Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University No 168. Huaguan Rd Chengdu 610052 People's Republic of China
| | - Wenbo Ma
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University No 168. Huaguan Rd Chengdu 610052 People's Republic of China
| |
Collapse
|
36
|
Ouyang W, Cai X, Chen X, Wang J, Rao J, Gao Y, Huo Y, Chen Q, Li X. Sequential C-H activation enabled expedient delivery of polyfunctional arenes. Chem Commun (Camb) 2021; 57:8075-8078. [PMID: 34296709 DOI: 10.1039/d1cc03243g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Modular construction of polyfunctional arenes from abundant feedstocks stands as an unremitting pursue in synthetic chemistry, accelerating the discovery of drugs and materials. Herein, using the multiple C-H activation strategy with versatile imidate esters, the expedient delivery of molecular libraries of densely functionalized sulfur-containing arenes was achieved, which enabled the concise construction of biologically active molecules, such as Bipenamol.
Collapse
Affiliation(s)
- Wensen Ouyang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Xiaoqing Cai
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Xiaojian Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Jie Wang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Jianhang Rao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Yang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Qian Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Xianwei Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
37
|
Ma W, Tan Y, Wang Y, Li Z, Li Z, Gu L, Mei R, Cheng A. Hydroxyl-Directed Ruthenium-Catalyzed peri-Selective C-H Acylmethylation and Annulation of Naphthols with Sulfoxonium Ylides. Org Lett 2021; 23:6200-6205. [PMID: 34339192 DOI: 10.1021/acs.orglett.1c01684] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we report a highly efficient ruthenium-catalyzed peri-selective C(sp2)-H acylmethylation of 1-naphthols with α-carbonyl sulfoxonium ylides by utilizing hydroxyl as a weakly coordinating directing group. This new method imparts good reactivity, excellent chemo- and regioselectivity, and broad functional group tolerance and involves mild reaction conditions. The C-H acylmethylated products can be readily cyclized into fluorescent annulated pyrans by a one-pot process.
Collapse
Affiliation(s)
- Wenbo Ma
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Yuqiang Tan
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Yang Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Zhiyi Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Zheyu Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Linghui Gu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Ruhuai Mei
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - An Cheng
- Department of Pharmacology, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
38
|
Cheng X, Hasimujiang B, Xu Z, Cai H, Chen G, Mo G, Ruan Z. Direct Electrochemical Selenylation/Cyclization of Alkenes: Access to Functionalized Benzheterocycles. J Org Chem 2021; 86:16045-16058. [PMID: 34328728 DOI: 10.1021/acs.joc.1c01267] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A catalyst-free, environmentally friendly, and efficient electrochemical selenylation/cyclization of alkenes has been developed with moderate to excellent yields. This selenylated transformation proceeds smoothly and tolerates a wide range of synthetically useful groups to deliver diverse functionalized benzheterocycles, including iminoisobenzofuran, lactones, oxindoles, and quinolinones. Moreover, the present synthetic route could also be readily scaled up to gram quantity with convenient operation in an undivided cell.
Collapse
Affiliation(s)
- Xiaomei Cheng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R.China
| | - Balati Hasimujiang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R.China
| | - Zhongnan Xu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R.China
| | - Haiping Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R.China
| | - Guihong Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R.China
| | - Guangquan Mo
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R.China
| | - Zhixiong Ruan
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R.China
| |
Collapse
|
39
|
He Y, Zheng T, Huang YH, Dong L. Rh(III)-Catalyzed olefination to build diverse oxazole derivatives from functional alkynes. Org Biomol Chem 2021; 19:4937-4942. [PMID: 33983356 DOI: 10.1039/d1ob00507c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel Rh(iii)-catalyzed olefination reaction of oxazoles to generate diverse oxazole skeleton derivatives has been realized by directly using oxazole as the directing group. The reaction could tolerate many functional groups, affording complex oxazole derivatives with long chain alkenyls in moderate to good yields, which might find applications in the construction of diverse compounds.
