1
|
Rubert L, Ehmann HMA, Soberats B. Two-Dimensional Supramolecular Polymorphism in Cyanine H- and J-Aggregates. Angew Chem Int Ed Engl 2024:e202415774. [PMID: 39324930 DOI: 10.1002/anie.202415774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 09/27/2024]
Abstract
We designed a new cyanine dye 1, with two pedant rod-like groups, capable of forming two distinct two-dimensional (2D) supramolecular polymorphs in methylcyclohexane; an H-type aggregate (Agg-H2) and a J-type aggregate (Agg-J). Importantly, these two polymorphs were not accessed through polymerization events, and instead through the thermal transformation of a third particle-like polymorph (Agg-H1) formed by the anti-cooperative assembly of 1. While Agg-H2 is generated upon cooling the solution of Agg-H1 by a thermoreversible polymorph transition, the Agg-J was obtained through a hidden pathway by combining sonication and cooling to the Agg-H1 solution. This is the first report on the obtention of H- and J-type cyanine polymorphs that in turn could be isolated in solid-state to render two new 2D photoactive materials. This paper unveils new strategies for designing 2D supramolecular polymers using calamitic residues, but also undercovers relevant aspects of pathway complexity and polymorph transitions that might be crucial for developing novel photonic systems.
Collapse
Affiliation(s)
- Llorenç Rubert
- Department of Chemistry, Universitat de les Illes Balears, Cra. Valldemossa, Km. 7.5, 07122, Palma de Mallorca, Spain
| | | | - Bartolome Soberats
- Department of Chemistry, Universitat de les Illes Balears, Cra. Valldemossa, Km. 7.5, 07122, Palma de Mallorca, Spain
| |
Collapse
|
2
|
Yu L, Liu X, Zhao S, Zhu W, Wu L, Ding C. H-Aggregation of Squaraine Dye as Generic Colorimetric Molecules to Detect Cu 2. APPLIED SPECTROSCOPY 2024; 78:974-981. [PMID: 38772555 DOI: 10.1177/00037028241254391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
An infrared squaraine dye was utilized to detect Cu2+ in solvents based on H-aggregates of squaraine dye. H-aggregates are a type of aggregation with enhanced photophysical properties compared to monomers. In the presence of a Ca2+ solution, F-Cl offers exceptional H-aggregators that can be transformed into monomers by adding Cu2+. Furthermore, this mode successfully demonstrated fluorescence changes in HeLa cells cultured in vitro after the addition of Ca2+ or Cu2+. A highly specific detection of Cu2+ was achieved using this transformation mode.
Collapse
Affiliation(s)
- Lijia Yu
- National Center for Occupational Safety and Health, National Center for Occupational Medicine of Coal Industry, NHC, Beijing, China
| | - Xi Liu
- National Center for Occupational Safety and Health, National Center for Occupational Medicine of Coal Industry, NHC, Beijing, China
| | - Shuhua Zhao
- National Center for Occupational Safety and Health, National Center for Occupational Medicine of Coal Industry, NHC, Beijing, China
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, China
| | - Wenxuan Zhu
- National Center for Occupational Safety and Health, National Center for Occupational Medicine of Coal Industry, NHC, Beijing, China
- School of Public Health, Hengyang Medical College, University of South China, Hengyang, China
| | - Lina Wu
- National Center for Occupational Safety and Health, National Center for Occupational Medicine of Coal Industry, NHC, Beijing, China
| | - Chunguang Ding
- National Center for Occupational Safety and Health, National Center for Occupational Medicine of Coal Industry, NHC, Beijing, China
| |
Collapse
|
3
|
Ma Y, Shen G, Li R, Wang C, Yang F, Wang F, Ye H, Zhang H, Tang Y. A label-free G-quadruplex aptamer fluorescent aptasensor for visual and real-time kanamycin detection in lake and human samples. Analyst 2023; 148:255-261. [PMID: 36484705 DOI: 10.1039/d2an01810a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Antibiotic abuse is considered a serious problem affecting human health, necessitating that great attention be paid to explore robust, simple and sensitive methods for rapid evaluation. In this paper, we developed a fluorescent aptasensor for visual and real-time kanamycin detection by taking advantage of the label-free strategy based on H-aggregate disassembly of a chiral cyanine dye induced by a G-quadruplex aptamer. The good sensitivity and selectivity enabled this aptasensor to have a detection limit as low as 43 nM and have high specificity for kanamycin recognition. Furthermore, this assay was successfully applied for the detection of kanamycin in lake water and urine with excellent recoveries.
Collapse
Affiliation(s)
- Yingnan Ma
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Gang Shen
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China.
| | - Runzhi Li
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Changzheng Wang
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Fengmin Yang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China.
| | - Fangfang Wang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China.
| | - Huanfeng Ye
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China.
| | - Hong Zhang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China.
| | - Yalin Tang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Chen C, Yang S, Liu Y, Qiu Y, Yao J. Metal ions-bridged J aggregation mediated nanoassembly composition for breast cancer phototherapy. Asian J Pharm Sci 2022; 17:230-240. [PMID: 35582644 PMCID: PMC9091788 DOI: 10.1016/j.ajps.2022.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/27/2021] [Accepted: 01/11/2022] [Indexed: 11/25/2022] Open
Abstract
Recently, the highly ordered J-aggregates of organic dyes with intriguing optical properties have received considerable attention in biomedical applications. Herein, binary metal ions Mn(II)/Fe(III) are used to induce the formation of indocyanine green (ICG) J-aggregates. Further, the sheet-like J-aggregates are able to act as "carriers" for loading hydrophobic chemotherapeutic gambogic acid (GA), realizing the effect of "killing two birds with one stone" for both treatment and delivery. The as-designed nanoassembly is formed spontaneously in aqueous environment via π-π stacking, electrostatic interaction, and hydrophobic force, exhibiting enhanced photostability of ICG and outstanding reactive oxygen species (ROS) generation ability. Moreover, significant inhibition of tumor growth by the synergetic effect of phototherapy and chemotherapy is verified in a subcutaneous 4T1 tumors model. In conclusion, this work not only presents a facile and green approach to manufacture carrier-free nanodrugs, but also establishes a universal platform that has potential application in the co-delivery of near-infrared dye and hydrophobic molecules.
Collapse
|