Collapse
Affiliation(s)
- Yuan He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Ting Zheng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Yin-Hui Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
40
|
Sun N, Zheng K, Sun P, Chen Y, Jin L, Hu B, Shen Z, Hu X. Trichloroisocyanuric Acid‐Promoted Synthesis of Arylselenides and Aryltellurides from Diorganyl Dichalcogenides and Arylboronic Acids at Ambient Temperature. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Nan Sun
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310032 People's Republic of China
| | - Kai Zheng
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310032 People's Republic of China
| | - Pengyuan Sun
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310032 People's Republic of China
| | - Yang Chen
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310032 People's Republic of China
| | - Liqun Jin
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310032 People's Republic of China
| | - Baoxiang Hu
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310032 People's Republic of China
| | - Zhenlu Shen
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310032 People's Republic of China
| | - Xinquan Hu
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310032 People's Republic of China
| |
Collapse
|
41
|
Abstract
Sustainable transformations towards the production of valuable chemicals constantly attract interest, both in terms of academic and applied research. C–H activation has long been scrutinized in this regard, given that it offers a straightforward pathway to prepare compounds of great significance. In this context, directing groups (DG) have paved the way for chemical transformations that had not been achievable using traditional reactions. Few steps, high yields, selectivity and activation of inert substrates are some of the invaluable assets of directed catalysis. Additionally, the employment of traceless directing groups (TDG) greatly improves and simplifies this strategy, enabling the realization of multi-step reactions in one-pot, cascade procedures. Cheap, abundant, readily available transition metal salts and complexes can catalyze a plethora of reactions employing TDGs, usually under low catalyst loadings—rarely under stoichiometric amounts, leading in greater atom economy and milder conditions with increased yields and step-economy. This review article summarizes all the work done on TDG-assisted catalysis with manganese, iron, cobalt, nickel, or copper catalysts, and discusses the structure-activity relationships observed, by presenting the catalytic pathways and range of transformations reported thus far.
Collapse
|
42
|
Affiliation(s)
- Jitender Singh
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| | - Anuj Sharma
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| |
Collapse
|
43
|
Wang CA, Chatani N. Ruthenium(II)-catalyzed Arylation of ortho-C–H Bonds in 2-Aroyl-imidazoles with Aryl Halides. CHEM LETT 2021. [DOI: 10.1246/cl.200886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chen-an Wang
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
44
|
Xie W, Jian X, Zhang L, Jin K, Shi J, Zhu F. Synthesis of C3-sulfone substituted naphthols via rhodium(III)-catalyzed annulation of sulfoxonium ylides with alkynylsulfones. Org Biomol Chem 2021; 19:1498-1502. [PMID: 33529298 DOI: 10.1039/d0ob02267e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
C-H activation of sulfoxonium ylides catalyzed by rhodium(iii) with subsequent annulation by alkynylsulfones was accomplished. This methodology offers a step-economical approach for assembling C3-sulfone-substituted naphthols with a high level of regioselectivity that is complementary to previous protocols. The approach has an extensive substrate spectrum and broad functional group tolerance.
Collapse
Affiliation(s)
- Wucheng Xie
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China.
| | - Xinyi Jian
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China.
| | - Liyang Zhang
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China.
| | - Kexin Jin
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China.
| | - Junjun Shi
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China.
| | - Feng Zhu
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China.
| |
Collapse
|
45
|
Fang X, Tan Y, Gu L, Ackermann L, Ma W. para
‐Selective Palladium‐Catalyzed C−H Difluoroalkylation by Weak Oxazolidinone Assistance. ChemCatChem 2021. [DOI: 10.1002/cctc.202002056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xinyue Fang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University No. 2025, Chengluo Avenue Chengdu 610106 P.R. China
| | - Yuqiang Tan
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University No. 2025, Chengluo Avenue Chengdu 610106 P.R. China
| | - Linghui Gu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University No. 2025, Chengluo Avenue Chengdu 610106 P.R. China
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie Georg-August-Universitaet Goettingen Tammannstraße 2 37077 Goettingen Germany
- German Center for Cardiovascular Research (DZHK) Potsdamer Strasse 58 10785 Berlin Germany
| | - Wenbo Ma
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University No. 2025, Chengluo Avenue Chengdu 610106 P.R. China
| |
Collapse
|
46
|
Zhou J, Liu D, Bai C, Bao A, Muschin T, Baiyin M, Bao YS. Transient directing group controlled regiodivergent C(sp 3)–H and C(sp 2)–H polyfluoroalkoxylation of aromatic aldehydes. Org Chem Front 2021. [DOI: 10.1039/d1qo00895a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel method for achieving regiodivergent C(sp3)–H and C(sp2)–H polyfluoroalkoxylation in the o-methyl benzaldehyde framework by altering the transient directing group is disclosed.
Collapse
Affiliation(s)
- Jiayu Zhou
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green catalysis, Inner Mongolia Normal University, Hohhot, 010022, China
| | - Dan Liu
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green catalysis, Inner Mongolia Normal University, Hohhot, 010022, China
| | - Chaolumen Bai
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green catalysis, Inner Mongolia Normal University, Hohhot, 010022, China
| | - Agula Bao
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green catalysis, Inner Mongolia Normal University, Hohhot, 010022, China
| | - Tegshi Muschin
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green catalysis, Inner Mongolia Normal University, Hohhot, 010022, China
| | - Menghe Baiyin
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green catalysis, Inner Mongolia Normal University, Hohhot, 010022, China
| | - Yong-Sheng Bao
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green catalysis, Inner Mongolia Normal University, Hohhot, 010022, China
| |
Collapse
|
47
|
Abstract
This review summarizes the visible light mediated strategies for the functionalization of allenes.
Collapse
Affiliation(s)
- Jitender Singh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India
| | - Anoop Sharma
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India
| | - Anuj Sharma
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India
| |
Collapse
|
48
|
He M, Gu L, Tan Y, Wang Y, Wang Y, Zhang C, Ma W. Palladium‐Catalyzed Distal C−H Selenylation of 2‐Aryl Acetamides with Diselenides and Selenyl Chlorides. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Meicui He
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics Chengdu University People's Republic of China 610052 city is missing
| | - Linghui Gu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics Chengdu University People's Republic of China 610052 city is missing
| | - Yuqiang Tan
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics Chengdu University People's Republic of China 610052 city is missing
| | - Yang Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics Chengdu University People's Republic of China 610052 city is missing
| | - Yuchi Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics Chengdu University People's Republic of China 610052 city is missing
| | - Chunran Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics Chengdu University People's Republic of China 610052 city is missing
| | - Wenbo Ma
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics Chengdu University People's Republic of China 610052 city is missing
| |
Collapse
|
49
|
Gao M, Chen M, Pannecoucke X, Jubault P, Besset T. Pd-Catalyzed Directed Thiocyanation Reaction by C-H Bond Activation. Chemistry 2020; 26:15497-15500. [PMID: 32833317 PMCID: PMC7756308 DOI: 10.1002/chem.202003521] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/18/2020] [Indexed: 12/20/2022]
Abstract
The Pd-catalyzed directed thiocyanation reaction of arenes and heteroarenes by C-H bond activation was achieved. In the presence of an electrophilic SCN source, this original methodology offered an efficient tool to access a panel of functionalized thiocyanated compounds (21 examples, up to 78 % yield). Post-functionalization reactions further demonstrated the synthetic utility of the approach by converting the SCN-containing molecules into value-added scaffolds.
Collapse
Affiliation(s)
- Mélissa Gao
- Normandie Univ, INSA RouenUNIROUEN, CNRS, COBRA (UMR 6014)76000RouenFrance
| | - Mu‐Yi Chen
- Normandie Univ, INSA RouenUNIROUEN, CNRS, COBRA (UMR 6014)76000RouenFrance
| | - Xavier Pannecoucke
- Normandie Univ, INSA RouenUNIROUEN, CNRS, COBRA (UMR 6014)76000RouenFrance
| | - Philippe Jubault
- Normandie Univ, INSA RouenUNIROUEN, CNRS, COBRA (UMR 6014)76000RouenFrance
| | - Tatiana Besset
- Normandie Univ, INSA RouenUNIROUEN, CNRS, COBRA (UMR 6014)76000RouenFrance
| |
Collapse
|
50
|
Nguyen H, Daugulis O. N-Aminopyridinium Ylide-Directed, Copper-Promoted Chalcogenation of Arene C-H Bonds. J Org Chem 2020; 85:13069-13079. [PMID: 33000944 DOI: 10.1021/acs.joc.0c01757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
N-Aminopyridinium ylide-directing group is employed for copper-promoted chalcogenation of sp2 C-H bonds with aryl and alkyl disulfides as well as diphenyl diselenide. Reactions proceed in hexafluoroisopropanol (HFIP) solvent at elevated temperatures and are promoted by copper(II) acetate.
Collapse
Affiliation(s)
- Hanh Nguyen
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Olafs Daugulis
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| |
Collapse
|